Recent developments on a massive planar pentabox with the SDE approach

Chris Wever (N.C.S.R. Demokritos)

C. Papadopoulos, D. Tommasini, C. Wever [work in progress]

Funded by: APIΣTEIA-1283 HOCTools

Outline

- The SDE approach for a massive planar pentabox
- Boundary conditions
- The massless limit
- Summary and Outlook

2

A massive planar pentabox

- Interested in two-loop, five-point diagrams with <u>one</u> external mass
- Massless propagators
- Relevant e.g. for virtual-virtual contribution to $2 \rightarrow 3$ LHC processes such as H+2j (Les Houches Wishlist), Z+2j, γ^* +2j production at NNLO QCD
- Three planar topologies:

<u>P1</u>

<u>P2</u>

P3

 All other 8 or less propagator (2-loop, 5-point, 1-mass) planar diagrams are reducible to diagrams in the above families

We will use SDE approach (see talk by C. Papadopoulos)

Review: SDE approach

[Papadopoulos '14, Papadopoulos, Tommasini, CW '14]

3

- Introduce extra parameter x in the denominators of loop integral
- x-parameter describes off-shellness of (some) external legs:

Review: SDE approach

[Papadopoulos '14, Papadopoulos, Tommasini, CW '14]

3

- Introduce extra parameter x in the denominators of loop integral
- x-parameter describes off-shellness of (some) external legs:

Massive external legs: p_1

Massless external legs: p_2

$$p_1 + (1-x)q$$

 p_2

$$_2$$
 or xp_2 \longrightarrow

x = 1

Genera

x = 1

$$p_i(x) = p_i + (1 - x)q_i$$
$$\sum_i q_i = 0$$

$$G_{a_1 \cdots a_n}(s, \epsilon) = \int \left(\prod_i d^d k_i \right) \frac{1}{D_1^{2a_1}(k, p) \cdots D_n^{2a_n}(k, p)}$$

$$\overline{D_n^{2a_n}(k,p)}$$

$$D_i(k, p) = c_{ij}k_j + d_{ij}p_j, \quad s = \{p_i \cdot p_j\}|_{i,j}$$

Review: SDE approach

[Papadopoulos '14, Papadopoulos, Tommasini, CW '14]

3

- Introduce extra parameter x in the denominators of loop integral
- x-parameter describes off-shellness of (some) external legs:

Massive external legs: p_1

Massless external legs: p_2 =

x = 1

$$p_1 + (1-x)q$$

 p_2

$$\underline{\hspace{1cm}}$$

Genera

$$p_i(x) = p_i + (1 - x)e^{-x}$$
$$\sum_i q_i = 0$$

$$G_{a_1 \cdots a_n}(s, \epsilon) = \int \left(\prod_i d^d k_i \right) \frac{1}{D_1^{2a_1}(k, p) \cdots D_n^{2a_n}(k, p)} \qquad \qquad \qquad G_{a_1 \cdots a_n}(x, s, \epsilon) = \int \left(\prod_i d^d k_i \right) \frac{1}{D_1^{2a_1}(k, p(x)) \cdots D_n^{2a_n}(k, p(x))}$$

$$G_{a_1 \cdots a_n}(x, s, \epsilon) = \int \left(\prod_i d^d k_i \right) \frac{1}{D_1^{2a_1}(k, p(x)) \cdots D_n^{2a_n}(k, p(x))}$$

$$D_i(k, p) = c_{ij}k_j + d_{ij}p_j, \quad s = \{p_i.p_j\}|_{i,j}$$

Take derivative of integral G w.r.t. x-parameter instead of w.r.t. invariants and reduce r.h.s. by IBP identities:

$$\frac{\partial}{\partial x} \vec{G}^{MI}(x, s, \epsilon) \stackrel{IBP}{=} \overline{\overline{M}}(x, s, \epsilon) \cdot \vec{G}^{MI}(x, s, \epsilon), \quad s = \{p_i.p_j\}|_{i,j}$$

x-parametrization for pentabox

Main criteria for choice of x-parametrization: require Goncharov Polylog (GP) solution for DE

- For all MI that we have calculated, the above criteria could be easily met
- Often enough to choose the external legs such that the corresponding massive MI triangles (found by pinching external legs) are as follows:

x-parametrization for P1 family (74 MI in total):

$$p_1^2 = p_2^2 = p_4^2 = p_{1234}^2 = 0, \quad p_3^2 \neq 0$$

x-parametrization for pentabox

Main criteria for choice of x-parametrization: require Goncharov Polylog (GP) solution for DE

- For all MI that we have calculated, the above criteria could be easily met
- Often enough to choose the external legs such that the corresponding massive MI triangles (found by pinching external legs) are as follows:

y-parametrization for P1 family (74 MI in total):

$$xp_1$$
 $-p_{1234}$ p_4 $p_{123} - xp_{12}$

$$p_1^2 = p_2^2 = p_4^2 = p_{1234}^2 = 0, \quad p_3^2 \neq 0$$

- $p_1^2 = p_2^2 = p_3^2 = p_4^2 = p_{1234}^2 = 0$
- DE for P1 are known and integration underway in terms of GP's
 - Reduction for **P2** done (75 Ml in total), **P3** underway (bottleneck)

