Form Factors For $B_s \to K \ell \nu$ Decays From Lattice HQET

A LPHA **Collaboration**

F. Bahr^a, D. Banerjee^a, F. Bernardoni^{a,b}, A. Joseph^c, M. Koren^a, H. Simma^a, R. Sommer^a

^aNIC, DESY-Zeuthen (Germany), ^bMedizinische Fakultät, TU Dresden (Germany), ^cDAMTP, U. Cambridge (UK)

Computer time at supercomputing centers JUQUEEN (Jülich), SuperMUC (München), PAX (DESY-Zeuthen) gratefully acknowledged, as are earlier contributions of A. Ramos, and useful discussions with M. Della Morte, P. Korcyl and S. Collins.

Weak decays of heavy mesons are a very important piece in understanding how well the Standard Model describes Nature. Lattice QCD allows non-perturbative computation of low-energy hadronic matrix elements contributing to these processes.

- ► Significance of precision tests in the beauty sector often limited by the uncertainties on the theory side \Rightarrow lattice computations with an overall accuracy of a few % are desired.
- ► The CKM matrix encodes the couplings of flavour-changing weak interactions. Here we concentrate on the matrix element $V_{\rm ub}$ via the decay $B_{\rm s} \to K \ell \nu$.

$V_{\rm ub}$ puzzle

- ► Processes with $b \to u$ transitions, $\Gamma \propto |V_{\rm ub}|^2$:
 - 1. Inclusive semi-leptonic $B \to X_u \ell \nu$ involves optical theorem, heavy quark expansion and perturbation theory.
 - 2. Exclusive semi-leptonic $B \to \pi \ell \nu$ and $B_s \to K \ell \nu$ involves hadronic form factor $f_+(q^2)$.
 - 3. Exclusive leptonic $B \to \tau \nu$ involves hadronic decay constant f_B .

Correlation Functions, Matrix Elements and Form Factors ► At leading order in the weak interactions, the transition amplitude for $B_s \rightarrow K \ell \nu$ is: $\langle \mathbf{K}(p_{\mathbf{K}})|V^{\mu}(0)|\mathbf{B}_{\mathbf{s}}(p_{\mathbf{B}_{\mathbf{s}}})\rangle = \left(p_{\mathbf{B}_{\mathbf{s}}} + p_{\mathbf{K}} - \frac{m_{\mathbf{B}_{\mathbf{s}}}^2 - m_{\mathbf{K}}^2}{q^2}q\right)^{\mu} \cdot f_{+}(q^2) + \frac{m_{\mathbf{B}_{\mathbf{s}}}^2 - m_{\mathbf{K}}^2}{q^2}q^{\mu} \cdot f_{0}(q^2) = \sqrt{2m_{\mathbf{B}_{\mathbf{s}}}} \left[v^{\mu} \cdot h_{\parallel}(p_{\mathbf{K}} \cdot v) + p_{\perp}^{\mu} \cdot h_{\perp}(p_{\mathbf{K}} \cdot v)\right].$ ▶ In the rest-frame of the B_s-meson, the form factors $h_{\parallel,\perp}$ are obtained from the (QCD) matrix elements and are related to the corresponding renormalized HQET parameters as: $(2m_{\rm B_s})^{-1/2} \langle {\rm K}(p_{\rm K}) | V^0(0) | {\rm B_s} \rangle = h_{\parallel}(E_{\rm K}) = C_{\rm V_0}(M_{\rm b}/\Lambda_{\overline{\rm MS}}) h_{\parallel}^{\rm stat, RGI}(E_{\rm K}) \cdot [1 + {\rm O}(1/m_{\rm b})],$ $(2m_{\rm B_s})^{-1/2} \langle {\rm K}(p_{\rm K}) | V^k(0) | {\rm B_s} \rangle = p_{\rm K}^k h_{\perp}(E_{\rm K}) = p_{\rm K}^k C_{\rm V_k}(M_{\rm b}/\Lambda_{\overline{\rm MS}}) h_{\perp}^{\rm stat, RGI}(E_{\rm K}) \cdot [1 + {\rm O}(1/m_{\rm b})].$ The conversion factors C_x connect the matrix elements between HQET and QCD. ▶ On the lattice, the 2-point as well as the 3-point correlators needed to extract $h_{\parallel,\perp}^{\text{stat,bare}}$: $\mathcal{C}^{\mathrm{K}}(t_{\mathrm{K}}) \sim (\kappa^{(0)})^{2} \mathrm{e}^{-E_{\mathrm{K}}^{(0)}t_{\mathrm{K}}}, \quad \mathcal{C}_{ij}^{\mathrm{B}_{\mathrm{s}}}(t_{\mathrm{B}_{\mathrm{s}}}) \sim \sum_{n=0}^{N_{\mathrm{B}_{\mathrm{s}}}} \beta_{i}^{(n)} \beta_{j}^{(n)} \mathrm{e}^{-E_{\mathrm{B}_{\mathrm{s}}}^{(n)}} t_{\mathrm{B}_{\mathrm{s}}},$

- ► Taking error bars at face value, there is a $\sim 3\sigma$ tension between the inclusive and exclusive determinations of $V_{\rm ub}$. However, the uncertainties on both sides are largely systematic.
- ▶ Both exclusive decays use lattice input for the hadronic elements.
- \Rightarrow Precise and reliable lattice calculations with good control of systematics required to resolve the issue whether this tension really hints at New Physics in the B-sector.

