Flavour Physics possibilities at FCC-ee in the landscape of extreme flavour factories

S. Monteil,
Université Blaise Pascal,
LPC Clermont-In2p3-Cnrs,
Outline of the talk

• The landscape of flavour factories

• Introduction to the Future Circular Colliders project

• Few words on the e^+e^- machine and Physics case at large.

• The Flavour Physics case by examples:
 • Leptons
 • Quarks
0. Landscape of future flavour factories

<table>
<thead>
<tr>
<th></th>
<th>LHC(b)</th>
<th>LHC(b) upgrade(s)</th>
<th>Beyond LHCb</th>
<th>FCC injectors & FCC-pp</th>
</tr>
</thead>
<tbody>
<tr>
<td>2019 - 8/fb</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>~2025 - 50/fb</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2025 - 50/ab</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>203? - 500/fb</td>
<td></td>
<td></td>
<td></td>
<td>5000/fb</td>
</tr>
<tr>
<td>203? - 150/ab</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **LHC(b)**
- **LHC(b) upgrade(s)**
- **Beyond LHCb**
- **FCC injectors & FCC-pp**

Legend and disclaimer:
- on track or running
- foreseen projects
- timeline, lumi, omissions are mine.
0. Landscape of future flavour factories

LHC(b) upgrade(s)

Beyond LHCb

LHCb upgrade: G. Simi (this conference).

Beyond LHCb: F. Teubert (this conference).

Belle II: SG. Shiu, M. Nayak (this conference).

Belle II

Comet - Meg & friends.

LFV expts: M. Lancaster (this conference).

KOTO - NA62 ...

NA62: F. Bucci (this conference).
I will hence discuss the last three items.

With a focus on FCC-ee.

Note: there are other emerging projects.
1. Introduction to FCC project:

- Starting from the former European HEP strategy 2013

Summary: European Strategy Update 2013

Design studies and R&D at the energy frontier

....“to propose an ambitious **post-LHC accelerator project at CERN** by the time of the next Strategy update”:

d) **CERN should undertake design studies for accelerator projects in a global context,**

- with emphasis on **proton-proton and electron-positron high-energy frontier machines.**
- These design studies should be coupled to a vigorous accelerator **R&D programme, including high-field magnets and high-gradient accelerating structures,**
- **in collaboration with national institutes, laboratories and universities worldwide.**

- At the time the LHC Run II will have delivered its results, have an educated vision of the reach of future machines for the next round of the European Strategy in 2019.
1. Introduction to FCC: the scope of the project

Forming an international coll. (hosted by Cern) to study:

- 100 TeV pp-collider (FCC-hh) as long term goal, defining infrastructure requirements.

- e^+e^- collider (FCC-ee) as potential first step.

- $p-e$ (FCC-he) as an option.

- 80-100 km infrastructure in Geneva area.

- Conceptual design report and cost review for the next european strategy → 2019.
1. Introduction to FCC - Civil engineering.

- Infrastructure studies advanced. A 93 km planar racetrack:

- Challenges:
 - 7.8 km tunnelling through Jura limestone.
 - Up to 300 - 400 m deep shafts + caverns in molasse.
1. Introduction to FCC: the design study timeline

- Applies to all machine and experiment designs:

![CDR Study Time Line]

<table>
<thead>
<tr>
<th></th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
<td>Q4</td>
<td>Q1</td>
<td>Q2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study plan, scope definition</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Explore options</td>
<td>conceptual study of baseline develop baseline ↔ detailed studies</td>
<td>FCC Week 2016 Progress review</td>
<td>FCC Week 17 & Review Cost model, LHC results study re-scoping?</td>
<td>Elaboration, consolidation</td>
<td>FCC Week 2018 contents of CDR</td>
</tr>
<tr>
<td>FCC Week 2015: work towards baseline</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

We are here
1. Introduction to FCC: flavours at FCC-pp

- From M. Mangano @ FCC week 2016

Physics at the FCC-hh
https://twiki.cern.ch/twiki/bin/view/LHCPhysics/FutureHadroncollider

- Volume 1: SM processes (238 pages)
- Volume 2: Higgs and EW symmetry breaking studies (175 pages)
- Volume 3: beyond the Standard Model phenomena (189 pages)
- Volume 4: physics with heavy ions (56 pages)
- Volume 5: physics opportunities with the FCC-hh injectors (14 pages)

* Flavour physics at FCC-hh will be the subject of a future dedicated study and report
1. Introduction to FCC: flavours at FCC-\textit{pp}

- From M. Mangano @ FCC week 2016

\textbf{Physics at the FCC-hh}

- Volume 1: SM processes (238 pages)
- Volume 2: Higgs and EW symmetry breaking studies (175 pages)
- Volume 3: beyond the Standard Model phenomena (189 pages)
- Volume 4: physics with heavy ions (95 pages)
- Volume 5: physics opportunities with the FCC-hh injectors (14 pages)

\textit{\textbf{input to forthcoming simulations and studies of detector design and performance assessment}}