Dealing with boundary conditions

Integration of a linear DE: $\partial_x G[x,s,\epsilon] = H[x,s,\epsilon] * G[x,s,\epsilon] + \tilde{I}[x,s,\epsilon]$

$$MG[x, s, \epsilon] - MG[x \to 0, s, \epsilon] = \int_0^x dx' I[x', s, \epsilon]$$

$$= \sum_n \int_0^x dx' x'^{-1+n\epsilon} I_{\text{sing}}^{(n)}[s, \epsilon] + \int_0^x dx' \left(I[x', s, \epsilon] - \sum_n x'^{-1+n\epsilon} I_{\text{sing}}^{(n)}[s, \epsilon] \right)$$

$$= \sum_n \frac{x^{n\epsilon}}{n\epsilon} I_{\text{sing}}^{(n)}[s, \epsilon] + \sum_k \epsilon^k \int_0^x dx' I_{\text{integrable}}^{(k)}[x', s, \epsilon]$$

Dealing with boundary conditions

Integration of a linear DE: $\partial_x G[x,s,\epsilon] = H[x,s,\epsilon] * G[x,s,\epsilon] + \tilde{I}[x,s,\epsilon]$

$$\begin{split} MG[x,s,\epsilon] - MG[x \to 0,s,\epsilon] &= \int_0^x dx' I[x',s,\epsilon] \\ &= \sum_n \int_0^x dx' x'^{-1+n\epsilon} I_{\mathrm{sing}}^{(n)}[s,\epsilon] + \int_0^x dx' \Big(I[x',s,\epsilon] - \sum_n x'^{-1+n\epsilon} I_{\mathrm{sing}}^{(n)}[s,\epsilon] \Big) \\ &= \sum_n \frac{x^{n\epsilon}}{n\epsilon} I_{\mathrm{sing}}^{(n)}[s,\epsilon] + \sum_k \epsilon^k \int_0^x dx' I_{\mathrm{integrable}}^{(k)}[x',s,\epsilon] \end{split}$$

Often correctly reproduces $x \to 0$ behavior of $MG(x, s, \epsilon)$!

- Integrand I[x] contains branch points or poles at $x = \{x_1, x_2, ..., \infty\}$ of form $(x x_i)^{m+n\epsilon}$
- Also possible to integrate from either $x_1, x_2, ..., \infty$ instead from integration boundary x=0

Dealing with boundary conditions

Integration of a linear DE: $\partial_x G[x,s,\epsilon] = H[x,s,\epsilon] * G[x,s,\epsilon] + \tilde{I}[x,s,\epsilon]$

$$MG[x, s, \epsilon] - MG[x \to 0, s, \epsilon] = \int_0^x dx' I[x', s, \epsilon]$$

$$= \sum_n \int_0^x dx' x'^{-1+n\epsilon} I_{\text{sing}}^{(n)}[s, \epsilon] + \int_0^x dx' \left(I[x', s, \epsilon] - \sum_n x'^{-1+n\epsilon} I_{\text{sing}}^{(n)}[s, \epsilon] \right)$$

$$= \sum_n \frac{x^{n\epsilon}}{n\epsilon} I_{\text{sing}}^{(n)}[s, \epsilon] + \sum_k \epsilon^k \int_0^x dx' I_{\text{integrable}}^{(k)}[x', s, \epsilon]$$

Often correctly reproduces $x \to 0$ behavior of $MG(x, s, \epsilon)$!

- Integrand I[x] contains branch points or poles at $x = \{x_1, x_2, ..., \infty\}$ of form $(x x_i)^{m+n\epsilon}$
- Also possible to integrate from either $x_1, x_2, ..., \infty$ instead from integration boundary x = 0

pbservation: Boundary always captured by integration from x=0 or appropriate x_i

Not well understood yet why this is so and if will persist in future!

Alternative: use analytical/regularity constraints or asymptotic expansion in $x \to x_i$

6

Two-loop triangle: G[x] =

A naïve integration from lower boundary x = 0 misses a boundary term (collinear region)

Example of boundary calculation

Two-loop triangle: G[x] =

- A naïve integration from lower boundary x=0 misses a boundary term (collinear region)
- Try instead to integrate from poles $x_1 = (s_{12} s_{34})/s_{12}$ or $x_2 = (s_{12} s_{34} + s_{51})/s_{12}$
- Integrating from $x_1 = (s_{12} s_{34})/s_{12}$ (one-mass case) misses boundary term (collinear)
- From $x_2 = (s_{12} s_{34} + s_{51})/s_{12}$ (equal-mass case) we capture boundary term (hard):

$$MG[x, s, \epsilon] = C[s, \epsilon] \left(-\left(1 - \frac{x_2 s_{12}}{s_{12} - s_{34}}\right)^{-1 + \epsilon} \left(1 - \frac{x s_{12}}{s_{12} - s_{34} + s_{51}}\right)^{\epsilon} \left(\frac{s_{12} - s_{34} + s_{51}}{s_{12}\epsilon}\right) + \int_{x_2}^{x} dx' I_{\text{integrable}}[x']\right)$$

The massless pentabox case

- Massless pentabox = $x \to 1$ under integral sign = $x \to 1$ of hard region contribution ■
- For massless limit of G: resum logs of (1-x) into $(1-x)^{n\epsilon} \to 0$ and afterwards $x \to 1$