Challenge of B-physics on the lattice

Multiple physical scales to be covered:
$$\Lambda_{\rm IR} = L^{-1} \ll m_{\pi}, \ldots, m_{\rm D}, m_{\rm B} \ll a^{-1} = \Lambda_{\rm UV}$$

- $\blacktriangleright L \gtrsim 4/m_{\pi} \approx 6 \,\mathrm{fm}$ to suppress finite-size effects for physical light quarks.
- \blacktriangleright At the same time, a small enough to tame discretization errors in the heavy sector.
- ▶ Propagation of the charm quark, $a \leq 1/(2m_{\rm D}) \approx 0.05 \,\mathrm{fm}$, still resolvable, but the b-quark scale $(m_{\rm b}/m_{\rm c} \sim 4)$ has to be separated from the others in a theoretically sound way before simulating the theory – here:

Heavy Quark Effective Theory formulation for the b-quark in heavy-light systems.

► Use fully non-perturbative renormalization and matching.

Non-perturbative HQET

$$\mathcal{C}_{\mu,i}^{\mathrm{B_s} \to \mathrm{K}}(t_{\mathrm{K}}, t_{\mathrm{B_s}}) \sim \sum_{n=0}^{N_{\mathrm{B_s}}} \kappa^{(0)} \varphi_{\mu}^{(0,n)} \beta_i^{(n)} e^{-E_{\mathrm{K}}^{(0)} t_{\mathrm{K}}} e^{-E_{\mathrm{B_s}}^{(n)} t_{\mathrm{B_s}}},$$

for t_K large enough to obtain ground-state dominance in the Kaon sector. The desired form factors are given by the ground-state matrix elements $h_{\parallel}^{\text{stat,bare}} = \varphi_0^{(0,0)} \sqrt{2E_{\text{K}}}$ and $h_{\perp}^{\text{stat,bare}} = \varphi_k^{(0,0)} \sqrt{2E_{\text{K}}} / p_{\text{K}}^k$.

(2)

Results

Effective mass plateaus for \mathcal{C}^{K} and $\mathcal{C}^{\mathrm{B}_{\mathrm{s}}}$

In the figures below, we show the results for $E_{\rm K}$, $E_{\rm B_s}$ as a function of the source-sink separations of the 2-point functions. The results are for the finest lattice spacing.

Form factor extraction via combined fits

▶ Using the parameters of the 2-point functions as input, we perform combined fits to the \mathcal{C}^{K} , \mathcal{C}^{B_s} and $\mathcal{C}_{\mu}^{B_s \to K}$, eq. (2). We need $N_{B_s} = 2$ excited states to obtain a good description of the data and safely extract the form factors $\varphi_{0,k}^{(0,0)}$

► We fit $C_{\mu}^{B_s \to K}$ in rectangles of $t_{\min}^{K3} \le t_K \le t_{\max,\mu}^{K3}$ and $t_{\min}^{B3} \le t_{B_s} \le t_{\max,\mu}^{B3}$. The maximum times are chosen to suppress noise and finite-T effects, and we analyze the stability of the fit parameters with respect to t_{\min}^{B3} and t_{\min}^{K3} . The results are for the the finest lattice spacing.

The x-axis shows different values of t_{\min}^{B3}/a (different groups) and t_{\min}^{K3}/a (within the group).

Continuum Limit

The renormalized form factors $h_{\parallel,\perp}^{\text{stat},\text{RGI}}$ are obtained using eq. (1) at fixed q^2 for different lattice spacings. The continuum limit can be now be taken.

F6 5.3 48 0.0652(6) 310 300 0.13579 0.350N6 5.5 48 0.0483(4) 340 300 0.13631

 $\triangleright N_{\rm f} = 2$ mass-degenerate non-perturbatively O(a)-improved Wilson quarks with $Lm_{\pi} \gtrsim 4$ and plaquette gauge action.

330

 $1000 \ 0.13535 \ 0.034$

Computation of static-light and 3-point correlation functions:

A5 5.2 32 0.0749(8)

- ► Variant of stochastic all-to-all propagator method for light quarks (*full time-dilution*).
- ► At the leading order, the b-quark propagator is a product of gauge links.
- ► Two different HYP-smeared static quark propagators (HYP1 and HYP2) for better statistical precision and control of discretization errors.
- ► Three levels of light-quark smearing to enhance ground-state dominance.
- ► Twisted boundary conditions used to *keep physical momentum transfer fixed*.

Schematic set-up of the calculation of the two-point heavy-light (left) and three-point (right) correlation functions.

Combining the continuum limits for two lattice discretizations (HYP1 and HYP2), we obtain:

 $h_{\parallel}^{\text{stat,RGI}} = 0.976(41) \text{GeV}^{1/2}, \quad h_{\perp}^{\text{stat,RGI}} = 0.876(43) \text{GeV}^{-1/2}.$

0.004

0.005

0.006

Conclusions

- ► Translating to more conventional form factor $f_+(q^2 = 21.22(5) \text{ GeV}^2) = 1.63(8)(6)$, where the second error is the perturbative uncertainty in C_x .
- ▶ There is an additional $\sim 15\%$ uncertainty/ambiguity coming from LO treatment in HQET which will be reduced to 1-2% when we include the O(1/m) terms, yielding a result of direct phenomenological interest.
- ► Within errors, our numbers *confirm previous lattice estimates* of the form factors, despite entirely different source of systematic errors, and the V_{ub} puzzle seems to remain.

References

This poster is based on the work by the authors available in arXiv:1601.04277, accepted in Phys. Lett. B. Current status of HQET can be found in R. Sommer Non-perturbative Heavy Quark Effective Theory: Introduction and Status, Nucl. Part. Phys. Proc. 261-262(2015) 338-367. Details about the configurations used are available in P. Fritzsch et al. The strange quark mass and Lambda parameter of two flavor QCD, Nucl. Phys. B865 (2012) 397-429.