Measurement of the B_s^0 mixing phase at LHCb

Sevda Esen

Physikalisches Institut Heidelberg On behalf of the LHCb collaboration

CERN LHC Seminar

Introduction: What is missing in Standard Model

matter and anti-matter asymmetry why is the universe made of matter?

not enough CP violation

Are there other sources of CPV?

Presence of dark matter in the universe what is dark matter made of?

Flavor physics in the LHC era

High energy frontier

Precision frontier

CP violation in SM

- Violation of combined Charge and Parity symmetry
- Discovered in the weak interaction in 1964
- accommodated in CKM mechanism ⇒ small

$$V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \approx \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho + i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

only source of CPV in SM

Probes for new physics in B_s^0 mixing

$$i\frac{d}{dt} \begin{bmatrix} |\mathbf{B}_{s}^{0}(t)\rangle \\ |\bar{\mathbf{B}}_{s}^{0}(t)\rangle \end{bmatrix} = \begin{bmatrix} \begin{pmatrix} M_{11} & M_{12} \\ M_{12}^{*} & M_{11} \end{pmatrix} - \frac{i}{2} \begin{pmatrix} \Gamma_{11} & \Gamma_{12} \\ \Gamma_{12}^{*} & \Gamma_{11} \end{pmatrix} \end{bmatrix} \begin{bmatrix} |\mathbf{B}_{s}^{0}(t)\rangle \\ |\bar{\mathbf{B}}_{s}^{0}(t)\rangle \end{bmatrix}$$

Mass eigenstates mixtures of weak states $\left|B_{sH}^{0}\right\rangle = p\left|B_{s}^{0}\right\rangle - q\left|\bar{B}_{s}^{0}\right\rangle \qquad \left|B_{sL}^{0}\right\rangle = p\left|B_{s}^{0}\right\rangle + q\left|\bar{B}_{s}^{0}\right\rangle$

■ mass difference: $\Delta m_s = M_H - M_L \approx 2|M_{12}|$ ⇒ rate of mixing diagram

• decay width difference:

$$\Delta\Gamma_s = \Gamma_L - \Gamma_H \approx 2|\Gamma_{12}|\cos\phi_{12}|$$

• Mixing phase: $\phi_M = arg(M_{12})$ \Rightarrow time dependent CP violation

(1) CPV in decay: $P(B \rightarrow f) \neq P(\bar{B} \rightarrow \bar{f})$

(2) CPV in mixing $P(B \rightarrow \overline{B}) \neq P(\overline{B} \rightarrow B)$

More on CPV in mixing see: Cern Seminar by M. Vesterinen Sept. 30

(3) CPV in the interference of decay and mixing

$$P(B \to f) \neq P(B \to \overline{B} \to f)$$

phase difference: $\phi_s = \phi_M - 2\phi_{dec}$

CPV in the interference of decay and mixing

CP violation in decay given by:

$$\lambda = \frac{q}{p} \frac{\bar{A}(B_s^0 \to f_{CP})}{A(B_s^0 \to f_{CP})}, \text{ with } \phi_s = -\arg(\lambda)$$

only if one dominant amplitude
$$+\Delta \phi_s^{pen} \text{ for penguin amplitude}$$

Decay Channels to measure ϕ_s

•
$$B^0_s \to J/\psi K^+ K^-$$
: benchmark mode

• $B^0_s \to J/\psi \pi^+ \pi^-$: dominantly CP-odd

 \blacksquare B⁰_s \rightarrow D⁻_sD⁺_s: pure hadronic final state

• $B_s^0 \rightarrow \phi \phi$: pure penguin decay

 \star to estimate penguin contribution ${
m B}^0 o J/\psi \rho$: tree + penguin

• LHCb: $B_s^0 \rightarrow J/\psi K^+ K^-$ and $B_s^0 \rightarrow J/\psi \pi^+ \pi^-$

Key ingredients

- Theoretical time dependent CP asymmetry $A_{CP}(t) = \frac{\Gamma(\bar{B}^0_s \to f) - \Gamma(B^0_s \to f)}{\Gamma(\bar{B}^0_s \to f) + \Gamma(B^0_s \to f)} = \eta_f \sin \phi_s \sin(\Delta m_s t)$
- Experimentally

 $A_{CP} \approx (1-2w)e^{-rac{1}{2}\Delta m_s^2 \sigma_t^2} \eta_f \sin \phi_s \sin(\Delta m_s t)$