The massless pentabox case

- Massless pentabox = $x \to 1$ under integral sign = $x \to 1$ of hard region contribution ■
- For massless limit of G: resum logs of (1-x) into $(1-x)^{n\epsilon} \to 0$ and afterwards $x \to 1$

Limits $x \to 1$ and $\epsilon \to 0$ may not commute:

$$MG[x,s,\epsilon] - MG[x \to 0,s,\epsilon] = \int_0^x dx' I[x',s,\epsilon] \qquad \begin{tabular}{l} May contain \\ (1-x')^{-1+n\epsilon} singularities! \end{tabular} \\ = \sum_n \int_0^x dx' x'^{-1+n\epsilon} I_{\rm sing}^{(n)}[s,\epsilon] + \int_0^x dx' \Big(I[x',s,\epsilon] - \sum_n x'^{-1+n\epsilon} I_{\rm sing}^{(n)}[s,\epsilon] \Big) \\ = \sum_n \frac{x^{n\epsilon}}{n\epsilon} I_{\rm sing}^{(n)}[s,\epsilon] + \sum_k \epsilon^k \int_0^x dx' I_{\rm integrable}^{(k)}[x',s,\epsilon] \end{tabular} \qquad \begin{tabular}{l} May contain divergent log(1-x) terms! \end{tabular}$$

The massless pentabox case

- Massless pentabox = $x \to 1$ under integral sign = $x \to 1$ of hard region contribution
- For massless limit of G: resum logs of (1-x) into $(1-x)^{n\epsilon} \to 0$ and afterwards $x \to 1$

Limits $x \to 1$ and $\epsilon \to 0$ may not commute:

$$MG[x,s,\epsilon] - MG[x \to 0,s,\epsilon] = \int_0^x dx' I[x',s,\epsilon] \qquad \begin{tabular}{l} {\rm May\ contain} \\ (1-x')^{-1+n\epsilon} \\ {\rm singularities!} \end{tabular}$$

$$= \sum_n \int_0^x dx' x'^{-1+n\epsilon} I_{\rm sing}^{(n)}[s,\epsilon] + \int_0^x dx' \Big(I[x',s,\epsilon] - \sum_n x'^{-1+n\epsilon} I_{\rm sing}^{(n)}[s,\epsilon] \Big) \\ = \sum_n \frac{x^{n\epsilon}}{n\epsilon} I_{\rm sing}^{(n)}[s,\epsilon] + \sum_k \epsilon^k \int_0^x dx' I_{\rm integrable}^{(k)}[x',s,\epsilon] \end{tabular}$$

$$= \sum_n \frac{x^{n\epsilon}}{n\epsilon} I_{\rm sing}^{(n)}[s,\epsilon] + \sum_k \epsilon^k \int_0^x dx' I_{\rm integrable}^{(k)}[x',s,\epsilon] \end{tabular}$$

$$= \sum_n \frac{x^{n\epsilon}}{n\epsilon} I_{\rm sing}^{(n)}[s,\epsilon] + \sum_k \epsilon^k \int_0^x dx' I_{\rm integrable}^{(k)}[x',s,\epsilon] \end{tabular}$$

$$= \sum_n \frac{x^{n\epsilon}}{n\epsilon} I_{\rm sing}^{(n)}[s,\epsilon] + \sum_k \epsilon^k \int_0^x dx' I_{\rm integrable}^{(k)}[x',s,\epsilon] \end{tabular}$$

- Possibility: integrate from pole x = 1 instead of x = 0, but then might miss boundary term
- Even if boundary behavior captured, would have to integrate twice: I) $x \neq 1$ and 2) x = 1

How to perform the resummation in algorithmic and efficient manner?

8

The $(1-x)^{n\epsilon}$ behavior is captured by the DE itself!

[J. Henn, A.V. Smirnov, V.A. Smirnov '13]

- Corresponds to singularities in (1-x) in the DE
- $lue{}$ Exponents n are the residues of these singularities
- For coupled systems one has:

$$\partial_x(MG)[x] = \sum_n (1-x)^{-1+n\epsilon} H_{-1}^{(n)}.(MG)[x] + \sum_n (1-x)^{-1+n\epsilon} \tilde{I}_{-1}^{(n)} + \mathcal{O}((1-x)^0)$$

Solution (generally might contain powers of log(1-x)):

$$(MG)[x \sim 1] = \sum_{n} c_n (1-x)^{n\epsilon}$$

Resumming logs of (1-x)

The $(1-x)^{n\epsilon}$ behavior is captured by the DE itself!

[]. Henn, A.V. Smirnov, V.A. Smirnov '13]

- Corresponds to singularities in (1-x) in the DE
- Exponents n are the residues of these singularities
- For coupled systems one has:

$$\partial_x(MG)[x] = \sum_n (1-x)^{-1+n\epsilon} H_{-1}^{(n)}.(MG)[x] + \sum_n (1-x)^{-1+n\epsilon} \tilde{I}_{-1}^{(n)} + \mathcal{O}((1-x)^0)$$

Solution (generally might contain powers of log(1 - x)):

$$(MG)[x \sim 1] = \sum_{n} c_n (1-x)^{n\epsilon}$$

- Exponents n are determined by the DE itself
- The coefficients c_n found by matching logs of (1-x) to solution of $x \neq 1$ case:

$$(MG)[x] = \sum_{n} c_n (1 + n\epsilon \log(1 - x) + \frac{n^2 \epsilon^2}{2} \log(1 - x)^2 + \cdots)$$

