b hadron decay properties at ATLAS

Semen Turchikhin on behalf of the ATLAS collaboration

Joint Institute for Nuclear Research

The 16th International Conference on B-Physics at Frontier Machines, "Beauty 2016"

Marseilles, France

2 - 6 May 2016

- Measurement of the parity-violating asymmetry parameter α_b and the helicity amplitudes for the decay $\Lambda^0_b \to J/\psi \Lambda^0$ with the ATLAS detector Phys. Rev. D 89 (2014) 092009, arXiv:1404.1071
- Measurement of the branching ratio $\Gamma(\Lambda_h^0 \to \psi(2S)\Lambda^0)/\Gamma(\Lambda_h^0 \to J/\psi\Lambda^0)$ with the ATLAS detector Physics Letters B 751 (2015) 63-80, arXiv:1507.08202
- ▶ Study of the $B_c^+ \rightarrow J/\psi D_s^+$ and $B_c^+ \rightarrow J/\psi D_s^{*+}$ decays with the ATLAS detector

Eur. Phys. J. C, 76(1), 1-24 (2016), arXiv:1507.07099

Angular analysis of $\Lambda^0_b \to J/\psi \Lambda^0$ decay

Introduction

Motivation

- Parity violation in hadronic sector depends on the hadron constituents strongly bound spectator quarks
- Measurement of parity-violating parameter α_b provides a test for several theoretical models:
 - ▶ pQCD: $\alpha_b = -0.17$ to -0.14 (PRD 65, 074030 (2002), arXiv:hep-ph/0112145)
 - ► HQET: α_b = 0.78 (PLB 614, 165 (2005),arXiv:hep-ph/0412116)

Strategy

- Measure the helicity amplitudes
 - $A(\lambda_{\Lambda}, \lambda_{J/\psi}): a_{+} \equiv A(1/2, 0), a_{-} \equiv A(-1/2, 0), b_{+} \equiv A(-1/2, -1), b_{-} \equiv A(1/2, 1)$
 - $|a_+|^2 + |a_-|^2 + |b_+|^2 + |b_-|^2 = 1$
 - $\alpha_b = |a_+|^2 |a_-|^2 + |b_+|^2 |b_-|^2$
- Extract them using F_i moments
- ► Analysis uses 4.6 fb⁻¹ of 7 TeV data

Reconstruction

- ▶ Cascade topology fit with $J/\psi \rightarrow \mu^+\mu^-$ and $\Lambda^0 \rightarrow p\pi^-$ mass constraints
 - Λ^0 momentum points back to dimuon vertex
 - ► $2.8 < m_{\mu\mu} < 3.4$ GeV, $1.08 < m_{p\pi} < 1.15$ GeV
 - χ^2 /n.d.f. < 3
 - $L_{xy}(\Lambda^0) > 10 \text{ mm}, \ \tau(\Lambda^0_b) > 0.35 \text{ ps}$
 - ▶ p_T(Λ⁰) > 3.5 GeV

- Fit same tracks with $B^0 \rightarrow J/\psi K^0_S$ constraints
 - reject if χ^2 -probabilities $\mathcal{P}(\Lambda_b^0) < \mathcal{P}(B^0)$
- Mass fit model:
 - ► Signals: MC templates
 - Background: linear

