Prospects for observing charginos and neutralinos at 100 TeV

Kazuki Sakurai (King's College London)

In collaboration with: Bobby S. Acharya, Krzysztof Bożek, Chakrit Pongkitivanichkul

2013/3/13 @ CERN

What we learned from LHC run1?

- The Higgs-like particle with mass 125GeV has been discovered.
- The property of the particle is consistent with the SM-Higgs.
- A number of SUSY searches, but no definitive excess has been observed.

Supersymmetry breaking scale in GeV

- The 126 GeV Higgs indicates heavy scalars with masses around a few TeV - 100 PeV.
- Consistent with null results in measurements of FCNIs and EDMs.

 $\frac{1}{10^{3}} \frac{1}{10^{4}} \frac{1}{10^{5}} \frac{1}{10^{6}} \frac{1}{10^{7}} \frac{1}{10^{8}} \frac{1$

Supersymmetry breaking scale in GeV

- The 126 GeV Higgs indicates heavy scalars with masses around a few TeV 100 PeV.
- Consistent with null results in measurements of FCNIs and EDMs.
- 100 TeV colliders have sensitivity to the scalars with masses below 15 TeV.

 $\frac{1}{10^{3}} \frac{1}{10^{4}} \frac{1}{10^{5}} \frac{1}{10^{6}} \frac{1}{10^{7}} \frac{1}{10^{6}} \frac{1}{10^{7}} \frac{1}{10^{6}} \frac{1}{10^{7}} \frac{1}{10^{6}} \frac{1}{10^{7}} \frac{1$

Bad Singersymmetry breaking scale in GeV

- The 126 GeV Higgs indicates heavy scalars with masses around a few TeV 100 PeV.
- Consistent with null results in measurements of FCNIs and EDMs.
- 100 TeV colliders have sensitivity to the scalars with masses below 15 TeV.

Light gauginos and higgsinos?

- Light gauginos and higgsinos are consistent with 126 GeV Higgs.
- Light gauginos and higgsinos with heavy scalars can achieve gauge coupling unification. [Arkani-Hamed, Dimopoulos '04]
- The gauginos and higgsinos masses are often suppressed. (forbidden by R-symmetry and U(1)_{PQ})

$$m_{\phi}^{2} |\phi|^{2} \leftarrow \frac{X^{\dagger} X}{\Lambda^{2}} \Phi^{\dagger} \Phi \Big|_{\theta^{4}}$$
$$M_{\lambda} \lambda^{\alpha} \lambda_{\alpha} \leftarrow \frac{X}{\Lambda^{2}} W^{\alpha} W_{\alpha} \Big|_{\theta^{2}}$$

Light gauginos and higgsinos?

- Light gauginos and higgsinos are consistent with 126 GeV Higgs.
- Light gauginos and higgsinos with heavy scalars can achieve gauge coupling unification. [Arkani-Hamed, Dimopoulos '04]
- The gauginos and higgsinos masses are often suppressed. (forbidden by R-symmetry and U(1)_{PQ})

 $Y^{\dagger} Y$

1

$$m_{3/2} = \frac{F_X}{M_{pl}}$$

Light gauginos and higgsinos?

- Light gauginos and higgsinos are consistent with 126 GeV Higgs.
- Light gauginos and higgsinos with heavy scalars can achieve gauge coupling unification. [Arkani-Hamed, Dimopoulos '04]
- The gauginos and higgsinos masses are often suppressed. (forbidden by R-symmetry and $U(1)_{PQ}$)

$$m_{\phi}^{2}|\phi|^{2} \leftarrow \frac{X^{\dagger}X}{\Lambda^{2}} \Phi^{\dagger}\Phi\Big|_{\theta^{4}}$$
If X is charged, the gaugino masses are loop suppressed.