Massless pentabox:
$$G[x=1] = \frac{\sum_{n} c_n (1-x)^{n\epsilon}}{M} \Big|_{(1-x)^{n\epsilon} \to 0, x \to \infty}$$

Summary and Outlook

9

- In progress: two-loop pentaboxes with one massive external leg
- SDE method captures boundary terms by choosing the boundary at an appropriate branch point or pole
- Massless limit captured by resumming logs of (1 x)
- Can be done by algorithmic matching

Summary and Outlook

9

- In progress: two-loop pentaboxes with one massive external leg
- SDE method captures boundary terms by choosing the boundary at an appropriate branch point or pole
- Massless limit captured by resumming logs of (1 x)
- Can be done by algorithmic matching

Thank you very much!

Backup slides

Comparison of DE methods

Traditional DE method:

Choose $\tilde{s} = \{f(p_i, p_j)\}$ and use chain rule to relate differentials of (independent) momenta and invariants:

$$p_i \cdot \frac{\partial}{\partial p_j} F(\tilde{s}) = \sum_k p_i \cdot \frac{\partial \tilde{s}_k}{\partial p_j} \frac{\partial}{\partial \tilde{s}_k} F(\tilde{s})$$

Solve above linear equations:

$$\frac{\partial}{\partial \tilde{s}_k} = g_k(\{p_i.\frac{\partial}{\partial p_i}\})$$

 \blacksquare Differentiate w.r.t. invariant(s) \tilde{s}_k :

$$\frac{\partial}{\partial \tilde{s}_k} \vec{G}^{MI}(\tilde{s}, \epsilon) = g_k(\{p_i. \frac{\partial}{\partial p_j}\}) \vec{G}^{MI}(\tilde{s}, \epsilon)$$

$$\stackrel{IBP}{=} \overline{\overline{M}}_k(\tilde{s}, \epsilon). \vec{G}^{MI}(\tilde{s}, \epsilon)$$

• Make rotation $\vec{G}^{MI} o \overline{\overline{A}}.\vec{G}^{MI}$ such that:

$$\frac{\partial}{\partial \tilde{s}_k} \vec{G}^{MI}(\tilde{s},\epsilon) = \epsilon \overline{\overline{M}}_k(\tilde{s}).\vec{G}^{MI}(\tilde{s},\epsilon) \ \ \text{[Henn'l3]}$$

- Solve perturbatively in ϵ to get GP's if $\tilde{s} = \{f(p_i, p_j)\}$ chosen properly
- Solve DE of different $\tilde{s}_{k'}$ to capture boundary condition

Simplified DE method:

Introduce external parameter x to capture off-shellness of external momenta:

$$G_{a_1 \cdots a_n}(s, \epsilon) = \int \left(\prod_i d^d k_i \right) \frac{1}{D_1^{2a_1}(k, p(x)) \cdots D_n^{2a_n}(k, p(x))}$$
$$p_i(x) = p_i + (1 - x)q_i, \quad \sum_i q_i = 0, \quad s = \{p_i \cdot p_j\}|_{i,j}$$

Parametrization: pinched massive triangles should have legs (not fully constraining):

$$q_1(x) = xp', q_2(x) = p'' - xp', p'^2 = m_1, p''^2 = m_3$$

Differentiate w.r.t. parameter x:

$$\frac{\partial}{\partial x} \vec{G}^{MI}(x, s, \epsilon) \stackrel{IBP}{=} \overline{\overline{M}}(x, s, \epsilon) \cdot \vec{G}^{MI}(x, s, \epsilon)$$

- Check if constant term (ε = 0) of residues of homogeneous term for every DE is an integer:
 I) if yes, solve DE by "bottom-up" approach to express in GP's; 2) if no, change parametrization and check DE again
- Boundary term almost always captured, if not: try $x \to 1/x$ or asymptotic expnansion

Bottom-up approach

Notation: upper index "(m)" in integrals $G_{\{a_1...a_n\}}^{(m)}$ denotes amount of positive indices, i.e. amount of denominators/propagators

$$G_{a_1 \cdots a_n}^{(m)} = \int \left(\prod_i d^d k_i \right) \underbrace{\frac{1}{D_1^{2a_1}(k, p) \cdots D_n^{2a_n}(k, p)}}_{m \text{ propagators, (positive indices) } a_i}$$

In practice individual DE's of MI are of the form:

$$\frac{\partial}{\partial x} G_{a_1 \cdots a_n}^{(m)}(x, s, \epsilon) = \sum_{m'=m_0}^m \sum_{b_1, \cdots b_n} \text{Rational}_{a_1 \cdots a_n}^{b_1, \cdots b_n}(x, s, \epsilon) G_{b_1 \cdots b_n}^{(m')}(x, s, \epsilon)$$

Bottom-up:

- Solve first for all MI with least amount of denominators m_0 (these are often already known to all orders in ϵ or often calculable with other methods)
- After solving all MI with m denominators ($m \ge m_0$), solve all MI with m+1 denominators
- Often: $G_{a_1\cdots a_n}^{(m_0)}(x,s,\epsilon) = \sum_{n,l} x^{-n+l\epsilon} \Big(\sum_{n} \operatorname{Rational}(x) GP(\cdots;x) \Big)$