* Flavour physics at FCC-hh will be the subject of a future dedicated study and report*
1. Introduction to FCC: flavours at FCC-pp

- From M. Mangano @ FCC week 2016

Physics at the FCC-hh

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/FutureHadroncollider

- **Volume 1:** SM processes (238 pages)
- **Volume 2:** Higgs and EW symmetry breaking studies (175 pages)
- **Volume 3:** beyond the Standard Model phenomena (189 pages)
- **Volume 4:** physics with heavy ions (56 pages)
- **Volume 5:** physics opportunities with the FCC-hh injectors (14 pages)

input to forthcoming simulations and studies of
detector design and performance assessment

* Flavour physics at FCC-hh will be the subject of a future dedicated study and report
1. Introduction to FCC: flavours at FCC-pp

- From M. Mangano @ FCC week 2016

![Physics at the FCC-hh](https://twiki.cern.ch/twiki/bin/view/LHCPhysics/FutureHadroncollider)

- Volume 1: SM processes (238 pages)
- Volume 2: Higgs and EW symmetry breaking studies (175 pages)
- Volume 3: beyond the Standard Model phenomena (189 pages)
- Volume 4: physics with heavy ions (56 pages)
- Volume 5: physics opportunities with the FCC-hh injectors (14 pages)
 - *

input to forthcoming simulations and studies of detector design and performance assessment

* Flavour physics at FCC-hh will be the subject of a future dedicated study and report
1. Introduction to FCC: flavours at FCC-pp

- From M. Mangano @ FCC week 2016

Physics at the FCC-hh
https://twiki.cern.ch/twiki/bin/view/LHCPhysics/FutureHadroncollider

- Volume 1: SM processes (238 pages)
- Volume 2: Higgs and EW symmetry breaking studies (175 pages)
- Volume 3: beyond the Standard Model phenomena (189 pages)
- Volume 4: physics with heavy ions (56 pages)
- Volume 5: physics opportunities with the FCC-hh injectors (14 pages)
 - *

input to forthcoming simulations and studies of detector design and performance assessment

* Flavour physics at FCC-hh will be the subject of a future dedicated study and report

Fig. 1: Schematic view of the CERN accelerators system viewed as injectors of the future FCC-hh collider (FHC).
1. Introduction to FCC: flavours at FCC-pp injector

- Physics opportunities with injector(s): executive summary

- Reaching sensitivity down to the SM predictions on EDMs for nucleons using polarized protons in a dedicated 0.7 GeV storage ring.

- Precision search for flavour-changing transitions through B, D, K and τ decays, in a dedicated (LHCb-like) HEB high-luminosity collider experiment.

- Search for BSM dark sector particles in a 400 GeV high intensity proton beam dump experiment from the SPS, as for example HNLs (SHiP-like)

- Also kaon opportunities: improve on sensitivity for $K^0 \rightarrow \pi^0 \nu\nu$ decay branching ratio using a 400 GeV high intensity proton beam from the SPS (KOTO-like).

Key points:
- $O \left(10^{35}\right) \text{cm}^{-2}\text{s}^{-1}$
- $O \left(5000\right) / \text{fb}$
- $O \left(10^3\right) \text{PV}$.
2. The FCC e^+e^- machine. Baseline design

- Physics from the Z pole to top pair production (90 - 400 GeV), crossing WW and ZH thresholds with unprecedented statistics everywhere.

- Two rings (top-up injection) to cope with high current and large number of bunches at operating points up to ZH.

- Description of the machine parameters:

- To some extent, SuperKEKB shall already meet some of the challenges of FCC-ee:

<table>
<thead>
<tr>
<th>Some SuperKEKB parameters:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>β_y : 300 μm</td>
<td></td>
</tr>
<tr>
<td>σ_y : 50 nm</td>
<td></td>
</tr>
<tr>
<td>ϵ_e/ϵ_x : $0.25%$</td>
<td></td>
</tr>
<tr>
<td>ϵ_e (H) : $0.2%$ to $0.1%$</td>
<td></td>
</tr>
<tr>
<td>e^+ production rate : $2.5 \times 10^{13} / s$</td>
<td></td>
</tr>
<tr>
<td>e^- production rate : $< 1 \times 10^{13} / s$</td>
<td></td>
</tr>
<tr>
<td>Off-momentum acceptance at IP : $\pm 1.5%$</td>
<td></td>
</tr>
<tr>
<td>ϵ_e (H) : $\pm 2.0%$ to $\pm 2.5%$</td>
<td></td>
</tr>
<tr>
<td>Beam Lifetime : 5 minutes</td>
<td></td>
</tr>
<tr>
<td>ϵ_e (H) : 20 minutes</td>
<td></td>
</tr>
<tr>
<td>Centre-of-mass energy : ~ 10 GeV</td>
<td></td>
</tr>
<tr>
<td>ϵ_e (H) : 240 GeV</td>
<td></td>
</tr>
</tbody>
</table>
2. The e^+e^- machine: luminosity figure.