- *w* Probability of getting the initial flavor wrong
- σ_t Decay time resolution
- η_f CP eigenvalue \rightarrow angular analysis
- Minimum requirements:
 - excellent decay time resolution
 - good flavor tagging
 - large statistics

LHCb experiment

Momentum resolution: σ_p/p : 0.4% – 0.6%

Time resolution: 40-50 fs

Mass resolution: $8 MeV/c^2$ for $B \rightarrow J/\psi X$ decays

Particle identification: $\varepsilon(\mu) = 97\%$, mis-id: 0.7% $\varepsilon(K) > 90\%$, mis-id: 5%

Data set in run I:

2010: 37 pb⁻¹ @ 7 TeV 2011: 1 fb⁻¹ @ 7 TeV 2012: 2 fb⁻¹ @ 8 TeV

All results shown today are with 3fb^{-1}

${ m B}^0_s ightarrow J/\psi K^+ K^-$

- Theoretically clean, tree dominating decay
- Precise SM prediction:
 - $\phi_{s} = (-0.036 \pm 0.002)$ rad
- Signal: 95690±350 events
- Background:
 - combinatorial
 - peaking:

$$\begin{split} \Lambda^0_b &\to J/\psi p K^- \colon \text{4800 evt.} \\ B_d &\to J/\psi K^+ \pi^- \colon \text{1700 evt.} \end{split}$$

Background subtraction

Background events subtracted statistically

 \Rightarrow avoid parametrization in multiple dimensions

- Combinatorial background:
 - discriminating variable: $J/\psi K^+ K^-$ mass
 - assign a signal weight to each event
- Peaking backgrounds:
 - MC events re-weighted to match data
 - added to data with negative weights

peaking back. subtracted

Angular analysis of $B^0_s \rightarrow J/\psi K^+ K^-$

$P \rightarrow VV$ final state

 K^+K^- in P-wave: 0 (CP even), \parallel (CP even), \perp (CP odd) K^+K^- in S-wave[.] CP odd

Mixture of CP-even and -odd

 \Rightarrow need angular analysis to disentangle

 \Rightarrow have access to both Γ_s and $\Delta\Gamma_s$

v $\overline{B_a^{\theta}}$ $h^{+}h^{-}$ μ⁺μ h u

Use of helicity angles: $\Omega(\theta_{\mu}, \theta_{\kappa}, \phi_{h})$

 ${
m B}^0_{\mathfrak{s}}
ightarrow J/\psi K^+ K^-$ Fit Model

simultaneous fit in:

- six bins of $m(K^+K^-)$ to account for S-wave

Acceptance

- Angular acceptance
 - detector acceptance and event selection
 - based on data corrected simulation

- Time acceptance:
 - selection, reconstruction
 - obtained from data

• σ_t per-event decay time error • average ~ 45 fs \Rightarrow dilution factor $e^{-\frac{1}{2}\Delta m_s^2 \sigma_t^2} = 0.73$

$$\mathrm{B}^{\mathsf{0}}_{s}
ightarrow {J}/\psi {K}^{+}{K}^{-}$$
 Flavor tagging

need to resolve fast oscillations of $\mathbf{B}^0_s - \overline{\mathbf{B}}^0_s$

b quarks are produced in pairs:

Same-side tagging:

Use charge of kaon produced in the fragmentation

Opposite-side tagging:

Use charge of final state particles of other ${\sf B}$

• total tagging power: $\epsilon(1-w)^2 = (3.73 \pm 0.15)\%$

 \star 20% improvement compare to 1fb $^{-1}$ analysis

S. Esen - Heidelberg

Polarization dependence arXiv:1411.3104

For non-negligible penguin contributions

- size of pollution could be different for 3 P-wave and the S-wave states
- CPV might be polarization dependent
- \blacksquare complicates the search for NP effects

e.g.,Bhattacharya, Datta, Int. J. Mod, Phys. A28(2013) 1350063

$$\phi_{\mathrm{mix}}$$
 \overline{B}_{s}^{0} \overline{B}_{s}^{0} $J/\psi\phi$ + S-wave