Example: one-loop triangle

Parametrize p_2 offshellness with x

 $G_{111}(m_1, \mathbf{x}) = \int \frac{d^dk}{i\pi^{d/2}} \frac{1}{k^2(k+\mathbf{x}p_1)^2(k+p_1+p_2)^2}$

$$p_1^2 = m_1, p_2^2 = 0, (p_1 + p_2 - xp_1)^2 \neq 0, (p_1 + p_2)^2 = 0$$

Differentiate to x and use IBP to reduce:

$$\frac{\partial}{\partial x} G_{111}(x) = \frac{-x^{-2-\epsilon}}{\epsilon^2 m_1} ((-m_1 - i.0)^{-\epsilon} (1 + 2\epsilon) x^{-\epsilon} - (m_1 - i.0)^{-\epsilon} (1 - x)^{-1-\epsilon} (1 + \epsilon - x(1 + 2\epsilon)))$$

Subtracting the singularities and expanding the finite part leads to:

$$G_{111}(x) = G_{111}(0) + \int_{0}^{x} dx' \frac{-x'^{-2-\epsilon}}{\epsilon^{2}m_{1}} ((-m_{1}-i.0)^{-\epsilon}(1+2\epsilon)x'^{-\epsilon} - (m_{1}-i.0)^{-\epsilon}(1-x')^{-1-\epsilon}(1+\epsilon-x'(1+2\epsilon)))$$

$$= \underbrace{G_{111}(0)}_{=0} + \frac{-(m_{1}-i.0)^{-\epsilon}x^{-\epsilon} + (-m_{1}-i.0)^{-\epsilon}x^{-2\epsilon}}{m_{1}x\epsilon^{2}} + \underbrace{\frac{(m_{1}-i.0)^{-\epsilon}(-x^{-\epsilon} + (x+GP(1;x)))}{m_{1}x\epsilon}}_{=0} + \mathcal{O}(\epsilon^{0})$$

Agrees with expansion of exact solution: $G_{111}(m_1*x^2, m_2 = (-m_1)x(1-x)) = \frac{c_{\Gamma}(\epsilon)}{\epsilon^2} \frac{(-m_1x^2)^{-\epsilon} - (-(-m_1)x(1-x))^{-\epsilon}}{m_1x^2 - (-m_1)x(1-x)}$

Assume for
$$m' < m$$
 denominators: $G_{a_1 \cdots a_n}^{(m')}(x, s, \epsilon) = \sum_{n, l} x^{-n + l\epsilon} \Big(\sum \text{Rational}(x) GP(\cdots; x) \Big), \quad m' < m$

For simplicity we assume here a non-coupled DE for a MI with m denominators:

$$\frac{\partial}{\partial x}G_{a_1\cdots a_n}^{(m)}(x,s,\epsilon) = H(x,s,\epsilon)G_{a_1\cdots a_n}^{(m)}(x,s,\epsilon) + \sum_{m'=1}^{m-1}\sum_{b_1,\cdots b_n} \text{Rational}^{(b_1,\cdots b_n)}(x,s,\epsilon)G_{b_1\cdots b_n}^{(m')}(x,s,\epsilon)$$

Assume for
$$m' < m$$
 denominators: $G_{a_1 \cdots a_n}^{(m')}(x, s, \epsilon) = \sum_{n,l} x^{-n+l\epsilon} \Big(\sum \text{Rational}(x) GP(\cdots; x) \Big), \quad m' < m$

For simplicity we assume here a non-coupled DE for a MI with m denominators:

$$\frac{\partial}{\partial x}G_{a_1\cdots a_n}^{(m)}(x,s,\epsilon) = H(x,s,\epsilon)G_{a_1\cdots a_n}^{(m)}(x,s,\epsilon) + \sum_{m'=1}^{m-1}\sum_{b_1,\cdots b_n} \text{Rational}^{(b_1,\cdots b_n)}(x,s,\epsilon)G_{b_1\cdots b_n}^{(m')}(x,s,\epsilon)$$

dependence on invariants s $\frac{\partial}{\partial x} G_{a_1 \cdots a_n}^{(m)}(x, \epsilon) = H(x, \epsilon) G_{a_1 \cdots a_n}^{(m)}(x, \epsilon) + \sum_{i=1}^{n} x^{-n+l\epsilon} \Big(\sum_{i=1}^{n} \operatorname{Rational}(x) GP(\cdots; x) \Big)$ suppressed $= \sum_{\text{poles } x^{(0)}} \frac{r_{x^{(0)}} + \epsilon c_{x^{(0)}}(\epsilon)}{(x - x^{(0)})} G_{a_1 \cdots a_n}^{(m)}(x, \epsilon) + \sum_{n, l} x^{-n + l\epsilon} \Big(\sum \text{Rational}(x) GP(\cdots; x) \Big) \longrightarrow$ $\frac{\partial}{\partial x}(M(x,\epsilon)G_{a_1\cdots a_n}^{(m)}(x,\epsilon)) = M(x,\epsilon)\sum_{x,l}x^{-n+l\epsilon}\Big(\sum_{x,l}\operatorname{Rational}(x)GP(\cdots;x)\Big), \quad M(x,\epsilon) = \prod_{\text{poles }x^{(0)}}(x-x^{(0)})^{-r_{x^{(0)}}-\epsilon c_{x^{(0)}}(\epsilon)}$

