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A massive planar pentabox
 Interested in two-loop, five-point diagrams with one external mass

 Massless propagators

 Relevant e.g. for virtual-virtual contribution to 2 → 3 LHC processes such as 

H+2j (Les HouchesWishlist), Z+2j, 𝛾*+2j production at NNLO QCD
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 All other 8 or less propagator (2-loop, 5-point, 1-mass) planar diagrams are 

reducible to diagrams in the above families

 Three planar topologies:

We will use SDE approach (see talk by C. Papadopoulos)

P1 P2 P3

Massive 

planar 

pentabox



 Introduce extra parameter x in the denominators of loop integral

 x-parameter describes off-shellness of (some) external legs:
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x-parametrize

orMassless external legs:

Massive external legs:

𝑥 = 1

[Papadopoulos ’14, 

Papadopoulos, 

Tommasini, CW ’14]
Review: SDE approach
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 Introduce extra parameter x in the denominators of loop integral

 x-parameter describes off-shellness of (some) external legs:
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 Take derivative of integral G w.r.t. x-parameter instead of w.r.t. invariants 

and reduce r.h.s. by IBP identities:

x-parametrize

𝑥 = 1

x-parametrize

or

General:

Massless external legs:

Massive external legs:

𝑥 = 1

[Papadopoulos ’14, 

Papadopoulos, 

Tommasini, CW ’14]
Review: SDE approach
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x-parametrization for pentabox

 For all MI that we have calculated, the above criteria could be easily met

 Often enough to choose the external legs such that the 

corresponding massive MI triangles (found by pinching 

external legs) are as follows: 

Massive 

planar 

pentabox

 x-parametrization for P1 family (74 MI in total):

Main criteria for choice of x-parametrization: require Goncharov Polylog (GP) solution for DE
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Main criteria for choice of x-parametrization: require Goncharov Polylog (GP) solution for DE

x-parametrization for pentabox

 For all MI that we have calculated, the above criteria could be easily met

 Often enough to choose the external legs such that the 

corresponding massive MI triangles (found by pinching 

external legs) are as follows: 

 DE for P1 are known and integration underway in terms of GP’s

 Reduction for P2 done (75 MI in total), P3 underway (bottleneck)

Massive 

planar 

pentabox

 x-parametrization for P1 family (74 MI in total):

Introduce x
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 Integration of a linear DE:

Boundary 

conditions Dealing with boundary conditions
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 Integration of a linear DE:

Often correctly reproduces 𝑥 → 0 behavior of 𝑀𝐺(𝑥, 𝑠, )!

 Integrand 𝐼[𝑥] contains branch points or poles at 𝑥 = {𝑥1, 𝑥2, … ,∞} of form (𝑥 − 𝑥𝑖)
𝑚+𝑛𝜖

 Also possible to integrate from either 𝑥1, 𝑥2, … ,∞ instead from integration boundary 𝑥 = 0

Boundary 

conditions Dealing with boundary conditions
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 Integration of a linear DE:

Often correctly reproduces 𝑥 → 0 behavior of 𝑀𝐺(𝑥, 𝑠, )!

Not well understood yet why this is so and if will persist in future!

 Alternative: use analytical/regularity constraints or asymptotic expansion in 𝑥 → 𝑥𝑖

 Integrand 𝐼[𝑥] contains branch points or poles at 𝑥 = {𝑥1, 𝑥2, … ,∞} of form (𝑥 − 𝑥𝑖)
𝑚+𝑛𝜖

 Also possible to integrate from either 𝑥1, 𝑥2, … ,∞ instead from integration boundary 𝑥 = 0

Observation: Boundary always captured by integration from 𝑥 = 0 or appropriate 𝑥𝑖

Boundary 

conditions Dealing with boundary conditions



Example of boundary calculation
6

 Two-loop triangle:

 DE:

 A naïve integration from lower boundary 𝑥 = 0 misses a boundary term (collinear region)

Boundary 

conditions



Example of boundary calculation
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 Two-loop triangle:

 DE:

 A naïve integration from lower boundary 𝑥 = 0 misses a boundary term (collinear region)

 Try instead to integrate from poles 𝑥1 = (𝑠12−𝑠34)/𝑠12 or 𝑥2 = (𝑠12−𝑠34 + 𝑠51)/𝑠12

 Integrating from 𝑥1 = (𝑠12−𝑠34)/𝑠12 (one-mass case) misses boundary term (collinear)

 From 𝑥2 = (𝑠12−𝑠34 + 𝑠51)/𝑠12 (equal-mass case) we capture boundary term (hard):

Boundary 

conditions



The massless pentabox case
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Massless 

limit

 Massless pentabox = 𝑥 → 1 under integral sign = 𝑥 → 1 of hard region contribution

 For massless limit of 𝐺: resum logs of (1 − 𝑥) into (1 − 𝑥)𝑛𝜖 → 0 and afterwards 𝑥 → 1



The massless pentabox case
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Massless 

limit

 Limits 𝑥 → 1 and 𝜖 → 0 may not commute:

May contain 

divergent 

log(1 − 𝑥)
terms!

May contain 

(1 − 𝑥′)−1+𝑛𝜖

singularities!

 Massless pentabox = 𝑥 → 1 under integral sign = 𝑥 → 1 of hard region contribution

 For massless limit of 𝐺: resum logs of (1 − 𝑥) into (1 − 𝑥)𝑛𝜖 → 0 and afterwards 𝑥 → 1



The massless pentabox case
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Massless 

limit

 Possibility: integrate from pole 𝑥 = 1 instead of 𝑥 = 0, but then might miss boundary term

 Even if boundary behavior captured, would have to integrate twice: 1) 𝑥 ≠ 1 and 2) 𝑥 = 1

 How to perform the resummation in algorithmic and efficient manner?

 Limits 𝑥 → 1 and 𝜖 → 0 may not commute:

May contain 

divergent 

log(1 − 𝑥)
terms!

May contain 

(1 − 𝑥′)−1+𝑛𝜖

singularities!

 Massless pentabox = 𝑥 → 1 under integral sign = 𝑥 → 1 of hard region contribution

 For massless limit of 𝐺: resum logs of (1 − 𝑥) into (1 − 𝑥)𝑛𝜖 → 0 and afterwards 𝑥 → 1



Resumming logs of (1 − 𝑥)
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Massless 

limit

 The (1 − 𝑥)𝑛𝜖 behavior is captured by the DE itself!

 Corresponds to singularities in (1 − 𝑥) in the DE

 Exponents 𝑛 are the residues of these singularities

 For coupled systems one has:

[J. Henn, A.V. Smirnov, 

V.A. Smirnov ’13]

 Solution (generally might 

contain powers of log(1 − 𝑥)):



Resumming logs of (1 − 𝑥)
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Massless 

limit

 The (1 − 𝑥)𝑛𝜖 behavior is captured by the DE itself!

 Corresponds to singularities in (1 − 𝑥) in the DE

 Exponents 𝑛 are the residues of these singularities

 For coupled systems one has:

 Exponents 𝑛 are determined by the DE itself

 The coefficients 𝑐𝑛 found by matching logs of (1 − 𝑥) to solution of 𝑥 ≠ 1 case:

 Massless pentabox:

[J. Henn, A.V. Smirnov, 

V.A. Smirnov ’13]

 Solution (generally might 

contain powers of log(1 − 𝑥)):
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Summary and Outlook

Summary 

and 

Outlook

 In progress: two-loop pentaboxes with one massive 

external leg

 SDE method captures boundary terms by choosing the 

boundary at an appropriate branch point or pole

 Massless limit captured by resumming logs of (1 − 𝑥)

 Can be done by algorithmic matching
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Summary and Outlook

Summary 

and 

Outlook

Thank you very much!