- The time / energy allocation of the machine is to be worked out; still ...
- ... we’re speaking here of $10^{12}/10^{13} Z$, $10^8 WW$, $10^6 H$ and 10^6 top pairs.
3. The e^+e^- Physics case at large.

First look at the physics case of TLEP

The TLEP Design Study Working Group

ABSTRACT: The discovery by the ATLAS and CMS experiments of a new boson with mass around 125 GeV and with measured properties compatible with those of a Standard-Model Higgs boson, coupled with the absence of discovery of phenomena beyond the Standard Model at the TeV scale, has triggered interest in ideas for future Higgs factories. A new circular e^+e^- collider hosted in a 80 to 100 km tunnel, TLEP, is among the most attractive solutions proposed so far. It has a clean experimental environment, produces high luminosity for top-quark, Higgs-boson, W and Z studies, accommodates multiple detectors, and can reach energies up to the $t\bar{t}$ threshold and beyond. It will enable measurements of the Higgs boson properties and of Electroweak Symmetry-Breaking (EWSB) parameters with unqualed precision, offering exploration of physics beyond the Standard Model in the multi-TeV range. Moreover, being the natural precursor of the VHE-LHC, a 100 TeV hadron machine in the same tunnel, it builds up a long-term vision for particle physics. Altogether, the combination of TLEP and the VHE-LHC offers a great cost-effectiveness, the best precision and the best search reach of all options presently on the market. This paper presents a first appraisal of the salient features of the TLEP physics potential, to serve as a baseline for a more extensive design study.

• This initial study focused primarily on the Higgs Physics (w/ full simulation but CMS detector).

• EWK precision tests were examined from LEP (Z, W) or LC (top) extrapolations.

• The Design Study aims at reaching a fully educated view of the Physics Case from realistic detector simulation studies (We are here now).

• Explore all the Physics possibilities including Flavours. The latter is not a priori at the heart of the project but can be a supplément d’âme.
3. The e^+e^- Physics case at large: examples

Physics reach related to the luminosity figure:

✓ **ElectroWeak Precision tests:**

- **Z pole, WW and top pairs thresholds.**

 At Z: you get the statistics of one LEP experiment in a minute or so!

✓ **Higgs Precision test.**

✓ **Note:** higher order EW calculations required.
4. The Flavours in the big picture.

• Is there a Flavour case in this big picture?

• At least, there are obvious flavour-related questions to be examined, in the light of the anticipated precision that Flavour Physics experiments can reach (Belle II, LHCb upgrade and LFV experiments).

• I’d like to convince you that the answer is definitely yes.

• Illustrations starting with leptons.
With the advent of the discovery of a SM-like BEH boson, there is a strong case for the existence of right-handed neutrinos possibly below or at the electroweak scale.

A high-luminosity Z factory with $10^{12} / 10^{13} Z$ offers the opportunity to scan their parameter space below the electroweak scale.

The sterile neutrinos can be searched for directly through their decays or indirectly through the charged lepton flavour-violating Z decays. Will give examples of both.

Yukawa for charged fermions

$$\mathcal{L}_Y = Y^d_{ij} \bar{Q}_L i \phi d_{Rj} + Y^u_{ij} \bar{Q}_L i \tilde{\phi} u_{Rj} + Y^\ell_{ij} \bar{L} L i \phi \ell_{Rj} + + h.c.$$

Most general Lag. form for neutrals

$$\mathcal{L}_N = \frac{M_{ij}}{2} \bar{N}_i N_j + Y^\nu_{ij} \bar{L} L i \phi N_j$$
4.1 Flavours at the Z: the lepton Physics Case

- Most general form for neutrals L

$$\mathcal{L}_N = \frac{M_{ij}}{2} \overline{N}_i^c N_j + Y^\nu_{ij} \overline{L}_i \phi N_j$$
4.1 Flavours at the Z: the lepton Physics Case

- Most general form for neutrals L
 \[\mathcal{L}_N = \frac{M_{ij}}{2} \bar{N}_i \nu^c N_j + Y_{ij} \bar{L}_i \phi N_j \]

- Somehow, the only (provocative) question is how many?
4.1 Flavours at the Z: the lepton Physics Case

- Most general form for neutrals L
 \[
 \mathcal{L}_N = \frac{M_{ij}}{2} \bar{N}_i^c N_j + Y_{ij}^\nu \bar{L}_{Li} \phi N_j
 \]

- Somehow, the only (provocative) question is how many?
4.1 Flavours at the Z: the lepton Physics Case

- Lepton Flavour-Violating Z decays in the SM with lepton mixing are typically
 \[B(Z \rightarrow e^\pm \mu^\mp) \sim B(Z \rightarrow e^\pm \tau^\mp) \sim 10^{-54} \quad \text{and} \quad B(Z \rightarrow \mu^\pm \tau^\mp) \sim 4 \times 10^{-60} \]

- Any observation of such a decay would be an indisputable evidence for New Physics.

- The FCC-ee high luminosity Z factory would allow to gain up to six orders of magnitude ...