Assume for
$$m' < m$$
 denominators: $G_{a_1 \cdots a_n}^{(m')}(x, s, \epsilon) = \sum_{n, l} x^{-n+l\epsilon} \Big(\sum \text{Rational}(x) GP(\cdots; x) \Big), \quad m' < m$

For simplicity we assume here a non-coupled DE for a MI with m denominators:

$$\frac{\partial}{\partial x}G_{a_1\cdots a_n}^{(m)}(x,s,\epsilon) = H(x,s,\epsilon)G_{a_1\cdots a_n}^{(m)}(x,s,\epsilon) + \sum_{m'=1}^{m-1}\sum_{b_1,\cdots b_n} \text{Rational}^{(b_1,\cdots b_n)}(x,s,\epsilon)G_{b_1\cdots b_n}^{(m')}(x,s,\epsilon)$$

dependence on invariants s

$$\frac{\partial}{\partial x}G_{a_{1}\cdots a_{n}}^{(m)}(x,\epsilon) = H(x,\epsilon)G_{a_{1}\cdots a_{n}}^{(m)}(x,\epsilon) + \sum_{n,l}x^{-n+l\epsilon} \Big(\sum \operatorname{Rational}(x)GP(\cdots;x)\Big)$$

$$= \sum_{\text{poles }x^{(0)}} \frac{r_{x^{(0)}} + \epsilon c_{x^{(0)}}(\epsilon)}{(x-x^{(0)})} G_{a_{1}\cdots a_{n}}^{(m)}(x,\epsilon) + \sum_{n,l}x^{-n+l\epsilon} \Big(\sum \operatorname{Rational}(x)GP(\cdots;x)\Big) \longrightarrow$$

$$\frac{\partial}{\partial x}(M(x,\epsilon)G_{a_1\cdots a_n}^{(m)}(x,\epsilon)) = M(x,\epsilon)\sum_{n,l}x^{-n+l\epsilon}\Big(\sum \text{Rational}(x)GP(\cdots;x)\Big), \quad M(x,\epsilon) = \prod_{\text{poles }x^{(0)}}(x-x^{(0)})^{-r_{x^{(0)}}-\epsilon c_{x^{(0)}}(\epsilon)}$$

Formal solution:

$$M(x,\epsilon)G_{a_{1}\cdots a_{n}}^{(m)}(x,s,\epsilon) = (M*G_{a_{1}\cdots a_{n}}^{(m)})_{x\to 0} + \sum_{n,l} \prod_{\text{poles }x^{(0)}} \int_{0}^{x} dx' \Big(x'^{-n+l\epsilon}(x'-x^{(0)})^{-\epsilon c_{x^{(0)}}}\Big) \Big(\sum (x'-x^{(0)})^{-r_{x^{(0)}}} \operatorname{Rational}(x')GP(\cdots;x')\Big)$$

$$= (M*G_{a_{1}\cdots a_{n}}^{(m)})_{x\to 0} + \sum_{\tilde{n},l} \int_{0}^{x} dx' x'^{-\tilde{n}+l\epsilon} I_{\tilde{n},l}(\epsilon) + \sum_{k} \epsilon^{k} \prod_{\text{poles }x^{(0)}} \sum_{1 \le k \le 1} \int_{0}^{x} dx' \underbrace{(x'-x^{(0)})^{-r_{x^{(0)}}} \operatorname{Rational}_{k}(x')}_{\operatorname{Rational}_{k}(x')} GP(\cdots;x')\Big)$$

Assume for
$$m' < m$$
 denominators: $G_{a_1 \cdots a_n}^{(m')}(x, s, \epsilon) = \sum_{n,l} x^{-n+l\epsilon} \Big(\sum \text{Rational}(x) GP(\cdots; x) \Big), \quad m' < m$

For simplicity we assume here a non-coupled DE for a MI with m denominators:

$$\frac{\partial}{\partial x}G_{a_1\cdots a_n}^{(m)}(x,s,\epsilon) = H(x,s,\epsilon)G_{a_1\cdots a_n}^{(m)}(x,s,\epsilon) + \sum_{m'=1}^{m-1}\sum_{b_1,\cdots b_n} \text{Rational}^{(b_1,\cdots b_n)}(x,s,\epsilon)G_{b_1\cdots b_n}^{(m')}(x,s,\epsilon)$$

dependence on invariants s suppressed

$$\frac{\partial}{\partial x}G_{a_{1}\cdots a_{n}}^{(m)}(x,\epsilon) = H(x,\epsilon)G_{a_{1}\cdots a_{n}}^{(m)}(x,\epsilon) + \sum_{n,l}x^{-n+l\epsilon} \Big(\sum \operatorname{Rational}(x)GP(\cdots;x)\Big)$$

$$= \sum_{\text{poles }x^{(0)}} \frac{r_{x^{(0)}} + \epsilon c_{x^{(0)}}(\epsilon)}{(x-x^{(0)})} G_{a_{1}\cdots a_{n}}^{(m)}(x,\epsilon) + \sum_{n,l}x^{-n+l\epsilon} \Big(\sum \operatorname{Rational}(x)GP(\cdots;x)\Big) \longrightarrow$$

$$\frac{\partial}{\partial x}(M(x,\epsilon)G_{a_1\cdots a_n}^{(m)}(x,\epsilon)) = M(x,\epsilon)\sum_{n,l}x^{-n+l\epsilon}\Big(\sum \text{Rational}(x)GP(\cdots;x)\Big), \quad M(x,\epsilon) = \prod_{\text{poles }x^{(0)}}(x-x^{(0)})^{-r_{x^{(0)}}-\epsilon c_{x^{(0)}}(\epsilon)}$$

