Recent developments on a
massive planar pentabox with
the SDE approach

Chris Wever (N.C.S.R. Demokritos)

C. Papadopoulos, D. Tommasini, C.Wever [work in progress]

Funded by: APIZTEIA-1283 HOCTools

OPERATIONAL PROGRAMME

EDUCATION AND LIFELONG LEARNING S 2“{]3 '}OE
pyesting in Knowledse societs :E-

ON & RELIGIOUS AFFAIRS. CULTURE & SPORTS IPEAN SOCIAL FUND

MINISTRY OF EDUCATIO
EuropeanUnion M ANAGING AUTHORITY
European Social Fund g 2

HOCTools NNLO, Athens, 17-18 January 2015




Qutline
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= Boundary conditions

The massless limit

= Summary and Outlook




Massive
planar

== A massive planar pentabox

= |Interested in two-loop, five-point diagrams with one external mass
= Massless propagators

= Relevant e.g. for virtual-virtual contribution to 2 - 3 LHC processes such as
H+2j (Les Houches Wishlist), Z+2j, y*+2j production at NNLO QCD

= Three planar topologies:
/

n _ mn _ P .
—P1234 — P14 n

P D3 —P1234

Do Ps Do D1 Pa P1

P1 P2 P3

= All other 8 or less propagator (2-loop, 5-point, 1-mass) planar diagrams are
reducible to diagrams in the above families

We will use SDE approach (see talk by C. Papadopoulos)




Massive

planar [Papadopoulos ’ 14,

pentabox Revi ew: S D E aP P roac h Papadopoulos,

Tommasini, CW ’ 4]
= Introduce extra parameter x in the denominators of loop integral
= x-parameter describes off-shellness of (some) external legs:

. —>
Massive external legs: P] =—— T p1 + (1 — x)q

>
— —>
Massless external legs: P2 ——=— "™~ _~ P2 or xps =
x=1

—>




Massive

planar [Papadopoulos ’ 14,

pentabox ReVi ew: S D E aP P roac h Papadopoulos,

Tommasini, CW ’ 4]
= Introduce extra parameter x in the denominators of loop integral

= x-parameter describes off-shellness of (some) external legs:

o . e
Massive external legs: D] =—— AT pi+(1—2x)g —
>
—> —>
Massless external legs: P2 ——— RN — _“/ D2 or xIps — e

pi(z) =pi+ (1 —x)q;

quz=0

p”t

: Pm()

o ’6)_/(1:[ddk2)Df“1(k ) Dza”(k p) —py G, ..o (2,5, €) /(Hdd )D%‘“ k,p(z))--- D2 (k, p(z))

i(k,p) = Cijkj + dijpja s {Pz‘-PjHi,j




Massive

planar [Papadopoulos ’ 14,

pentabox Revi ew: S D E aP P roac h Papadopoulos,

Tommasini, CW ’ 4]
= Introduce extra parameter x in the denominators of loop integral
= x-parameter describes off-shellness of (some) external legs:

—

Massive external legs: P] =—— e hize p1 + (1 — x)q

>
— —>
Massless external legs: P2 ——=— "™~ _~ P2 or Ips =

X-parametrize

>

p”t ‘ )

x=1

1
- €) = ddki dp. 1
e (fr€) f(H )Dfal(k p) Dby T > Cuenlnso) /(Hd ) B ) D )
i(k,p) = Cijk‘j + dijpja . {Pz‘-PjHi,j

= Take derivative of integral G w.r.t. x-parameter instead of w.r.t. invariants
and reduce r.h.s. by IBP identities:

9,
ox

—GMI (g, s, €) 1Er ﬁ(m, s,€).GM(z,8,€), s= {pi-p;




Massive
planar

e X-parametrization for pentabox

= Often enough to choose the external legs such that the
corresponding massive Ml triangles (found by pinching
external legs) are as follows:

"
P —ap —p

™ x-parametrization for P14 family (74 Ml in total):

M _
— 1234

P1

Do P

=p3 =pi =Piaga =0, p3#0




Massive
planar

e X-parametrization for pentabox

= Often enough to choose the external legs such that the
corresponding massive Ml triangles (found by pinching
external legs) are as follows:

/ N\

1 ! "