Measurement

Λh

	_			
	i	f_{1i}	f_{2i}	F_i
elicity frame	0	$a_{+}a_{+}^{*} + a_{-}a_{-}^{*} + b_{+}b_{+}^{*} + b_{-}b_{-}^{*}$	1	1
D A Tr	1	$a_{+}a_{+}^{*} - a_{-}a_{-}^{*} + b_{+}b_{+}^{*} - b_{-}b_{-}^{*}$	P	$\cos \theta$
7 / 11	2	$a_{+}a_{+}^{*} - a_{-}a_{-}^{*} - b_{+}b_{+}^{*} + b_{-}b_{-}^{*}$	α_{Λ}	$\cos \theta_1$
	- 3	$a_{+}a_{+}^{*} + a_{-}a_{-}^{*} - b_{+}b_{+}^{*} - b_{-}b_{-}^{*}$	$P \alpha_{\Lambda}$	$\cos \theta \cos \theta_1$
	4	$-a_{+}a_{+}^{*} - a_{-}a_{-}^{*} + \frac{1}{2}b_{+}b_{+}^{*} + \frac{1}{2}b_{-}b_{-}^{*}$	1	$\frac{1}{2}(3 \cos^2 \theta_2 - 1)$
$y_1 = y_1 = \Lambda_b$ rest frame	5	$-a_{+}a_{+}^{*} + a_{-}a_{-}^{*} + \frac{1}{2}b_{+}b_{+}^{*} - \frac{1}{2}b_{-}b_{-}^{*}$	P	$\frac{1}{2}(3 \cos^2 \theta_2 - 1) \cos \theta$
	6	$-a_{+}a_{+}^{*} + a_{-}a_{-}^{*} - \frac{1}{2}b_{+}b_{+}^{*} + \frac{1}{2}b_{-}b_{-}^{*}$	α_{Λ}	$\frac{1}{2}(3 \cos^2 \theta_2 - 1) \cos \theta_1$
$I \propto A \parallel$	7	$-a_{+}a_{+}^{*} - a_{-}a_{-}^{*} - \frac{1}{2}b_{+}b_{+}^{*} - \frac{1}{2}b_{-}b_{-}^{*}$	$P \alpha_{\Lambda}$	$\frac{1}{2}(\overline{3}\cos^2\theta_2 - 1)\cos\theta\cos\theta_1$
	8	$-3 \text{Re}(a_{+}a_{-}^{*})$	$P \alpha_{\Lambda}$	$\sin \theta \sin \theta_1 \sin^2 \theta_2 \cos \phi_1$
" ¥	9	$3Im(a_{+}a_{-}^{*})$	$P \alpha_{\Lambda}$	$\sin \theta \sin \theta_1 \sin^2 \theta_2 \sin \phi_1$
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	10	$-\frac{3}{2}\text{Re}(b_{-}b_{+}^{*})$	$P \alpha_{\Lambda}$	$\sin \theta \sin \theta_1 \sin^2 \theta_2 \cos(\phi_1 + 2 \phi_2)$
	11	$\frac{3}{2}$ Im $(b_{-}b_{+}^{*})$	$P \alpha_{\Lambda}$	$\sin \theta \sin \theta_1 \sin^2 \theta_2 \sin(\phi_1 + 2 \phi_2)$
J/ψ	12	$-\frac{3}{\sqrt{2}}Re(b_{-}a_{+}^{*}+a_{-}b_{+}^{*})$	$P \alpha_{\Lambda}$	$\sin \theta \cos \theta_1 \sin \theta_2 \cos \theta_2 \cos \phi_2$
Λ_b	13	$\frac{3}{\sqrt{2}}$ Îm $(ba^*_+ + ab^*_+)$	$P \alpha_{\Lambda}$	$\sin \theta \cos \theta_1 \sin \theta_2 \cos \theta_2 \sin \phi_2$
	14	$-\frac{\sqrt{3}}{\sqrt{2}}$ Re $(b_{-}a_{-}^{*}+a_{+}b_{+}^{*})$	$P \alpha_{\Lambda}$	$\cos \theta \sin \theta_1 \sin \theta_2 \cos \theta_2 \cos(\phi_1 + \phi_2)$
duction plane $y_2 \longrightarrow \phi_2$	15	$\frac{3}{\sqrt{2}}$ Im $(b_{-}a_{-}^{*} + a_{+}b_{+}^{*})$	$P \alpha_{\Lambda}$	$\cos \theta \sin \theta_1 \sin \theta_2 \cos \theta_2 \sin(\phi_1 + \phi_2)$
θ_2	16	$\frac{3}{\sqrt{2}}$ Re $(a_{-}b_{+}^{*}-b_{-}a_{+}^{*})$	P	$\sin \theta \sin \theta_2 \cos \theta_2 \cos \phi_2$
μ^+ z_2	17	$-\frac{3}{\sqrt{2}}$ Im $(a_{-}b_{+}^{*}-b_{-}a_{+}^{*})$	P	$\sin \theta \sin \theta_2 \cos \theta_2 \sin \phi_2$
Line in a Balter of Service a	18	$\frac{3}{\sqrt{2}} \operatorname{Re}(b_{-}a_{-}^{*} - a_{+}b_{+}^{*})$	α_{Λ}	$\sin \theta_1 \sin \theta_2 \cos \theta_2 \cos(\phi_1 + \phi_2)$
j/ψ nencicy frame	19	$-\frac{3}{\sqrt{2}}$ Im $(b_{-}a_{-}^{*}-a_{+}b_{+}^{*})$	α_{Λ}	$\sin \theta_1 \sin \theta_2 \cos \theta_2 \sin(\phi_1 + \phi_2)$