 In progress: two-loop pentaboxes with one massive 

external leg

 SDE method captures boundary terms by choosing the 

boundary at an appropriate branch point or pole

 Massless limit captured by resumming logs of (1 − 𝑥)

 Can be done by algorithmic matching



Backup slides



Comparison of DE methods
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Simplified DE method:

 Introduce external parameter x to capture 

off-shellness of external momenta:

 Differentiate w.r.t. parameter x:

 Parametrization: pinched massive triangles 

should have legs (not fully constraining):

 Check if constant term (𝜖 = 0) of residues of 

homogeneous term for every DE is an integer:

1) if yes, solve DE by “bottom-up” 

approach to express in GP’s; 2) if no, 

change parametrization and check DE again

 Boundary term almost always captured, if 

not: try 𝑥 → 1/𝑥 or asymptotic expnansion

Traditional DE method:

 Solve perturbatively in 𝜖 to get GP’s if 

 𝑠 = {𝑓 𝑝𝑖 . 𝑝𝑗 } chosen properly

 Choose  𝑠 = {𝑓 𝑝𝑖 . 𝑝𝑗 } and use chain rule 

to relate differentials of (independent) 

momenta and invariants: 

 Differentiate w.r.t. invariant(s)  𝑠𝑘:

 Solve above linear equations: 

 Make rotation                          such that: 

[Henn ’13]

 Solve DE of different  𝑠𝑘′ to capture 

boundary condition



Bottom-up approach

 In practice individual DE’s of MI are of the form:
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Bottom-up: 

 Solve first for all MI with least amount of denominators 𝑚0 (these are often 

already known to all orders in 𝜖 or often calculable with other methods)

 After solving all MI with 𝑚 denominators (𝑚 ≥ 𝑚0), solve all MI with 𝑚+ 1
denominators

 Notation: upper index “(𝑚)” in integrals 𝐺{𝑎1…𝑎𝑛}
(𝑚)

denotes amount of 

positive indices, i.e. amount of denominators/propagators

 Often:



Example: one-loop triangle

 Differentiate to x and use IBP to reduce:
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Parametrize 𝑝2 off-

shellness with x

 Agrees with expansion of exact solution:

 Subtracting the singularities and expanding the finite part leads to:
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GP-structure of solution

 Assume for 𝑚′ < 𝑚 denominators:

 For simplicity we assume here a non-coupled DE for a MI with 𝑚 denominators:
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GP-structure of solution

 For simplicity we assume here a non-coupled DE for a MI with 𝑚 denominators:
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 Formal solution:

dependence on invariants 𝑠
suppressed

 Assume for 𝑚′ < 𝑚 denominators:

MI expressible in GP’s:

Fine print for coupled DE’s: if the non-diagonal piece of 𝜖 = 0 term of matrix H is nilpotent (e.g. triangular) and if diagonal elements of 

matrices 𝑟𝑥(0) are integers, then above “GP-argument” is still valid



Uniform weight solution of DE
 In general matrix in DE is dependent on ϵ:
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 Conjecture: possible to make a rotation                         such that:

 Explicitly shown to be true for many examples [Henn ’13, Henn, Smirnov et al ’13-’14]

 If set of invariants  𝑠 = {𝑓 𝑝𝑖 . 𝑝𝑗 } chosen correctly:

 Solution is uniform in weight of GP’s:

[Henn ’13]



Example of tradition DE method: one-loop 
triangle (1/2)

 Consider again one-loop triangles with 2 massive legs and massless propagators: 
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 General function:

 Four linear equations, of which three independent because of invariance under 

Lorentz transformation [Remiddi & Gehrmann ’00], in three unknowns: 

 Solve linear equations: 
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 Agrees with exact solution:

 Solve by usual subtraction procedure:

 Boundary condition follows by plugging in above solution in

Example of tradition DE method: one-loop 
triangle (2/2)
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Open questions

 Is there a way to pre-empt the choice of x-parametrization without having 

to calculate the DE?

 Why are the boundary conditions naturally taken into account by the DE?

 How do the DE in the x-parametrization method relate exactly to those 

in the traditional DE method?