0 o . g — T —p
™ x-parametrization for P14 family (74 Ml in total): ¥ aae

2 _ TP _

—P1234 —P1234
Introduce x
P1 > P
Do D3 TPo P123 = LP12
2 2 2 2 2 2 2 2 2 2

pi =pP3 =ps =DPiaza =0, p3#0 > Pl =Dy =P3 =Pi = Plaga =0

= DE for P1 are known and integration underway in terms of GP’s

Reduction for P2 done (75 Ml in total), P3 underway (bottleneck)



Boundary

= Dealing with boundary conditions

= |ntegration of a linear DE: &EG[J;, S, 6] = H[w, S, 6] * G[m, S, 6] Sin f[m, S, 6]

MG[x,s,¢] — MG[x — 0, s, €] :/ dx' Iz’ s, €]
0
:Z/ dr’'x'~ 1+"EIS($)g[S e]—l—/ dw’([[x',s € Zaz’ 1+nefs($g ])
— 0
_Zn: ne smg

" ' 10

integrable

[z, s, €]




Boundary

= Dealing with boundary conditions

= Integration of a linear DE: 0, G|z, s,¢] = H[x, s, €| * G|z, s, €] + f[w, S, €]

MG[x,s,¢] — MG[x — 0, s, €] :/ dx' Iz’ s, €]
0

:Z/ dx'z'~ 1+n€]s($)g[876]+f dx’ (I[x S, €] Zaz’ 1+nefs($gs e])
0

mn
ETRRY T [ it

Often correctly reproduces x — 0 behavior of MG (x, s, €)!

Integrand I[x] contains branch points or poles at x = {x;, x5, ..., 0} of form (x — x;)™* "€

= Also possible to integrate from either x4, x5, ..., © instead from integration boundary x = 0




Boundary

== Dealing with boundary conditions

= Integration of a linear DE: 0, G|z, s,¢] = H[x, s, €| * G|z, s, €] + f[w, S, €]

MG[x,s,e] — MG[x — 0, s, €] :/ dx' Iz’ s, €]
0

:Z/O dx'z'~ 1+nEIS($)g[S,e] —I—/O dw’([[x’,s € Zaz’ 1+”€Is($gs e])

n

Zﬁk / dx Il(nt)egrable[xlvsaﬁ]
k

Often correctly reproduces x — 0 behavior of MG (x, s, €)!

Integrand I[x] contains branch points or poles at x = {x;, x5, ..., 0} of form (x — x;)™* "€

= Also possible to integrate from either x4, x5, ..., © instead from integration boundary x = 0

\Jbservation: Boundary always captured by integration from x = 0 or appropriate x;

—l Not well understood yet why this is so and if will persist in future!

Alternative: use analytical/regularity constraints or asymptotic expansion in x — Xx;



Boundary

== Example of boundary calculation

Tpa

= Two-loop triangle: (& [gg] — —— P21~ P12
/ P%:P%:P§:P3:P?234:0
P — oy
—14€ —14e€
L8512 IS12
» DE: 0, (MG)|z,s,¢] = C|s,¢€ (1 — ) (1 — )
512 — 834 S12 — 834 + S51

= A naive integration from lower boundary x = 0 misses a boundary term (collinear region)




Boundary

. Example of boundary calculation

Tpa

= Two-loop triangle:  G[z] = —— Py — 2P
7 P2 =3 =P} = P = Plazs = 0
P — oy
—1+€ —1+4€
rs512 IrS12
» DE: 0, (MG)|z,s,¢] = C|s,¢€ (1 — —) (1 = )
5812 — S34 S$12 — S34 + Ss51

= A naive integration from lower boundary x = 0 misses a boundary term (collinear region)
= Try instead to integrate from poles x; = (S12—534)/S512 or X; = (S12—534 + S51)/S12
= [ntegrating from x; = (S12—S34)/512 (one-mass case) misses boundary term (collinear)

=  From x5 = (S12—S34 + S51)/512 (equal-mass case) we capture boundary term (hard):

—1+e€ € T
MG|z,s,e] = Cls, ] (— (l — m) (1 — el ) (Slz iR 551> +/ dz’ Lintegrable [37'])
812 — S34 812 — 834 + 851 S12€ T2