 $w(\Omega, \vec{A}, P) = \frac{1}{(4\pi)^3} \sum_{i=0}^{19} f_{1i}(\vec{A}) f_{2i}(P, \alpha_{\Lambda}) F_i(\Omega)$

- Average polarization *P* is taken as 0
- Measure $\langle F_i \rangle = \frac{1}{N^{\text{data}}} \sum_{n=1}^{N^{\text{data}}} F_i(\Omega_n), i = 2, 4, 6, 18, 19$
 - Background subtraction bases on sidebands and $B^0 \ {
 m MC}$
- Expected values: $\langle F_i \rangle^{\text{expected}} = \sum_j f_{1i}(\vec{A}) f_{2i}(\alpha_{\Lambda}) C_{ij}$ with
 - $C_{ij} \sim \iint F_i(\Omega')T(\Omega',\Omega)F_j(\Omega) d\Omega' d\Omega$ for detector effects
- Fit $\chi^2 = \sum_i \sum_j (\langle F_i \rangle^{\text{expected}} \langle F_i \rangle) V_{ij}^{-1} (\langle F_j \rangle^{\text{expected}} \langle F_j \rangle)$
 - to constrain the solution within physical boundaries

Results

χ^2_{min} value ATLAS 60 $\Lambda_b + \overline{\Lambda}_b$ $\alpha_b^{\text{best}} = 0.30$ $\sqrt{s} = 7 \text{ TeV}, \int L dt = 4.6 \text{ fb}^{-1}$ Helicity amplitudes: 50 ► χ². (α^{best})=3.1 40 $|a_{+}| = 0.17^{+0.12}_{-0.17}$ (stat) ± 0.09 (syst), 30 $|a_{-}| = 0.59^{+0.06}_{-0.07}$ (stat) ± 0.03 (syst), 20 $|b_{\pm}| = 0.79^{+0.04}_{-0.05}$ (stat) ± 0.02 (syst), 10 $|b_{-}| = 0.08^{+0.13}_{-0.08}$ (stat) ± 0.06 (syst). -0.5 0.5

Parity violation parameter:

- $\alpha_b = 0.30 \pm 0.16 (\text{stat}) \pm 0.06 (\text{syst})$
- ► Consistent with LHCb measurement $\alpha_b = 0.05 \pm 0.17 (\text{stat}) \pm 0.07 (\text{syst})$ (PLB 724, 27 (2013))
- \blacktriangleright Difference with both pQCD and HQET expectations by $+2.6\sigma$ and $-2.8\sigma,$ respectively

 $\alpha_{\rm b}$

Observation of $\Lambda^0_b \to \psi(2S) \Lambda^0$ decay

Introduction

Motivation

- $\Lambda^0_b \to \psi(2S) \Lambda^0$ was not seen before
- Expectations for $\Gamma(\Lambda_b^0 \to \psi(2S)\Lambda^0)/\Gamma(\Lambda_b^0 \to J/\psi\Lambda^0)$:
 - ► Similar *B* meson decays: 0.5-0.8
 - ► Covariant quark model prediction Few Body Syst. 21, 131 (1996), arXiv:hep-ph/9602372: 0.8 ± 0.1

Reconstruction

- Signal and reference modes have the same topology
- Reconstruction and selection similar to the previous analysis
 - Mass constraints for intermediate resonances are used
 - Kinematic region: $p_{\rm T}(\Lambda_b^0) > 10$ GeV, $|\eta(\Lambda_b^0)| < 2.1$
 - To suppress $B^0 \to J/\psi K_S^0$, require fit χ^2 -probabilities $\mathcal{P}(\Lambda_b^0) > \mathcal{P}(B^0)$
- ► Use 20.6 fb⁻¹ of 8 TeV data

Signal fits

Simultaneous binned ML fit of Λ_b^0 and B^0 mass distributions

Signal fits (cont.)