Formal solution:

$$\begin{split} M(x,\epsilon)G_{a_{1}\cdots a_{n}}^{(m)}(x,s,\epsilon) &= (M*G_{a_{1}\cdots a_{n}}^{(m)})_{x\to 0} + \sum_{n,l} \prod_{\text{poles }x^{(0)}} \int_{0}^{x} dx' \Big(x'^{-n+l\epsilon}(x'-x^{(0)})^{-\epsilon c_{x^{(0)}}}\Big) \Big(\sum_{(x'-x^{(0)})^{-r_{x^{(0)}}} \text{Rational}(x')GP(\cdots;x')\Big) \\ &= \underbrace{(M*G_{a_{1}\cdots a_{n}}^{(m)})_{x\to 0}}_{\text{boundary condition}} + \sum_{\tilde{n},l} \underbrace{\int_{0}^{x} dx' x'^{-\tilde{n}+l\epsilon} I_{\tilde{n},l}(\epsilon)}_{x^{-\tilde{n}+l\epsilon+1}\tilde{I}_{\tilde{n},l}(\epsilon)} + \sum_{k} \epsilon^{k} \prod_{\text{poles }x^{(0)}} \sum_{\tilde{n} \in \mathbb{Z}} \underbrace{\int_{0}^{x} dx' \underbrace{(x'-x^{(0)})^{-r_{x^{(0)}}} \text{Rational}_{k}(x')}_{\text{Rational}_{k}(x') \text{ if } r_{x^{(0)}} \in \mathbb{Z}}}_{\sum_{\tilde{n} \in \mathbb{Z}} \text{Rational}_{k}(x)GP(\cdots;x) \text{ if } r_{x^{(0)}} \in \mathbb{Z}} \end{split}$$

MI expressible in GP's:
$$G_{a_1 \cdots a_n}^{(m)}(x, s, \epsilon) = \sum_{n, l} x^{-n+l\epsilon} \Big(\sum \text{Rational}(x) GP(\cdots; x) \Big)$$

Fine print for coupled DE's: if the non-diagonal piece of $\epsilon=0$ term of matrix H is nilpotent (e.g. triangular) and if diagonal elements of matrices $r_{r(0)}$ are integers, then above "GP-argument" is still valid

Uniform weight solution of DE

In general matrix in DE is dependent on ϵ :

$$\frac{\partial}{\partial \tilde{s}_k} \vec{G}^{MI}(\tilde{s}, \epsilon) = \overline{\overline{M}}_k(\tilde{s}, \epsilon) \cdot \vec{G}^{MI}(\tilde{s}, \epsilon)$$

Conjecture: possible to make a rotation $\vec{G}^{MI} o \overline{\overline{A}}.\vec{G}^{MI}$ such that:

$$\frac{\partial}{\partial \tilde{s}_k} \vec{G}^{MI}(\tilde{s}, \epsilon) = \epsilon \overline{\overline{M}}_k(\tilde{s}) \cdot \vec{G}^{MI}(\tilde{s}, \epsilon)$$

[Henn '13]

- Explicitly shown to be true for many examples [Henn '13, Henn, Smirnov et al '13-'14]
- If set of invariants $\tilde{s} = \{f(p_i, p_j)\}$ chosen correctly: $\overline{\overline{M}}_k(\tilde{s}) = \sum_{\text{poles } \tilde{s}_k^{(0)}} \frac{\overline{\overline{M}}_k^{\tilde{s}_k^{(0)}}}{(\tilde{s}_k \tilde{s}_k^{(0)})}$
- Solution is uniform in weight of GP's:

$$\vec{G}^{MI}(\tilde{s},\epsilon) = Pe^{\epsilon \int_{C[0,\tilde{s}]} \overline{\overline{M}}_k(\tilde{s}'_k)} \vec{G}^{MI}(0,\epsilon) = (\mathbf{1} + \epsilon \int_0^{\tilde{s}_k} \overline{\overline{M}}_k(\tilde{s}'_k) + \cdots) \underbrace{\vec{G}^{MI}(0,\epsilon)}_{\vec{G}_0^{MI} + \epsilon \vec{G}_1^{MI} + \cdots}$$

$$=\underbrace{\vec{G}_{0}^{MI}}_{\text{weight i}} + \epsilon \underbrace{(\underbrace{\vec{G}_{1}^{MI}}_{\text{weight i+1}} + \sum_{\text{poles } \tilde{s}_{k}^{(0)}} \underbrace{\left(\int_{0}^{\tilde{s}_{k}} \frac{d\tilde{s}_{k}'}{\left(\tilde{s}_{k}' - \tilde{s}_{k}^{(0)}\right)}\right)}^{\overline{M}_{k}^{\tilde{s}_{k}^{(0)}}} \underbrace{\overline{M}_{k}^{\tilde{s}_{k}^{(0)}} \cdot \underbrace{\vec{G}_{0}^{MI}}_{\text{weight i}}) + \cdots}$$

weight i+1

Example of tradition DE method: one-loop triangle (1/2)

