

LHC Injectors Upgrade

LHC Injectors Upgrade

Functional specifications review for the stripping foil BSW magnets power converters

- Introduction (specs, topology)
- Integration
- Connections with power converter
- Development strategy
- Activities & Priorities
 Milestones schedule
 Next actions

- 16 power converters required for individually feeding 16 magnets
- 2 types of converters (BSW1 different from BSW2, 3, & 4)
- 2 spares power converters total of <u>18 converters</u>

	BSW1	BSW2&3	BSW4
L (μΗ)	13	70	77
R (mΩ)	3.5	7	7
I _{peak} (A)	6700	3400	3400
I _{rms} (A)	463	231	231
V _{max} (V)	450	450	450

Overall current/voltage specification

t _{rise} (ms)	5
t _{flat} (ms)	1 to 2
t _{fall} (ms)	5
t _{rep} (ms)	900

Because infinite dv/dt not possible, current smoothing agreed with beam optics

Absolute precision:

100 ppm (±50 ppm) during flat-top (starting from when beam is injected) 1000 ppm (±500 ppm) during ramp-down

EPC-MPC new APOLO power stack under evaluation:

- H-Bridge equipped with 1.7kV-1.6kA IGBTs
- Tests undergoing to check if they can be used for this project – 95% probability!
- If yes, two APOLO modules in parallel enough

- If cable length increases, *L_{cs}* increases
- *di/dt* imposed by specs
- *V_{conv}* and *V_{sec}* increase as well!
- Power converter maximum power, volume, losses, and cost increase with cable length!!!
- Overall design parameters are:
 - transformer ratio k and
 - cable length!

Simplified analysis

$$800 V \ge \left(L'_{mag} + L'_{cs}\right) \frac{di_{conv}}{dt}$$

$$k = \frac{i_{mag}}{i_{conv}}$$

$$800 V \ge \left(L_{mag} + L_{cs}\right) \frac{di_{mag}}{dt} k$$

Integration Analysis – limitations vs cable length & type

Possibility of deporting pulse transformers of BSW2, 3, & 4 nearer to the magnet:

Integration

Reserved space in BRF2 (bld. 361) for power conv. racks

- - Each converter 3 racks (fighting for 2...)
 - Access from front and rear of each rack! <u>56 racks total</u>
 - Existing RF equipment to be moved; renovation/re-installation of RF equipment coordinated with TE-EPC to optimally re-configure the space
 - Power distribution/switchgears to be renovated (RF) and extended (strip foil)
 - Water cooling probably needed (taps available should not be an issue)
 - False floor to be modified/reinforced

Evaluated solution for cable length minimization from BRF2 down to magnets

- Cable path studies showed an issue in finding a suitable cable gallery with appropriate length
- The option of a new cable trench/passage from BRF2 down to the injection area (1L1) into the tunnel has been preliminarily investigated
- Very rough cost estimation was made, and a total of ~2 MCHF would be necessary to construct a new cable trench illustrated in green
- Too expensive, other solutions can be found

Most likely solution – deporting BSW2, 3, & 4 pulse transformers

Integration

- Identified old access shaft to the PSB tunnel
- Verifications undergoing DGS/RP for the utilisation of this zone.
- Advantages with this solution:
 - Shortening the secondary cables lengths
 - Equalize the secondary cable length such that the converters current controls algorithms are exactly the same (simplified operation and spares organization).
 - Have a unique pulse transformer spare in the same zone and reduce PSB
 - downtime in case of a pulse transformer or DCCT failure.

- Shall be placed next to injection region
- Either on concrete slab or false floor reinforcement
- Secondary cables or bus-bars to be selected

Concrete slab ends here

Half Sector Test in a nutshell

- Same power converters to be re-used in PSB (BSW2&4)
- Power converters ready in early 2016!
- 2 x power converters installed in Bldg. 400
- BSW3 & 4 magnets installed in L4-PSB transfer line
- Cable length: 70m. If shorter in PSB, pulse transformers are different
- Pulse transformers installed inside PC racks
- Water cooling and power distribution to be defined

Transfer line

Connections with power converters / summary

General development strategy

Reminder:

- HST power converters (PC) ready (before commissioning) by early 2016
- PSB PC ready (before commissioning) by end 2017

Strategy:

- Same PC for BSW1 and BSW2,3, & 4 only pulse transformer and current measuring system differ
- Re-utilization of existing power stack design-probably no MS-IT procedure!
- 3 PCs ready by early 2016 2 x BSW3 & 4, and 1 x BSW1. Power stacks for prototypes via recent contract options
- Reception at CERN of main series components (chargers, capacitors, power stacks, DCCTs) by end 2016
- MS-IT procedures for chargers (~200kCHF), DCCTs (~200kCHF), pulse transformers, and power converters assembly

Description	2014		2015			2016			2017	
	Sept-Dec	Jan–Apr	May-Aug	Sept-Dec	Jan–Apr	May-Aug	Sept-Dec	Jan–Apr	May-Aug	Sept-Dec
Eng. design										
Parts for HST + BSW1										
HST PC construction										
Series prod MS-IT										
Parts 4 series (MS-IT)										
Transfo MS-IT										
Series assembling										

Installation and commissioning in 2018

Actions for finalizing functional spec.

Major actions to finalize functional spec. and finalize design / start purchasing

ltem #	Objective	who	By date
1	Confirm that 50 ppm 40 kHz current ripple acceptable	TE/ABT	Now
2	Cable length between pulse transformers and magnet	EN/EL	21 st Nov.
3	Cable distance and path for BSW1 DCCTs (current measurement)	EN/EL	21 st Nov.
4	Dimensions of identified zone for pulse transformers	EN/EL – EN/MEF	28 th Nov.
5	Define the interfaces, type and number of cables, for magnet interlock. Actions with	TE/EPC - TE/ABT	5 th Dec.
6	Define timing management solutions.	TE/EPC – BE/OP	12 th Dec.
7	Define BIS current tolerance for safe operation in the PSB and HST.	BE/ABP - BE/OP	12 th Dec.
8	BRF2 global integration studies considering RF renovation + HST global integration study	TE/EPC - BE/RF EN/MEF – EN/EL	Early 2015
9	Water distribution needs and work	TE/EPC – EN/CV	Early 2015

www.cern.ch