To verify the signal corresponds to decays through the intermediate resonances, the analysis repeated without mass constraints

JINR

Results

	$\Lambda^0_b \to J/\psi \Lambda^0$	$B^0 \to J/\psi K^0_S$	$\Lambda_b^0 \to \psi(2S) \Lambda^0$	$B^0 \to \psi(2S) K^0_S$
$N_{\rm sig}$	6940 ± 130	854 ± 84	603 ± 38	124 ± 28
$m_{\rm sig} [{\rm MeV}]$	5620.4 ± 0.4	5274.7 ± 2.3	5618.2 ± 1.2	5272.4 ± 4.9
$\sigma_{\rm sig}[{\rm MeV}]$	19.7 ± 0.5	19.2 ± 2.2	14.3 ± 1.1	16.7 ± 4.1

After efficiency/acceptance corrections

 $\frac{\Gamma(\Lambda_b^0 \to \psi(2S)\Lambda^0)}{\Gamma(\Lambda_b^0 \to J/\psi\Lambda^0)} = 0.501 \pm 0.033 \text{ (stat.)} \pm 0.016 \text{ (syst.)} \pm 0.011(\mathcal{B})$

- Largest systematics sources:
 - Signal extraction
 - $\mathcal{B}(J/\psi \to \mu^+\mu^-)$ and $\mathcal{B}(\psi(2S) \to e^+e^-)$
- ▶ The ratio within the range 0.5–0.8 for analogous B meson decays
- ► The only available prediction *covariant quark quark model*: 0.8 ± 0.1 *is higher than data*

Study of $B_c^+ \to J/\psi D_s^{(*)+}$ decays

Motivation

- B_c^+ is the only weakly decaying particle consisted of two heavy quarks
- ▶ Decays with charmonia and $D_s^{(*)+}$ represent $\bar{b} \rightarrow \bar{c}c\bar{s}$ transition in B_c^+ sector
 - Can go through annihilation diagram (suppressed for lighter B mesons)

Spectator Colour-suppressed spectator Annihilation

- ► Various model predictions available: *branching ratios, polarization*
- ► Earlier observed only in LHCb (PRD 87 (2013) 112012)
- ATLAS studied these decays with full Run-1 data of 25 fb⁻¹

Analysis in a nutshell

Signal channels: $B_c^+ \rightarrow J/\psi D_s^{(*)+}$

- \blacktriangleright Intermediate resonances via $J/\psi \to \mu^+\mu^-$ and $D_s^+ \to \phi(K^+K^-)\pi^+$
- Two distinct vertices of B_c^+ and D_s^+ decays
- ► Mass constraints for J/ψ and D⁺_s in cascade fit
- ▶ $D_s^{*+} \rightarrow D_s^+ \gamma / \pi^0$, neutral particle escapes detection

Reference channel: $B_c^+
ightarrow J/\psi \pi^+$

► Measures ratios are $\mathcal{R}_{D_s^+/\pi^+} = \mathcal{B}(B_c^+ \to J/\psi D_s^+)/\mathcal{B}(B_c^+ \to J/\psi \pi^+),$ $\mathcal{R}_{D_s^{*+}/\pi^+} = \mathcal{B}(B_c^+ \to J/\psi D_s^{*+})/\mathcal{B}(B_c^+ \to J/\psi \pi^+),$ $\mathcal{R}_{D_s^{*+}/D_s^+} = \mathcal{B}(B_c^+ \to J/\psi D_s^{*+})/\mathcal{B}(B_c^+ \to J/\psi D_s^+)$

Polarization in $B_c^+ ightarrow J/\psi D_s^{*+}$ decay

- ▶ Pseudoscalar B_c^+ decays into two vectors $\rightarrow 3$ helicity amplitudes A_{00} , A_{++} , A_{--}
- ► Longitudinally A_{00} and transversely $A_{\pm\pm}$ polarized components different kinematics: $J/\psi D_s^+$ mass shape and J/ψ helicity angle
- Are distinguished by fit of these variables \rightarrow measure $\Gamma_{\pm\pm}/\Gamma$