We measure:

$$\lambda_f = \frac{q}{p} \frac{\bar{A}_f}{A_f} = |\lambda_f| e^{-i\phi_s^f}$$

for each $f = 0, \|.\|.\|.S$

assume zero CPV in mixing

PLB 728, (2014) 607

$$\begin{array}{c} \phi^0_s \, [\mathsf{rad}] \\ \phi^0_s - \phi^0_s \, [\mathsf{rad}] \\ \phi^{\perp}_s - \phi^0_s \, [\mathsf{rad}] \\ \phi^{\Sigma}_s - \phi^0_s \, [\mathsf{rad}] \\ |\lambda^0| \\ |\lambda^{\parallel}/\lambda^0| \\ |\lambda^{\perp}/\lambda^0| \\ |\lambda^{\Sigma}/\lambda^0| \\ |\lambda^{S}/\lambda^0| \end{array}$$

$$\begin{array}{c} -0.045\pm 0.053\pm 0.007\\ -0.018\pm 0.043\pm 0.009\\ -0.014\pm 0.035\pm 0.006\\ 0.015\pm 0.061\pm 0.021\\ 1.012\pm 0.058\pm 0.013\\ 1.02\pm 0.12\pm 0.05\\ 0.97\pm 0.16\pm 0.01\\ 0.86\pm 0.12\pm 0.04\end{array}$$

- 27100 \pm 200 signal events
- Effective time resolution: 40.3 fs
- Effective tagging power: (3.89 ± 0.25)%

- from the amplitude analysis 2.3% CP even @ 95% CL
- largest component $f_0(980)$

$${
m B}^0_s o J/\psi K^+ K^-$$
 and ${
m B}^0_s o J/\psi \pi^+ \pi^-$ Combination
arXiv:1411.3104

under the assumptions:

- \blacksquare both decays proceed dominantly via $b
 ightarrow c\overline{c}s$
 - \Rightarrow CPV in decay same
- ratio between penguin and tree diagrams is the same

$$\begin{array}{c|c} B^0_s \to J/\psi \; K^+ K^- & B^0_s \to J/\psi \; \pi^+ \pi^- & \text{Combined} \\ \hline \phi_s[\text{rad}] & -0.058 \pm 0.049 \pm 0.006 & 0.070 \pm 0.068 \pm 0.008 & -0.010 \pm 0.039 \\ |\lambda| & 0.964 \pm 0.019 \pm 0.007 & 0.89 \pm 0.05 \pm 0.01 & 0.957 \pm 0.017 \\ \hline \end{array}$$

 \star correlations between common parameters are accounted for

$\mathrm{B}^0_s\to\mathrm{D}^-_s\mathrm{D}^+_s$

- another decay with $b \rightarrow c\bar{c}s$ transition ⇒ measurement of ϕ_s in a hadronic final state
- ∎ just CP-even
 - \Rightarrow no angular analysis
- what about the penguin?

■ 3345 ± 62 events in 3 fb⁻¹ ■ Control channel: $B^0 \rightarrow D^- D_s^+$ 21320 ± 148 events $\mathrm{B}^0_s
ightarrow \mathrm{D}^-_s \mathrm{D}^+_s$ arXiv:1409.4619

background subtracted decay time fit

- per-event decay time resolution
 effective resolution: 54 fs
- flavor tagging

effective tag. pow.: (5.33 \pm 18 \pm 17) %

Results:

$$egin{aligned} \phi_s &= 0.02 \pm 0.17(\textit{stat}) \pm 0.02(\textit{syst}) \; ext{rad} \ &|\lambda| &= 0.91^{+0.18}_{-0.17}(\textit{stat}) \pm 0.02(\textit{syst}) \end{aligned}$$

 \Rightarrow consistent with other measurements \Rightarrow consistent with no CPV in decay

 ϕ_s - $\Delta\Gamma_s$ world average

Side note: ϕ_s in $\mathrm{B}^0_s o \phi \phi$ Phys. Rev. D 90 (2014) 052011

- forbidden at tree level in SM sensitivity to NP in decay
- gluonic $b \rightarrow s\bar{s}s$ transition

 $\phi_s = -0.17 \pm 0.15(\textit{stat}) \pm 0.03(\textit{syst}) \; ext{rad}$ $|\lambda| = 1.04 \pm 0.07 \pm 0.03(\textit{syst})$

- \Rightarrow agreement with prediction
- \Rightarrow no evidence of CPV in decay or mixing