- Complementary to the direct search for steriles.

- The following plots are based on a work from V. De Romeri et al.
4.1 LFV in rare Z-decays

Studies for the Giga-Z (Wilson, DESY-EFCA LC workshop (1998-1999), J. I. Illana and T. Riemann, Phys. Rev. D63 (2001) ... are revisited taking into account:

- θ_{13} and other neutrino data
- new contributions of sterile states are already severely constrained:
 - radiative decays (MEG)
 - 3-body decays
 - cosmology
 - neutrinoless double β decays
 - invisible Z-width

4.1 LFV in rare Z-decays: “3+1” toy model

3+1 model is a convenient ad-hoc extension; 4th state encodes contributions of arbitrary number of sterile neutrinos

- Steriles with mass > 80 GeV and mixings $O(10^{-5}-10^{-4})$ within FCC-ee reach.
- Low-energy experiments (COMET ...) at work to probe the electron-muon sector.
- FCC-ee provides the stringent constraint in tau-mu sectors.

V. De Romeri et al. JHEP 1504 (2015) 051
4.1 LFV in rare Z-decays: analysis

- **Signal event topology:** one high energy light lepton in one hemisphere, a tau decay in the other with 1, 3 or 5 prongs. This seems very clean experimental environment but keep in mind that we are chasing 10^{-13} sensitivity.

- Among the background sources:
 - $Z \rightarrow qq$ with low multiplicity.
 - $Z \rightarrow W^* l\nu$

- The latter (as a signal) is appealing *per se* as a SM candle and/or NP probe. [Durieux et al. arXiv:1512.03071]. The final state is the same as CLFV (with an additional neutrino) and the authors find a SM branching fraction of 1.4×10^{-8} ! Need to devise more than a counting experiment to make the most of the statistics. Assessment of the experimental sensitivity ongoing.
4.1 Flavours at the Z: the lepton Physics Case

- The sterile neutrinos are produced from mixing with active neutrinos out of the Z decay.

- The N decay lifetime depends on the mass of the sterile and the mixings

- Branching fraction almost saturated with the final states:
 $$N \rightarrow \ell^+ \ell^- \nu, \quad N \rightarrow q\bar{q}'\ell, \quad N \rightarrow q\bar{q}\nu$$
The CP violation and rare b-decays landscape has to be examined from the anticipated results of both the LHCb upgrade and the Belle II experiments.

LHCb sees all species of b-particles (and charm in abundance) and is especially good at rare decays with muons and fully charged decay modes. Less efficient for electrons, neutrals, missing energy, hadronic multibody decays.

Belle II should explore deeply/widely the B_d and B_u meson systems. Might also run above the $\Upsilon(5S)$ threshold but can’t resolve the oscillation of B_s meson.

The latter highs and lows define a path to complete the picture in the event nothing new is observed meanwhile.
4.2 Flavours at the Z: the quarks Physics Case

• A possible/appealing realm for FCC-ee in the classic flavours is therefore provided by the following triptych most likely unique to FCC-ee:

1) Any leptonic or semileptonic decay mode involving B_s, B_c or b-baryon (those are coming polarized), including electrons.

2) Any decay mode involving B_s, B_c or b-baryon with neutrals.

3) Multibody (means 4 and more) hadronic b-hadron decays.

• We highlighted flagship modes for each category in order to build the Physics Work Packages.
1) Any leptonic or semileptonic decay mode involving B_s, B_c or b-baryon, including electrons, in no particular order:

- $B_{d,s} \to ee, \mu\mu, \tau\tau$: if the second will be mostly covered by LHCb and CMS, the first can be searched for with a similar precision. The latter $B_s \to \tau\tau$ is most likely unique to FCC-ee and subjected to third family specific couplings.

- Leptonic decays in direct annihilation $B_{u,c} \to \mu\nu_\mu, \tau\nu_\tau$. The latter is a chance to get $|V_{cb}|$ with mild theoretical uncertainties.

- If the baseline machine is to be confirmed with the crab-waist option, the flavours scope with 10^{13} Z is likely to change dramatically. For instance, it would be possible to get $|V_{ub}|$ theory-free (well, strong isospin symmetry only ...) out of ratios of rare decays (B. Grinstein @ CKM06). Not mentioning that the large boost at the Z can be beneficial for classical methods.
2) Any decay mode involving B_s, B_c or b-baryon with neutrals.

- $B_{d,s} \rightarrow \gamma \gamma$: theoretically difficult.
- $B_s \rightarrow K_SK_S$: CP violation studies. Also interesting for downstream tracking of V^0 in general.
- $B \rightarrow \Xi \Pi (\pi \pi \pi$ at first): rare FCNC complementing LHCb and Belle II.

3) Multibody (4 and more) hadronic b-hadron decays.

- $B_s \rightarrow \psi \eta'$ or $\eta_c \Phi$: flavour tagging required for weak mixing phase.
- $B_s \rightarrow D_SK$: PID definitely required to isolate the signal.
- Modes to be used to define the Particle Identification needs.
4.2 The EWP decays as a first exploration.