Combinatorial background suppression

- Cascade fit quality and vertices displacement $(L_{xy}(B_c^+) \text{ and } L_{xy}(D_s^+))$
- Decay kinematics, intermediate resonance mass windows $(J/\psi, D_s^+, \phi)$
- Decay angular properties

$$B^0_s
ightarrow J/\psi \phi$$
 background

• Explicit $J/\psi\phi$ mass veto

2D extended unbinned ML fit of $m(J/\psi D_s^+)$ and $|\cos heta'(\mu^+)|$ distributions

▶ Helicity angle $\theta'(\mu^+)$ is the angle between μ^+ and D_s^+ momenta in the J/ψ rest frame

Mass part

- ► $B_c^+ \rightarrow J/\psi D_s^+$ signal: modified Gaussian function
- ► $B_c^+ \rightarrow J/\psi D_s^{*+} A_{00}$ and $A_{\pm\pm}$ signals: templates from MC
- Background: quadratic exponential

Angular part

- Singals: MC templates to account for detector effects
- ► Background: templates from m(J/ψD⁺_s) sidebands

$B_c^+ \to J/\psi D_s^{(*)+}$ signal

Signal yields agree with 1D mass fit ►

- Fit correctness checked with toy MC ► studies
 - 2D fit is much more sensitive to $f_{\pm\pm}$ than 1D
- Statistical significance of the two signals: 4.9σ

Reference channel $B_c^+ \rightarrow J/\psi \pi^+$

- Selection as close as possible to the signal mode
- ► Veto π^+ candidates identified as muons to suppress $B_c^+ \rightarrow J/\psi \mu^+ \nu_\mu$

$$B_c^+ \to J/\psi \pi^+$$
 fit

1D extended unbinned ML fit

- Background: exponential
- ► Signal: modified Gaussian

▶ For \mathcal{B} ratio measurement, the B_c^+ kinematic region used:

- $p_{\rm T}(B_c^+) > 15 \,\,{\rm GeV}$
- $|\eta(B_c^+)| < 2.0$

Results

$$\begin{split} & \mathcal{R}_{D_s^+/\pi^+} = \frac{\mathcal{B}_{B_c^+ \to J/\psi D_s^+}}{\mathcal{B}_{B_c^+ \to J/\psi \pi^+}} = 3.8 \pm 1.1 \text{ (stat.)} \pm 0.4 \text{ (syst.)} \pm 0.2 \text{ (BF)} \\ & \mathcal{R}_{D_s^{*+}/\pi^+} = \frac{\mathcal{B}_{B_c^+ \to J/\psi D_s^{*+}}}{\mathcal{B}_{B_c^+ \to J/\psi \pi^+}} = 10.4 \pm 3.1 \text{ (stat.)} \pm 1.5 \text{ (syst.)} \pm 0.6 \text{ (BF)} \\ & \mathcal{R}_{D_s^{*+}/D_s^+} = \frac{\mathcal{B}_{B_c^+ \to J/\psi D_s^{*+}}}{\mathcal{B}_{B_c^+ \to J/\psi D_s^{*+}}} = 2.8^{+1.2}_{-0.8} \text{ (stat.)} \pm 0.3 \text{ (syst.)} \end{split}$$

• $\Gamma_{\pm\pm}/\Gamma = 0.38 \pm 0.23 \text{ (stat.)} \pm 0.07 \text{ (syst.)}$

Dominant systematics contribution from the fit model uncertainties

19 / 20

- ► Three heavy hadron decay analyses performed by ATLAS were presented:
 - α_b and helicity amplitudes in $\Lambda^0_b \to J/\psi \Lambda^0$ measurement (7 TeV)
 - First observation and measurement of $\Lambda_b^0 \to \psi(2S) \Lambda^0$ (8 TeV)
 - Study of $B_c^+ \rightarrow J/\psi D_s^{(*)+}$ decays (7 TeV+8 TeV)
- Potential of Run 1 data is still not fully exploited
- Many new interesting results expected with 13 TeV data!

Backup slides

ATLAS detector and trigger system

- Tracking Inner Detector in 2 T solenoid field
- Muon system put inside a toroid
- ATLAS trigger system: hardware Level-1 trigger and software High-Level Trigger
- **Trigger selection for heavy flavour studies** is mostly based on di-muon signature
 - muon p_T threshold (4 or 6 GeV)
 - di-muon vertex reconstruction
 - invariant mass window

 J/ψ and D_s^+ signals in $B_c^+
ightarrow J/\psi D_s^{(*)+}$ decays