Massless

o T[he massless pentabox case

= Massless pentabox = x — 1 under integral sign = x — 1 of hard region contribution ===
=  For massless limit of G: resum logs of (1 — x) into (1 — x)™€ = 0 and dfterwards x — 1

rp1 m _
— P23 —P1234

x— 1
Pl =DP3 =pP3 =Pi = Piazgg =0

TPy Prag — T2 D D3




Massless

o T[he massless pentabox case

= Massless pentabox = x — 1 under integral sign = x — 1 of hard region contribution ===
=  For massless limit of G: resum logs of (1 — x) into (1 — x)™€ = 0 and dfterwards x — 1

rp1 m _
— P23 —P1234

r— 1
Pa > i
2 2 2 2 2
Pl =DP3 =pP3 =Pi = Piazgg =0
Trpo Mag — Ihs D D3
= Lifmits x > 1and € - 0 may not commute:

May contain
MGz, s,e] — MG[x — 0, s, €] / dx.— §)-1Hne
singularities!

:Z/O dx'z'~ 1+”€I£31)g[8,6]—|—/0 dm'([[x',s € Zm’ 1+”€Ig’lg[s, e])
mn

May contain
i § 1 7(k) / divergent
i ne sing L= ] + d.iC I; integrable [ZU 15, € log(1 — x)
n terms!




Massless
limit

The massless pentabox case
= Massless pentabox = x — 1 under integral sign = x — 1 of hard region contribution ===
=  For massless limit of G: resum logs of (1 — x) into (1 — x)™€ — 0 and afterwards x — 1

TPy il

— P23 —P1234

P1 , A > P
= p3 =pj = Piaza =0

P2z — P12 Do Pa

its x > 1and € > 0 may not commute:

May contain
MGz, s,e] — MG[x — 0, s, €] f dx.— )~ 1+ne
singularities!

:Z/O dx'z'~ 1+”€I£31)g[3,e]—|—/0 dac'([[a:’,s € Zaz' 1+n€f§$g[8,é])

May contain
i § 1 7(k) / divergent
i ne sing L= ] + dﬂ? I; integrable [.’L’ 15, € log(1 — x)
n terms!

= Possibility: integrate from pole x = 1 instead of x = 0, but then might miss boundary term
= Even if boundary behavior captured, would have to integrate twice: |) x # 1and2) x = 1

How to perform the resummation in algorithmic and efficient manner?



Massless

= Resumming logs of (1 — x)

= The (1 — x)™€ behavior is captured by the DE itself! U- Henn,A.\/. Smirnoy,
V.A. Smirnov ’| 3]

= Corresponds to singularities in (1 — x) in the DE

= Exponents n are the residues of these singularities

=  For coupled systems one has:

<
<
3

a2 Z(l _ aj)_1+neH(_T§).(MG)[$] 4 Z(l B m)_1+nef(_ni) +O((1 - :C)O)

n

= Bolution (generally might .
contain powers of log(1 — x)): (MG) [SC i 1] n Z Cn(l B 1")

n




Massless
limit

Resumming logs of (1 — x)

[J. Henn,A.V. Smirnoy,

= The (1 — x)™€ behavior is captured by the DE itself! .
V.A. Smirnov ’| 3]

= Corresponds to singularities in (1 — x) in the DE
= Exponents n are the residues of these singularities

For coupled systems one has:

=31 —2) e D) (MGO)[2] + (1 - 2)" 1+l + O((1 - 2)°)

olution (generally might .
contain powers of log(1 — x)): (MG) [SC i 1] n Z Cn(l B 1")

n

Exponents n are determined by the DE itself
The coefficients ¢, found by matching logs of (1 — x) to solution of x # 1 case:

n2e?

(MG)[z] = cn(1+nelog(l —z) + log(1—z)%+---)

Glo=1] = ZnCllZ D"

(1—z)me—0, z—1

Massless pentabox:



Summary
and
Outlook

Summary and Outlook

In progress: two-loop pentaboxes with one massive
external leg

* SDE method captures boundary terms by choosing the
boundary at an appropriate branch point or pole

assless limit captured by resumming logs of (1 — x)

» /Can be done by algorithmic matching
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Summary and Outlook

In progress: two-loop pentaboxes with one massive
external leg

* SDE method captures boundary terms by choosing the
boundary at an appropriate branch point or pole

assless limit captured by resumming logs of (1 — x)

» /Can be done by algorithmic matching

Thank you very much!