- The rare decays $b \rightarrow s \ell^+\ell^-$ are receiving increasing experimental and phenomenological interests:

 - good laboratory for new quark/lepton transitions operators.
 - possibly clean theoretical (QCD) uncertainties.
 - some signs of departures of the data w.r.t. the SM/QCD predictions.
 - Lepton universality is challenged.

![Graph showing P_5 in bins of q^2. The shaded boxes show the SM prediction taken from Ref. [13]. The blue open markers show the result of the 1 fb$^{-1}$ analysis from Ref. [7].](image)

Figure 17: The observable P_5 in bins of q^2. The shaded boxes show the SM prediction taken from Ref. [13]. The blue open markers show the result of the 1 fb$^{-1}$ analysis from Ref. [7].
4.2 The EWP decays as a first exploration.

• The rare decays $b \to s \, l^+ l^-$ are receiving increasing experimental and phenomenological interests:

 • good laboratory for new quark/lepton transitions operators.
 • possibly clean theoretical (QCD) uncertainties.
 • clear experimental signatures.
 • some signs of departures of the data w.r.t. the SM/QCD predictions in the muon final states.

• The electron final states allows a dedicated study at low q^2. $O(10^5)$ events! Exploration started at LHCb: $O(10^2)$ events (RunI).

• The tau lepton final states is unexplored so far but is necessary to complete the landscape, whatever the NP scenario is there or ruled out.

• Experimentally, aim at:

 • measuring the branching fraction,
 • studying the angular distributions.

In both cases, FCC-ee provides a possibly unique access to these territories.
4.2 The EWP decays as a first exploration.

- The transition $B^0 \rightarrow K^{*0} \tau^+ \tau^-$ can be fully solved.

- Two neutrinos missing
 → six momentum coordinates to find.

- The secondary vertex is determined from
 → the resonant $K^{*0} \rightarrow K^- \pi^+$

- Limit ourselves to the τ decays in three prongs
 → $\tau \rightarrow a_1^- \nu_\tau$

Constraints:
- B flight distance → 2 d.o.f.
- τ flight distances → 4 d.o.f.
- τ masses → 2 d.o.f.
- saturate the d.o.f. of the problem.

This is a Physics with:

- One primary vertex
- No trigger (neither hw or sw).
4.2 FCNC (EWP) in b-hadron decays. $B^0 \rightarrow K^{*0} \tau^+\tau^-$.

- **Backgrounds:**

 \[\bar{B}^0 \rightarrow D_s^+ K^{*0} \tau^- \bar{\nu}_\tau \]
 (pink)

 \[\bar{B}_s \rightarrow D_s^- D_s^+ K^{*0} \]
 (red)

 (signal in green).

- **Conditions:** target luminosity, SM calculations of signal and background BF, vertexing and tracking performance as ILD detector.

 Momentum \rightarrow 10 MeV, **Primary vertex** \rightarrow 3 um, **SV** \rightarrow 7 um, **TV** \rightarrow 5 um

S. Monteil
Flavours @ FCC(-ee)
4.2 FCNC (EWP) in b-hadron decays. $B^0 \rightarrow K^{*0} \tau^+\tau^-$.

Conditions:

- Target luminosity
- Left: vertexing performance as ILD.
- Right: vertexing performance twice better than ILD. Pretty realistic: initial studies tell that the vertex detector can be as close as 2 cm from IP.
4.2 FCNC (EWP) in b-hadron decays. $B^0 \rightarrow K^{*0} \tau^+\tau^-$.

Few comments are in order:

- At target luminosity, we can expect about 10^3 events of reconstructed signal. Angular analysis possible. And more w/ τ polarization.

- With an ALEPH-like vertex detector performance, the signal peak can’t be resolved.

This mode can serve as a benchmark for partial reconstruction techniques and hence vertexing. The next step of the study is to attack the more challenging mode $B^0_s \rightarrow \tau^+\tau^-$.
5. Summary

- An effort for a design study of large pp and ee colliders is structured in order to provide an educated view of the Physics reach, machine and detectors of such a facility for the next update of the HEP European strategy (2019).

- Flavour physics studies at pp collider is starting. On the contrary, Physics opportunities at the injector have been already envisaged.

- The ee circular collider is meant to provide experiments with an unprecedented luminosity from the Z pole to the top pair threshold.

- The Flavour Physics, as an indissociable part of the electroweak symmetry breaking understanding, is a natural and obvious contributor.

- Baseline studies have been devised. We are just starting to explore the possibilities, in particular with $10^{12} / 10^{13} Z$.
5. Recap of chosen personal outlooks

© J. Camalich, here.

1. We find new particles at the LHC
 - Modelling their flavor structure should explain anomalies + new predictions!

2. We do not find new particles but we confirm LUV
 - Reading the shape with more sophisticated (angular) observables
 - Use angular analyses on the decays of the τ!
 - Take LUV ratios between angular observables in $B \to K^* \ell \ell$
 - **Bottom-up model-building**: Path for discovery at LHC or beyond!

