

Uncovering the Universe with the LHC

quarks

leptons

e (µ) (T

quarks

leptons

Weak:

bosons

quarks

EM-

leptons

bosons

Uncovering the Universe with the LHC

e (µ) (T

V_e

quarks

leptons

(and gravity)

e (µ) (T)

(d) (s) (b)

 v_e v_μ v_τ

quarks

leptons

Mass:

Higgs

nice ...

(0) is the Higgs really the Higgs?

(1) anti matter

Big Bang:

equal amounts of matter and antimatter created

Now:

we (matter) exist

Why?

(2) and the other 96%?

Many questions....

How many dimensions?

What is mass?

What about gravity?

4 forces?

12 matter particles?

antimatter go?

Mini black holes?

What about the other 96% of the universe

European Laboratory

for Particle Physics

Founded in 1954

20 member countries

More than 9,000 scientists

Over 100 nationalities

1991 - 2000

CMS Experiment at the LHC, CERN Tue 2010 - Mar- 30 12:58:43 CET Run 132440 Event 2732271 C O M Energy 7 00TeV

Higgs?

A Higgs? The Higgs?

~1,000 papers / year.

Antimatter - CERN: LHCb

1 number

Measure of matter / antimatter difference

And beyond the Standard Model?

... supersymmetry....
..dark matter?

 $\sqrt{s} = 7.8 \text{ TeV}$

LHC results put supersymmetry theory 'on the spot'

By Pallab Ghosh Science correspondent, BBC News

Results from the Large Hadron Collider (LHC) have all but killed the simplest version of an enticing theory of sub-atomic physics.

Researchers failed to find evidence of so-called "supersymmetric" particles, which many physicists had hoped would plug holes in the current theory.

Theorists working in the field have told BBC News that they may have to come up with a completely new idea.

Supersymmetry predicts the existence of mysterious super particles.

And beyond SUSY?

... still looking....

One year on from the Higgs boson find, has physics hit the buffers?

Despite the success of the Large Hadron Collider, evidence for the follow-up theory - supersymmetry - has proved elusive

A Cern worker walks past a painted representation of the Atlas detector of the LHC on 13 December 2011 in Geneva, Switzerland. Photograph: Harold Cunningham/Getty Images

Now what?

2015

Upgrade Maintenance

Run 2: Energy increase

Run 2: Dataset increase

LHC Schedule 2015

Approved by the Research Board, December 2014

									Scrubbing for 50 ns operation				
	Apr				May					June			
Wk	14	15	16	17	18	19	20	21	22	23	24	25	26
Мо	30	Easter Mon 6	13	20	27	4	11	18	Whit 25	1	8	15	22
Tu											*		
We										TS1			
Th		Recom	missioning beam	with			Ascension		Sic run				
Fr	G. Friday		Dealli		1st May				l phy:				ramp-up ns beam
Sa									Special physic			with 50	ns beam
Su									S				

What will we find?

..... wait and see

 Pick something you are interested in! Then you can't go wrong.

- Don't obsess (needlessly).
- Learn to be (self-) critical, so you can rely on your judgement.

- Don't obsess (needlessly).
- Be realistic.
- Try new things, new avenues, when you have a chance. That way, you learn.

- Don't obsess (needlessly).
- Be realistic.
- Be creative.
- Careers only look logical in retrospect...

- Don't obsess (needlessly).
- Be realistic.
- Be creative.
- Be brave.

Good luck!!