Backup slides




Traditional DE method:

Choose § = {f(pi.pj)} and use chain rule
to relate differentials of (independent)
momenta and invariants:

Z aSk 3
810;, 8sk
Solve above linear equations:

0 0
a—% . Qk({pi-@})

Differentiate w.r.t. invariant(s) S:

0
Bsk

9 guige = gk<{pi.%})éf‘“<é,e)

I8P A4(53,¢).GML(3,¢)

Make rotation GM! _s A GM! such that:

0 =g, = . AMI/~
a—ngMI(s,e) = M (3).GM1(3,¢) [Henn '13]

Solve perturbatively in € to get GP’s if
§= {f(pi.pj)} chosen properly

» Solve DE of different 5y, to capture
boundary condition

Comparison of DE methods

Simplified DE method:

® Introduce external parameter x to capture
off-shellness of external momenta:

Gay-an(8,€) = / (Hd kt) D2 (k,p(x)) - - - D3 (k, p())
pi(x) = )i, qu = 0]s = {pip;}i;

=  Parametrization: pinched massive triangles
should have legs (not fully constraining):

q1(z) = zp/, go(z) = p" —ap/, p* =m1,p" = m3

» Differentiate w.r.t. parameter x:

0

ﬁ ) SMIT
5 (z,8,€).G™ (2, 8,€]

—GMI(z,5,¢) 2"

Check if constant term (e = 0) of residues of
homogeneous term for every DE is an integer:
) if yes, solve DE by “bottom-up”
approach to express in GP’s; 2) if no,
change parametrization and check DE again

® Boundary term almost always captured, if
not:try x — 1/x or asymptotic expnansion




Bottom-up approach

= Notation: upper index “(m)” in integrals G{(a ) o denotes amount of

positive indices, i.e. amount of denominators/propagators

(m)  _ K 1
G, —/ (Hd ki) D (k,p) - -~ D" (k, p)

-~
m propagators, (positive indices) a;

® |n practice individual DE’s of Ml are of the form:

8 _(m) - b (m
o G han (@5, = >0 D7 Rationalgyan (a5, Gy, (25, €)

r—
m’"=mqo bl, 0 b

Bottom-up:

=  Solve first for all Ml with least amount of denominators m (these are often
already known to all orders in € or often calculable with other methods)

=  After solving all Ml with m denominators (m = my), solve all Ml with m + 1
denominators

= Often: oy Z gTTTle ( Z Rational(z)GP(- - - ))

n,l



wa Example: one-loop triangle

Parametrize p, off-
shellness with x

—_—
/

. Py + P2 — apy
d?k 1

ind/2 k2(k + p1)?(k + p1 + p2)?

G(mm)—/ G(mf)_/ddk 1
111{ma, ma) = —— 1L R i imd/2 k2(k + xp1)2(k + p1 + p2)?

p2=my,pi=0,(p1 +p2—zp1)2 #0,(p1 +p2)2 =0

= Pifferentiate to x and use IBP to reduce:

Gii(z) = _;;11_6 ((=m1 —3.0)7 (1 +2€)2™° = (mq = .0)"(1 = 2) 7' ~(1 + € — z(1 + 2¢)))

Subtracting the singularities and expanding the finite part leads to:

Giii(z) = G111(U)+/ dz’
0

—(my —i.0)"z~¢ + (—my — 3.0)"cx 2 —4.0)"¢(—z° GP(1;
h + my = 6020 + (o — i) 07> | (my — ) {ur* + (o GRUSBI o )
1T€ 1 Te

Agrees with expansion of exact solution: Giui(m: «2%,ms = (—mi)a(1 — ) = CFEEE) (_mli;; — E:;ﬁ?gf(_; z)™




GP-structure of solution

. (m') s —n+le : .
= Assume for m’ < m denominators: | Gii-a.(z.5.€) = o= (ZRatlonal(m)GP('“v