3. No new particles + No LUV
 - Consistency among observables: **necessary but not sufficient** condition for discovery
 - More data needed to confirm or rule out q^2-dependence of the effect
 - Tackling charm will require **theoretical breakthrough**
 - **New ideas**: e.g. $B^*_s \to \ell \ell$

S. Monteil

Flavours @ FCC(-ee)
5. Recap of chosen personal outlooks

© J. Camalich, here.

1. We find new particles at the LHC
 - Modelling their flavor structure should explain anomalies + new predictions!

2. We do not find new particles but we confirm LUV
 - Reading the shape with more sophisticated (angular) observables
 - Use angular analyses on the decays of the τ!
 - Take LUV ratios between angular observables in $B \to K^* \ell \ell$
 - **Bottom-up model-building**: Path for discovery at LHC or beyond!

3. No new particles + No LUV
 - Consistency among observables: **necessary but not sufficient** condition for discovery
 - More data needed to confirm or rule out q^2-dependence of the effect
 - Tackling charm will require **theoretical breakthrough**
 - **New ideas**: e.g. $B^*_s \to \ell \ell$
5. Recap of chosen personal outlooks

© J. Camalich, here.

1. We find new particles at the LHC
 - Modelling their flavor structure should explain anomalies+new predictions!

2. We do not find new particles but we confirm LUV
 - Reading the shape with more sophisticated (angular) observables
 - Use angular analyses on the decays of the τ!
 - Take LUV ratios between angular observables in $B \to K^* \ell \ell$
 - **Bottom-up model-building:** Path for discovery at LHC or beyond!

3. No new particles+No LUV
 - Consistency among observables: **necessary but not sufficient** condition for discovery
 - More data needed to confirm or rule out q^2-dependence of the effect
 - Tackling charm will require **theoretical breakthrough**
 - **New ideas:** e.g. $B_s^* \to \ell \ell$
5. Recap of chosen personal outlooks

© J. Camalich, here.

1. We find new particles at the LHC
 - Modelling their flavor structure should explain anomalies+new predictions!

2. We do not find new particles but we confirm LUV
 - Reading the shape with more sophisticated (angular) observables
 * Use angular analyses on the decays of the τ!
 * Take LUV ratios between angular observables in $B \rightarrow K^* \ell \ell$
 - **Bottom-up model-building:** Path for discovery at LHC or beyond!

3. No new particles+No LUV
 - Consistency among observables: **necessary but not sufficient** condition for discovery
 - More data needed to confirm or rule out q^2-dependence of the effect
 - Tackling charm will require **theoretical breakthrough**
 - **New ideas:** e.g. $B_s^* \rightarrow \ell \ell$
5. Recap of chosen personal outlooks

© A. Crivellin, here

Outlook (personal view)

- $b \rightarrow s \mu \mu + R\left(D^{(*)}\right)$ → Leptoquarks
- $B_s \rightarrow \mu \mu$
- $b \rightarrow s \tau \tau$
- $a_\mu + R\left(D^{(*)}\right)$ → 2HDM X
- $t \rightarrow H c, \tau \rightarrow \mu \nu \nu$
- $b \rightarrow s \mu \mu + h \rightarrow \tau \mu$ → Z'
- $\tau \rightarrow \mu \mu \mu$
- $h \rightarrow \tau \mu + a_\mu$ → Flavon model
- $h \rightarrow \mu \mu$
5. Recap of chosen personal outlooks

© A. Crivellin, here
5. Recap of chosen personal outlooks

© A. Crivellin, here

Outlook (personal view)

- $b \to s \mu \mu + R(D^{(*)})$ → Leptoquarks
- $B_s \to \mu \mu$
- $b \to s \tau \tau$
- $a_\mu + R(D^{(*)})$ → 2HDM X
- $t \to Hc, \tau \to \mu \nu \nu$
- $b \to s \mu \mu + h \to \tau \mu$ → Z'
- $\tau \to \mu \mu \mu$
- $h \to \tau \mu + a_\mu$ → Flavon model
- $h \to \mu \mu$
5. Recap of chosen personal outlooks

© A. Crivellin, here

Outlook (personal view)

- $b \rightarrow s\mu\mu + R\left(D^{(*)} \right)$ **Leptoquarks**
 - $B_s \rightarrow \mu\mu$
 - $b \rightarrow s\tau\tau$
- $a_\mu + R\left(D^{(*)} \right)$ **2HDM X**
 - $t \rightarrow Hc, \quad \tau \rightarrow \mu\nu\nu$
- $b \rightarrow s\mu\mu + h \rightarrow \tau\mu$ **Z’**
 - $\tau \rightarrow \mu\mu\mu$
- $h \rightarrow \tau\mu + a_\mu$ **Flavon model**
 - $h \rightarrow \mu\mu$
5. References and links as a Conclusion.

- The project is getting mature. The FCC software and detector simulation are getting up. A good moment to contribute.