B⁰_s mixing phase at LHCb

Control penguins via flavor symmetry:

use U-spin-related modes

 \Rightarrow with increased relative penguin influence

• can extract $\Delta \phi_{pen}$

 \Rightarrow with problem of dependence on SU(3) breaking

 \blacksquare Useful modes: ${\rm B}^0_s \to J/\psi K^\star$ and ${\rm B}^0 \to J/\psi \rho$

 $B^0 \rightarrow J/\psi \pi^+ \pi^-$

17650 ± 200 signal events
from amplitude analysis

65% of signal from ${
m B^0}
ightarrow J/\psi
ho$

- $B^0
 ightarrow J/\psi \pi^+\pi^-$ arXiv:1411.1634
 - using $B^0 \rightarrow J/\psi\rho$ events: $2\beta^{J/\psi\rho} = (41.7 \pm 9.6^{+2.8}_{-6.3})^{\circ}$
 - and 2β from $B^0 \rightarrow J/\psi K_S$
 - Penguin contribution:

 $\Delta 2\beta = 2\beta^{J/\psi\rho} - 2\beta^{J/\psi}\kappa_s^0$

• from SU(3) symmetry $\epsilon = \frac{|V_{us}|^2}{1-|V_{us}|^2}$ the penguin shift in ϕ_s : $\delta_P \approx -\epsilon \Delta 2\beta$ $\Rightarrow [-1.05^\circ, 1.18^\circ]$ @ 95% CL

Prospects

 \blacksquare Additional decay modes can reduce ϕ_{s} uncertainty

$$egin{aligned} & \mathrm{B}^0_s
ightarrow J/\psi(e^+e^-)K^+K^- \ & \mathrm{B}^0_s
ightarrow \psi(2S)K^+K^- \ & \mathrm{B}^0_s
ightarrow J/\psi K^+K^- \ (ext{above } \phi ext{ mass}) \end{aligned}$$

- More studies on penguin contributions Decays related by flavor symmetry: $B_s^0 \rightarrow J/\psi K^*$, $B_s^0 \rightarrow J/\psi K_s^0$, $B^0 \rightarrow J/\psi \omega$
- Projected sensitivity

	Run 1	Run 2	Upgrade	Theory
	(2010-12)	(2015-17)	(2019-)	
	3fb^{-1}	$8 f b^{-1}$	$50 fb^{-1}$	
$\mathrm{B}^{0}_{s} ightarrow J/\psi K^{+}K^{-}$	0.05	0.025	0.009	~ 0.003
$B_s^0 \rightarrow J/\psi \pi^+ \pi^-$	0.09	0.05	0.016	\sim 0.001
$B_s^0 \to \phi \phi$	0.18	0.12	0.026	0.02

Summary

- \blacksquare LHC run I data proven to be fruitful for ϕ_{s}
 - experimental $\sigma(\phi_s) < 0.038$

- first polarization dependent measurements
- first measurement in a purely penguin mode $B^0_s \to \phi \phi$
- good agreement with SM overall
- \blacksquare expected sensitivity ~ 0.02 by the end of Run 2
- theory input needed for penguin pollution estimates

Backup

BACKUP

Backup

Side note: ϕ_s in $B^0_s \to \phi \phi$

$$egin{aligned} \phi_s &= -0.17 \pm 0.15(\textit{stat}) \pm 0.03(\textit{syst}) \ \mathsf{rad} \ &|\lambda| &= 1.04 \pm 0.07 \pm 0.03(\textit{syst}) \end{aligned}$$

 \Rightarrow agreement with prediction \Rightarrow no evidence of CPV in decay or mixing

S. Esen - Heidelberg

penguin amplitude not suppressed measure an effective $2\beta^{\rm eff}$

$$\eta_f \lambda_f = |\lambda_f| e^{-i2\beta_f^{\text{eff}}} = \frac{1 - a_f' e^{i\theta_f'} e^{-i\gamma}}{1 - a_f' e^{i\theta_f'} e^{i\gamma}} e^{-i2\beta_f'}$$

eff. penguin amplitude relative to tree amplitude: a'_f and θ'_f $\Delta 2\beta_f = 2\beta_f^{eff} - 2\beta$ from SU(3) symmetry $\epsilon = \frac{|V_{us}|^2}{1 - |V_{us}|^2}$ the penguin shift in 2β : $\delta_P \approx \epsilon \Delta 2\beta_f$