= For simplicity we assume here a non-coupled DE for a M| with m denominators:

m—1
QGELT-)..@“ (517, S, E) s H(:E: S, E)GELT)--an (:E! S, E) + Z Z Ra’tiona’l(bljmbn) (CL‘, S, 6)Gl()in)bn (.“L‘, S5 E)

oz
m'=1by,--by,




GP-structure of solution

= Assume for m’ < m denominators:

= For simplicity we assume here a non-coupled DE for a M| with m denominators:

a m m gl m’
aGél.)ﬂa“ (z,s,€) = H(z,5,6) G0 (2,5,€) + Z Z Rational®1 ) (g, s, e)Gz(;l---)bn (z,s,€)
m?=1by b

dependence on invariants s

r d
i %Ggﬂf?.an (z,e) = H(x, e)GE’{‘.?.an (z,€) + Z h U ( Z Rational(z)GP(- - - ,.’L’))
7,1
— Z L‘WG&R)% (z,€) + Z Faraie ( Z Rational(z)GP(- - - ,:E)) —
poles z(9) (CE —al )) n,l
%(M(x, e)GgT?.% (z,e)) = M(x,e€) Z :.cfnﬁf(z Rational(x)GP(- - ;x)), M(z,e) = H (x — x(o))*’"mw) —ec_ (o) (€)
n,l poles z(®)



GP-structure of solution

. (m') - —ntle : . ’
= Assume for m’ < m denominators: | Gl e (7,56 =) @ (ZRatlonal(ﬁf)GP('“ ,m)), m’ < m

= For simplicity we assume here a non-coupled DE for a M| with m denominators:

a m m gl m’
aGél.)ﬂa“ (x,s,¢) = H(z,s, e)Ggl.)..an(x, s,€) + Z Z Rational®1 ) (g, s, e)Gz(;l---)bn (z,s,€)

m'=1by,-by
dependence on invariants s
suppressed :
i BQGET?.% (z,e) = H(x, E)Gg{t.)..an (z,€) + Z g ( Z Rational(z)GP(- - - ,.’L’))
7
7,1
— Z L‘WG&R)% (z,€) + Z Faraie ( Z Rational(z)GP(- - - ,:E)) —
poles z(9) (CE —al )) n,l
%(M(x, e)GgT?.% (z,e)) = M(x,e€) Z :.cfnﬁf(z Rational(x)GP(- - ;:c)), M(z,e) = H (x — x(o))*’"mw) —ec_ (o) (€)

n,l

poles x(9)

® [Formal solution:

(M %G 0. oo + Z H [ ( fonle e e (0)) (Z(.’E — 2(0)~"© Rational (') G P(- - - ;x’))

n,l poles z(0) 0

= (M*xG™.,. H0+Z / da'z' T 1 (e) +Ze I > f dz’ (z' — (@)~ zf°>Rat1onalk(sc)GP( z')

poles z(0)

M(z,e)G o (x,5,€)

Rationaly (x ’) if r_0) €L



GP-structure of solution

. (m') - —ntle : . /
= Assume for m’ < m denominators: | Gl e (7,56 =) @ (ZRatlonal(ﬁf)GP('“ ,m)), m’ < m

= For simplicity we assume here a non-coupled DE for a M| with m denominators:

m—1
QGELT:)..@“ (517, S, E) s H(:Ea S, E)GSLT)--an ($, S, E) + Z Z Ra’tiona’l(bljmbn) (CL‘, S, E)Gl()in)bn (.’L‘, S5 E)

m/=1by,-b,

dependence on invariants s

ressed
suppresse gGE’{f?.% (z,¢) = H(z, e)GE;r;%)..an (z,€) + Z p—ntHe ( Z Rational (z)GP( - ;I))
€T
n,l
= T2 + €63 (E) (m) —n+le c .
- po];w) WGQI...% (z,€) + ; x (Z Rational (z)GP(- - - ,3;)) .
% (ﬂ’f(ﬂf, E)Gggl}'a” (33, E)) i ]\f(;r; 5) Z g e ( Z Rational(a:)GP(- - SC)) » ﬂ/f(&", E) = H (.’L‘ — :C(O))*’"m(o) —ec (o) (€)
i poles z(0)

® [Formal solution:

(M % GEM.a, om0 +Z H f da: g/ e (g — £(0))ee U)) (Z(a:' — 2(9)~". Rational (z")GP(- - - ;a:’))

n,l poles z(0)