- Aim at gathering small teams of experimentalists and theoreticians on benchmark subjects. At work for LFV Z decays and $B^0 \rightarrow K^{*0} \tau^+\tau^-$, on track for $B^0_s \rightarrow \tau^+\tau^-$ and foreseen for $B^0 \rightarrow K^{*0} e^+e^-$. More are welcome.

- Information on FCC and FCC-ee can be found there: http://tlep.web.cern.ch/

- A dedicated e-list for the Flavours WG is set-up here with self-subscription for CERN users: https://e-groups.cern.ch/e-groups/Egroup.do?egroupId=10116182&tab=3

- Otherwise get in touch with us: jernej.kamenik@ijs.si or monteil@in2p3.fr.
Back-up slides.
Future Circular Collider Study
Michael Benedikt
2nd FCC Week, Rome, April 2016

CERN Circular Colliders & FCC

Constr. Physics LEP
Design Proto Construction Physics LHC
Design Construction Physics HL-LHC
FCC

20 years

Now is the time to plan for the period 2035 – 2040
1. Introduction to FCC

- 80-100 km infrastructure in Geneva area: A flavour of the location:

© J. Wenninger / P. Janot
1. Introduction to FCC

- Infrastructure studies ongoing. A 93 km planar racetrack:

- Challenges:
 - 7.8 km tunnelling through Jura limestone
 - Up to 300 - 400 m deep shafts + caverns in molasse
2. The e^+e^- machine. Baseline design

- Physics from the Z pole to top pair production (90 - 400 GeV), crossing WW and ZH thresholds with unprecedented statistics everywhere.

- Two rings (top-up injection) to cope with high current and large number of bunches at operating points up to ZH.

- Not a straightforward extrapolation of LEP. Many Challenges:
 - Brehmsstrahlung@IP limits the beam lifetime at top energy.
 - Polarization of the beams (at least natural one for beam energy measurement - EWK precision measurements). Note: latest explorations seem to indicate that the Physics program can be made without polarization (both for top and Z pole)
 - RF system must deal w/ contradictory requirements (high gradients (top) / high currents (Z)).

- Baseline design is a target. Not an actual working machine.
2. The e^+e^- machine. Challenges

- To some extent, SuperKEKB is a testbench for FCC-ee:

Some SuperKEKB parameters: ©P. Janot

- β_y^*: 300 μm
 - FCC-ee (H): 1 mm
- σ_y: 50 nm
 - FCC-ee (H): 50 nm
- $\varepsilon_y/\varepsilon_x$: 0.25%
 - FCC-ee (H): 0.2% to 0.1%
- e^+ production rate: $2.5 \times 10^{12} / s$
 - FCC-ee (H): $< 1 \times 10^{11} / s$
- Off-momentum acceptance at IP: ± 1.5
 - FCC-ee (H): $\pm 2.0\%$ to $\pm 2.5\%$
- Beam Lifetime: 5 minutes
 - FCC-ee (H): 20 minutes
- Centre-of-mass energy: ~10 GeV
 - FCC-ee (H): 240 GeV
2. The e^+e^- machine. Baseline parameters.

<table>
<thead>
<tr>
<th></th>
<th>LEP1</th>
<th>LEP2</th>
<th>Z</th>
<th>W</th>
<th>H</th>
<th>tt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circumference [km]</td>
<td>26.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bending radius [km]</td>
<td>3.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beam energy [GeV]</td>
<td>45.4</td>
<td>104</td>
<td>45.5</td>
<td>80</td>
<td>120</td>
<td>175</td>
</tr>
<tr>
<td>Beam current [mA]</td>
<td>2.6</td>
<td>3.04</td>
<td>1450</td>
<td>152</td>
<td>30</td>
<td>6.6</td>
</tr>
<tr>
<td>Bunches / beam</td>
<td>12</td>
<td>4</td>
<td>16700</td>
<td>4490</td>
<td>1360</td>
<td>98</td>
</tr>
<tr>
<td>Bunch population [10^{11}]</td>
<td>1.8</td>
<td>4.2</td>
<td>1.8</td>
<td>0.7</td>
<td>0.46</td>
<td>1.4</td>
</tr>
<tr>
<td>Transverse emittance ε</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Horizontal [nm]</td>
<td>20</td>
<td>22</td>
<td>29.2</td>
<td>3.3</td>
<td>0.94</td>
<td>2</td>
</tr>
<tr>
<td>- Vertical [pm]</td>
<td>400</td>
<td>250</td>
<td>60</td>
<td>7</td>
<td>1.9</td>
<td>2</td>
</tr>
<tr>
<td>Momentum comp. [10^{-5}]</td>
<td>18.6</td>
<td>14</td>
<td>18</td>
<td>2</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Betatron function at IP β^*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Horizontal [m]</td>
<td>2</td>
<td>1.2</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>- Vertical [mm]</td>
<td>50</td>
<td>50</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Beam size at IP σ^* [μm]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Horizontal</td>
<td>224</td>
<td>182</td>
<td>121</td>
<td>26</td>
<td>22</td>
<td>45</td>
</tr>
<tr>
<td>- Vertical</td>
<td>4.5</td>
<td>3.2</td>
<td>0.25</td>
<td>0.13</td>
<td>0.044</td>
<td>0.045</td>
</tr>
<tr>
<td>Energy spread [%]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Synchrotron radiation</td>
<td>0.07</td>
<td>0.16</td>
<td>0.04</td>
<td>0.07</td>
<td>0.10</td>
<td>0.14</td>
</tr>
<tr>
<td>- Total (including BS)</td>
<td>0.07</td>
<td>0.16</td>
<td>0.06</td>
<td>0.09</td>
<td>0.14</td>
<td>0.19</td>
</tr>
</tbody>
</table>
2. The e^+e^- machine. Baseline parameters.