Consider again one-loop triangles with 2 massive legs and massless propagators:

$$G_{a_1 a_2 a_3}(\tilde{s}) = \int \frac{d^d k}{i \pi^{d/2}} \frac{1}{k^{2a_1} (k+p_1)^{2a_2} (k+p_1+p_2)^{2a_3}}, \quad p_1^2 = m_1, p_2^2 = m_2, (p_1+p_2)^2 = m_3 = 0$$

$$G_{111} = igcup_{p_1}^{p_1}$$

General function:
$$p_{i} \cdot \frac{\partial}{\partial p_{j}} F(m_{1}, m_{2}, m_{3}) = \sum_{k=1}^{3} p_{i} \cdot \frac{\partial \tilde{s}_{k}}{\partial p_{j}} \frac{\partial}{\partial \tilde{s}_{k}} F(m_{1}, m_{2}, m_{3}), \quad i, j \in \{1, 2\}$$
$$\tilde{s}_{1} = p_{1}^{2} = m_{1}, \tilde{s}_{2} = p_{2}^{2} = m_{2}, \tilde{s}_{3} = (p_{1} + p_{2})^{2} = m_{3}$$

- Four linear equations, of which three independent because of invariance under Lorentz transformation [Remiddi & Gehrmann '00], in three unknowns: $\{\frac{\partial}{\partial m_1}, \frac{\partial}{\partial m_2}, \frac{\partial}{\partial m_3}\}$
- Solve linear equations: $\frac{\partial}{\partial m_k} = g_k(p_1.\frac{\partial}{\partial p_1}, p_2.\frac{\partial}{\partial p_2}, p_2.\frac{\partial}{\partial p_1}), \quad k = 1, 2, 3$

$$\frac{\partial}{\partial m_1}G_{111} = \frac{1 - 2\epsilon}{\epsilon(m_1 - m_2)^2}(G_{011} - (1 + \epsilon(1 - \frac{m_2}{m_1}))G_{110}), \quad \frac{\partial}{\partial m_2}G_{111} = \frac{\partial}{\partial m_1}G_{111} \ (m_1 \leftrightarrow m_2, G_{011} \leftrightarrow G_{110})$$

Example of tradition DE method: one-loop triangle (2/2)

$$\frac{\partial}{\partial m_1} G_{111} = \frac{1}{\epsilon^2 (m_1 - m_2)^2} ((-m_2)^{-\epsilon} + (-m_1)^{-\epsilon} (1 + \epsilon) - \epsilon m_2 (-m_1)^{-1 - \epsilon}) =: F[m_1, m_2], \quad \frac{\partial}{\partial m_2} G_{111} = F[m_2, m_1]$$

Solve by usual subtraction procedure: $F_{\rm sing}[m_1,m_2]=rac{-1}{\epsilon m_2}(-m_1)^{-1-\epsilon}$

$$G_{111}(m_1, m_2) = G_{111}(0, m_2) + \int_0^{m_1} F_{\text{sing}}[m'_1, m_2] + \int_0^{m_1} (F[m'_1, m_2] - F_{\text{sing}}[m'_1, m_2])$$

$$= G_{111}(0, m_2) - \frac{(-m_1)^{-\epsilon}}{\epsilon^2 m_2} + \int_0^{m_1} \left(\frac{(1 - (-m_2)^{-\epsilon})GP(; -m'_1)}{\epsilon^2 (m_2 - m'_1)^2} - \frac{(m_2 - m'_1)GP(; -m'_1) + m_2GP(0; -m'_1)}{\epsilon m_2 (m_2 - m'_1)^2} + \mathcal{O}(\epsilon^0) \right)$$

$$= G_{111}(0, m_2) - \frac{(-m_1)^{-\epsilon}}{\epsilon^2 m_2} + \left(\frac{m_1(1 - (-m_2)^{-\epsilon})}{\epsilon^2 m_2 (m_1 - m_2)} + \frac{m_1GP(0; -m_1)}{\epsilon m_2 (m_2 - m_1)} \right) + \mathcal{O}(\epsilon^0)$$

Boundary condition follows by plugging in above solution in $\frac{\partial}{\partial m_2}G_{111}=F[m_2,m_1]$

$$\frac{\partial}{\partial m_2} G_{111}(0, m_2) = \frac{(1+\epsilon)}{\epsilon^2} (-m_2)^{-2-\epsilon} \rightarrow G_{111}(0, m_2) = \frac{-(-m_2)^{-1-\epsilon}}{\epsilon^2} + \underbrace{G_{111}(0, 0)}_{\text{scaleless}=0} = \frac{-(-m_2)^{-1-\epsilon}}{\epsilon^2}$$

Agrees with exact solution: $G_{111} = \frac{c_{\Gamma}(\epsilon)}{\epsilon^2} \frac{(-m_1)^{-\epsilon} - (-m_2)^{-\epsilon}}{m_1 - m_2} = \frac{c_{\Gamma}(\epsilon)}{m_1 - m_2} \left(-\frac{1}{\epsilon} \log(\frac{-m_1}{-m_2}) + \mathcal{O}(\epsilon^0) \right)$

Open questions

- Is there a way to pre-empt the choice of x-parametrization without having to calculate the DE?
- Why are the boundary conditions naturally taken into account by the DE?
- How do the DE in the x-parametrization method relate exactly to those in the traditional DE method?