(M * Ga'l”)an Ho+§: / da'z' " Z I > / da’ ( ) "7+ Rationalg (¢') GP(- - ;z')

poles x(0) h

M(z, e)G&T)a (z,s,€)

boundary condition ~~ Rationaly(z’) if r (0) €z
p—itle +lf-ﬁ.,1( ) = ,

5" Rationaly, (I)GP( ) if T 0)EL

e M| expressible in GP’s: G'™ . (z,8,€) = Z:c—”“f(ZRational(m)Gp(. o

n,l

Fine print for coupled DFE’s: if the non-diagonal piece of € = 0 term of matrix H is nilpotent (e.g. triangular) and if diagonal elements of
matrices T,.(0) are integers, then above “GP-argument” is still valid



Uniform weight solution of DE

= In general matrix in DE is dependent on €:

0 = — =
05}, (

= Conjecture: possible to make a rotation GM! s A.GM! such that:

a j— —
~M T e MI~
— G (5,6) = eMp(5).G7 (8, ¢€) [Henn ’13]
&Sk
=  Explicitly shown to be true for many examples [Henn ’13, Henn, Smirnov et(al 13-714]
B
= If set of invariants § = {f(pi.pj)} chosen correctly: 77, (3) = L{O)
oles S(O) (Sk B gk )
= Solution is uniform in weight of GP’s: o
GMI(5e) = Pelowa™GOEMIG o= (1+e | MyE)+---) GM(0,¢)
0 S——
GMT+eGMT ...
GP(EL‘));gk)
o
= G 4e( GMI + Z f H,: LG )+
—— S~
weight i welght i+1 poles 3 weight i

weight it+1



Example of tradition DE method: one-loop
triangle (1/2)

= Consider again one-loop triangles with 2 massive legs and massless propagators:

= d'k 1 2 2 2
Gowes® = [ o e P A= T O =m0

dsp O -
'@EF(mhmz’mB)’ 1, ] € {1:2}

=  Four linear equations, of which three independent because of invariance under

Lorentz transformation [Remiddi & Gehrmann ’00], in three unknowns: {36 Ty o
my Oms’ Omsg
0 0 0

0
=  Solve linear equations: omn = gk(pl-g,m-ap ,pg-ap ), k=1,2,3
1 2 1

}

9 R ma 0 _ 0
oy E(ml_—mQ)Q(Gon—(lerl—m—l))Gno), 8—77120111 = o

Gh11 (ml « ma, Go11 < Gno)



Example of tradition DE method: one-loop
triangle (2/2)

0 1 = —€ =ll=¢ . 0
By G111 = i m2)2((—m2) +(=m1) " (14+€)—ema(—m1) 1) =: Flmq,mo], e i — Flma, my]
. —1 =
=  Solve by usual subtraction procedure: Fiing[m1, ma] = —(~m1)
2
Gui(mi,ma) = Gi11(0,mz) +/0 Fiing[my, ma] +f0 (F'lm1, mg] — Fing[mi, ma])
i Cm)m M (L= (mme) " )GP(—mi)  (mg —mi)GP(; —my) + meGP(0; —m)) 0
=/ G111(0,m2) Zma + fo ( 2 (ma = ml)? e + Ol(e ))
B (—=my)€ mi(l—(—=mo)™ %)  miGP(0;—my) 0
a Glll(o,mz) B 62m2 i ( EQT’?’LQ(ml - mg) i ETTLQ(TRQ — ml) ) i O(e )
. . 48 9
® Boundary condition follows by plugging in above solution in 8—7@@111 = Flma, mi]
0 1+ ¢ . —(—mn,) 1€ (—me) 1€
G111(0, mz) = ( 5 )(*mz) 2 — G111(0, ’mz) = ( g) + G111(0, 0) = ( Z)
dms € € =k €

scaleless=0

. . R
= Agrees with exact solution: Gi1 = CFE(;) (=m1) ™ — (-m2)

T (- 1og(Z™) 1 0())

my — Mg mi — Mg



Open questions

¢ |s there a way to pre-empt the choice of x-parametrization without having
to calculate the DE?

are the boundary conditions naturally taken into account by the DE?

ow do the DE in the x-parametrization method relate exactly to those
n the traditional DE method!?