<table>
<thead>
<tr>
<th></th>
<th>LEP1</th>
<th>LEP2</th>
<th>Z</th>
<th>W</th>
<th>H</th>
<th>tt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bunch length [mm]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Synchrotron radiation</td>
<td>8.6</td>
<td>11.5</td>
<td>1.64</td>
<td>1.01</td>
<td>0.81</td>
<td>1.16</td>
</tr>
<tr>
<td>- Total</td>
<td>8.6</td>
<td>11.5</td>
<td>2.56</td>
<td>1.49</td>
<td>1.17</td>
<td>1.49</td>
</tr>
<tr>
<td>Energy loss / turn [GeV]</td>
<td>0.12(1)</td>
<td>3.34</td>
<td>0.03</td>
<td>0.33</td>
<td>1.67</td>
<td>7.55</td>
</tr>
<tr>
<td>SR power / beam [MW]</td>
<td>0.3(1)</td>
<td>11</td>
<td></td>
<td></td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Total RF voltage [GV]</td>
<td>0.24</td>
<td>3.5</td>
<td>2.5</td>
<td>4</td>
<td>5.5</td>
<td>11</td>
</tr>
<tr>
<td>RF frequency [MHz]</td>
<td>352</td>
<td>800</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Longitudinal damping time τ_{π} [turns]</td>
<td>371</td>
<td>31</td>
<td>1320</td>
<td>243</td>
<td>72</td>
<td>23</td>
</tr>
<tr>
<td>Energy acceptance RF [%]</td>
<td>1.7</td>
<td>0.8</td>
<td>2.7</td>
<td>7.2</td>
<td>11.2</td>
<td>7.1</td>
</tr>
<tr>
<td>Synchrotron tune Q_s</td>
<td>0.065</td>
<td>0.083</td>
<td>0.65</td>
<td>0.21</td>
<td>0.096</td>
<td>0.10</td>
</tr>
<tr>
<td>Polarization time τ_p [min]</td>
<td>252</td>
<td>4</td>
<td>11200</td>
<td>672</td>
<td>89</td>
<td>13</td>
</tr>
<tr>
<td>Hourglass factor H</td>
<td>1</td>
<td>1</td>
<td>0.64</td>
<td>0.77</td>
<td>0.83</td>
<td>0.78</td>
</tr>
<tr>
<td>Luminosity/IP [10^{34} cm$^{-2}$s$^{-1}$]</td>
<td>0.002</td>
<td>0.012</td>
<td>28.0</td>
<td>12.0</td>
<td>6.0</td>
<td>1.8</td>
</tr>
<tr>
<td>Beam-beam parameter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Horizontal</td>
<td>0.044</td>
<td>0.040</td>
<td>0.031</td>
<td>0.060</td>
<td>0.093</td>
<td>0.092</td>
</tr>
<tr>
<td>- Vertical</td>
<td>0.044</td>
<td>0.060</td>
<td>0.030</td>
<td>0.059</td>
<td>0.093</td>
<td>0.092</td>
</tr>
<tr>
<td>Luminosity lifetime [min]$^{(2)}$</td>
<td>1250</td>
<td>310</td>
<td>213</td>
<td>52</td>
<td>21</td>
<td>15</td>
</tr>
<tr>
<td>Beamstrahlung critical</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>

(1) Does not take into account the contribution of damping and emittance wigglers.
(2) The luminosity lifetime corresponds to 4 IPs.
4. Scope of the FCC-ee Flavour Physics working

- Understand the experimental precision with which rare decays of c- and b-hadrons and CP violation in the heavy-quark sector could be measured with $10^{12} Z$, as well as the potential sensitivity to new physics, and compare to the ultimate potential of the (soon to be) running LHCb upgrade and Belle II experiments. Examine the relevance of a dedicated PID ($\pi/K/p$ separation) detector,

- The very same objective stands for the rare lepton decays.

- Examine the physics reach of lepton flavour violating processes and neutrino-related Physics unique to the FCC-ee.

- Have a platform to think of beyond standard observables.

- “What would like to do/see with/in $10^{12} / 10^{13} Z$?” makes a nice playground to start with.