$$M_{\lambda}\lambda^{\alpha}\lambda_{\alpha} \leftarrow \bigvee_{\Lambda} W^{\alpha}W_{\alpha}\Big|_{\theta^{2}} \qquad \qquad M_{1} = \frac{33}{5}\frac{\alpha_{1}}{4\pi}m_{3/2}$$

$$M_{2} = \frac{\alpha_{2}}{4\pi}m_{3/2}$$
Wino becomes the lightest gaugino

$$M_{3} = -3\frac{\alpha_{3}}{4\pi}m_{3/2}$$

 F_X

Upper bound on the EWkino masses

- Heavy EWkinos tend to over produce the DM
- Assuming the MSSM and the standard thermal history of Universe, the LSP has to be lighter than 1-3 TeV. → 100 TeV collider

[Arkani-Hamed, Delgado, Giudice '06]

[Bramante, et al. '14]

Production Cross Section

$$\sigma(\tilde{W}^{\pm}\tilde{W}^{0}) > \sigma(\tilde{W}^{+}\tilde{W}^{-}) > \sigma(\tilde{H}^{\pm}\tilde{H}^{0}) > \sigma(\tilde{H}^{+}\tilde{W}^{-}) = \sigma(\tilde{H}_{1}^{0}\tilde{H}_{2}^{0})$$

Other production modes and Bino production modes are negligible.

Production Cross Section

$$\sigma(\tilde{W}^{\pm}\tilde{W}^{0}) > \sigma(\tilde{W}^{+}\tilde{W}^{-}) > \sigma(\tilde{H}^{\pm}\tilde{H}^{0}) > \sigma(\tilde{H}^{+}\tilde{W}^{-}) = \sigma(\tilde{H}_{1}^{0}\tilde{H}_{2}^{0})$$

Other production modes and Bino production modes are negligible.

Decay Modes

Decay Modes

$$BR(\widetilde{W}^{\pm}) \simeq \begin{cases} 0.5 \rightarrow W^{\pm} \widetilde{H}_{1/2}^{0} \\ 0.25 \rightarrow Z \widetilde{H}^{\pm} \\ 0.25 \rightarrow h \widetilde{H}^{\pm} \end{cases}$$
$$BR(\widetilde{W}^{0}) \simeq \begin{cases} 0.5 \rightarrow W^{\pm} \widetilde{H}^{\mp} \\ 0.25 \rightarrow Z \widetilde{H}_{1/2}^{0} \\ 0.25 \rightarrow h \widetilde{H}_{1/2}^{0} \end{cases}$$

[Goldstone boson equivalence theorem]

$$M_2 - \mu \gg m_W$$

$$W_L^+ \to \phi^+, Z_L^0 \to \phi^0$$

Decav Modes Ach Pongkiti

Golden Channel

$$\widetilde{H}^{\pm}/\widetilde{H}^{0} \to \widetilde{H}^{0}_{1} + \underline{X_{\text{soft}}}$$
 not reconstructed

• This introduces the degeneracy of the processes.

$$(e.g.) \quad \widetilde{W}^{+}\widetilde{W}^{-} \to (W^{+}\widetilde{H}^{0}_{1/2})(Z\widetilde{H}^{-})$$
$$\widetilde{W}^{+}\widetilde{W}^{0} \to (W^{+}\widetilde{H}^{0}_{1/2})(Z\widetilde{H}^{0}_{1/2})$$
$$\to (Z\widetilde{H}^{+})(W^{+}\widetilde{H}^{-})$$

$$W^+Z + E_T^{\text{miss}} + X_{\text{soft}}$$

Golden Channel

$$\widetilde{H}^{\pm}/\widetilde{H}^0 \to \widetilde{H}^0_1 + \underline{X_{\text{soft}}}$$
 not reconstructed

• This introduces the degeneracy of the processes.

	mode			
$\widetilde{W}^{\pm}\widetilde{W}^{0}, \widetilde{W}^{+}\widetilde{W}^{-} \to 0$	$W^{\pm}Z$	$+ \not\!\!\! Z_T + X_{\text{soft}}$	1/4	
	W^+W^-	$+ \not\!$	1/4	
	$W^{\pm}h$	$+ \not\!\!\! Z_T + X_{\text{soft}}$	1/4	
	Zh	$+ \not\!$	1/8	
	ZZ	$+ \not\!\!\! Z_T + X_{\text{soft}}$	1/16	
Golden Channel	hh	$+ \not\!\!\! E_T + X_{\text{soft}}$	1/16	

3 lepton channel

Simulation

detector card

Background cross-section

Process	σ [pb]
VV	3.0×10 ⁶
ttV	2.2×10^{5}
tV	2.7×10^{6}
VVV	3.6×10 ⁴
BG total	6.0×10 ⁶

Preselection

- exactly three isolated leptons with $p_T > 10$ GeV and $|\eta| < 2.5$
- a same-flavour opposite-sign (SFOS) lepton pair with $|m_{\ell\ell}^{\rm SFOS} m_Z| < 10 \text{ GeV}$
- no *b*-tagged jet

Background Cross-Section in [pb]

Process	No cut	= 3 lepton	$\left \left m_{\ell\ell}^{\rm SFOS} - m_Z \right < 10 \right $	no- <i>b</i> jet
VV	3025348	2487	2338	2176
ttV	220161	792	552	318
tV	2764638	68.9	6.07	4.12
VVV	36276	76.1	56.2	56.2
BG total	6046422	3424	2952	2554
$(M_2, \mu) = (800, 200)$	1.640	0.588	0.565	0.534
$(M_2, \mu) = (1200, 200)$	0.397	0.124	0.119	0.111
$(M_2, \mu) = (1800, 200)$	0.0863	0.0190	0.0179	0.0170

Signal Regions

Signal Region	$3 \text{ lepton } p_T \text{ [GeV]}$	E_T^{miss} [GeV]	$m_T \; [\text{GeV}]$
Loose	> 100, 50, 10	> 150	> 150
Medium	> 250, 150, 50	> 350	> 300
Tight	> 400, 200, 75	> 800	> 1100

 $(M_2, \mu) = (1.2, 0.2) \,\mathrm{TeV}$

10⁻³ 10⁻⁴ 10⁻⁵

 $(M_2, \mu) = (1.2, 0.2) \,\mathrm{TeV}$

Discussion

- The authors of '1410.6287' found much better reach (2.1 (3.2) TeV for discovery (exclusion)).
- One main difference is they use particle-level analysis and allow the lepton separation of $\Delta R > 0.05$.

Delphes lepton isolation

The lepton reco-efficiency can be significantly degraded.

Delphes lepton isolation

Acceptance Map

- The lepton separation is a limiting factor for the 3-lepton analysis.
- A better mass reach can be obtained if a smaller lepton separation can be achieved at a 100 TeV collider.

Summary

- Light EWkinos are well motivated: GCU, DM, ...
- A 100 TeV collider is important to constrain (discover) the EWkino sector.
- If scalars are decoupled (and Higgsinos are light), the heavier EWkinos decay universally to *W*, *Z* and *h*, which can be understood by Goldstone equivalence theorem.
- A simple 3-lepton analysis shows the Wino mass reach is 1.1 (1.8) TeV for discovery (exclusion).
- A good lepton separation is important to constrain the EWkinos using the 3-lepton channel.

Process	No cut	= 3 lepton	$ m_{\ell\ell}^{\rm SFOS} - m_Z < 10$	no- <i>b</i> jet	$p_T^\ell > (100, 50, 10)$	$E_T^{\text{miss}} > 150$	$m_T > 150$	S/\sqrt{B}
VV	3025348	2487	2338	2176	647	106	5.1	
ttV	220161	792	552	318	176	41.2	6.6	
tV	2764638	68.9	6.07	4.12	0.665	0.391	0.0793	
VVV	36276	76.1	56.2	56.2	23.4	6.0	1.06	
BG total	6046422	3424	2952	2554	847	153	12.8	
$(M_2,\mu) = (800,200)$	1.640	0.588	0.565	0.534	0.506	0.465	0.381	5.82
$(M_2,\mu) = (1200,200)$	0.397	0.124	0.119	0.111	0.109	0.103	0.090	1.38
$(M_2,\mu) = (1800,200)$	0.0863	0.0190	0.0179	0.0170	0.0168	0.0164	0.0150	0.234

