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Weak decays of heavy mesons are a very important piece in understanding how well the Standard
Model describes Nature. Lattice QCD allows non-perturbative computation of low-energy hadronic
matrix elements contributing to these processes.

I Significance of precision tests in the beauty sector often limited by the uncertainties on the theory
side ⇒ lattice computations with an overall accuracy of a few % are desired.

I The CKM matrix encodes the couplings of flavour-changing weak interactions. Here we concentrate
on the matrix element Vub via the decay Bs→ K`ν.

I Processes with b→ u transitions, Γ ∝ |Vub|2:

1. Inclusive semi-leptonic B→ Xu`ν involves optical theorem, heavy quark expansion
and perturbation theory.

2. Exclusive semi-leptonic B→ π`ν and Bs→ K`ν involves hadronic form factor f+(q2).

3. Exclusive leptonic B→ τν involves hadronic decay constant fB.

I Taking error bars at face value, there is a ∼3σ tension between the inclusive and exclusive
determinations of Vub. However, the uncertainties on both sides are largely systematic.

I Both exclusive decays use lattice input for the hadronic elements.

⇒ Precise and reliable lattice calculations with good control of systematics required to resolve
the issue whether this tension really hints at New Physics in the B-sector.

Vub puzzle

Multiple physical scales to be covered: ΛIR = L−1 � mπ , . . . , mD , mB � a−1 = ΛUV.
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I L & 4/mπ ≈ 6 fm to suppress finite-size effects for physical light quarks.

I At the same time, a small enough to tame discretization errors in the heavy sector.

I Propagation of the charm quark, a . 1/(2mD) ≈ 0.05 fm, still resolvable, but the b-quark
scale (mb/mc ∼ 4) has to be separated from the others in a theoretically sound way before
simulating the theory – here:

Heavy Quark Effective Theory formulation for the b-quark in heavy-light systems.

I Use fully non-perturbative renormalization and matching.

Challenge of B-physics on the lattice

Motivation

Lagrangian:

(Continuum) asymptotic expansion of QCD in ΛQCD/mb� 1, truncation errors of O
(
Λ2

QCD/m
2
b

)
:

ψb

{
γµDµ + mb

}
ψb → LHQET(x) = ψh(x)D0ψh(x)

lowest (static) order 1st order correction in 1/mh

−ωkinOkin(x)− ωspinOspin(x)

Okin(x) = ψh(x) D2ψh(x)

Ospin(x) = ψh(x) σ ·Bψh(x)Bare currents, V stat
0,k = ψ̄uγ0,kψh + O(a),

also get multiplicatively renormalized as in QCD.

V
stat,RGI

0 = Zstat
A,RGI(g0)Zstat

V/A(g0)V stat
0 , V

stat,RGI
k = Zstat

A,RGI(g0)V stat
k . (1)

Benefits of our lattice HQET approach to B-physics:

I 1/m–terms appear as local operator insertions in correlation functions
⇒ Renormalizability (at each 1/m–order) & existence of the continuum limit.

I The HQET effective couplings / parameters ωi ∈
{
mbare , Z

HQET
A , c

(1)
A , ωkin, ωspin

}
fixed through

non-perturbative matching , such that no uncancelled power divergences in a−1 (induced by
operator mixing in the effective theory) remain that would spoil taking the continuum limit.

In this particular example, we:

I Obtain the ground state matrix element 〈K|V µ(0)|Bs〉 mediating the transition.

I Renormalize the HQET currents and relate them to QCD.

I Take the continuum limit.

Non-perturbative HQET

CLS ensembles:
id β L/a a [fm] mπ [MeV] Ncfg κs θ/(2π)

A5 5.2 32 0.0749(8) 330 1000 0.13535 0.034
F6 5.3 48 0.0652(6) 310 300 0.13579 0.350
N6 5.5 48 0.0483(4) 340 300 0.13631 0

INf = 2 mass-degenerate non-perturbatively O(a)-improved Wilson quarks with Lmπ & 4 and
plaquette gauge action.

Computation of static-light and 3-point correlation functions:

I Variant of stochastic all-to-all propagator method for light quarks (full time-dilution).

I At the leading order, the b-quark propagator is a product of gauge links.

I Two different HYP-smeared static quark propagators (HYP1 and HYP2) for better statistical
precision and control of discretization errors.

I Three levels of light-quark smearing to enhance ground-state dominance.

I Twisted boundary conditions used to keep physical momentum transfer fixed.
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Schematic set-up of the calculation of the two-point heavy-light (left) and three-point (right) correlation functions.

Lattices & techniques

I At leading order in the weak interactions, the transition amplitude for Bs→ K`ν is:

〈K(pK)|V µ(0)|Bs(pBs)〉 =

(
pBs + pK −

m2
Bs
−m2

K

q2
q

)µ

·f+(q2)+
m2

Bs
−m2

K

q2
qµ·f0(q

2) =
√

2mBs

[
vµ·h‖(pK · v) + pµ⊥ · h⊥(pK · v)

]
.

I In the rest-frame of the Bs-meson, the form factors h‖,⊥ are obtained from the (QCD) matrix elements

and are related to the corresponding renormalized HQET parameters as:

(2mBs
)−1/2〈K(pK)|V 0(0)|Bs〉 = h‖(EK) = CV0

(Mb/ΛMS)h
stat,RGI
‖ (EK) · [1 + O(1/mb)],

(2mBs
)−1/2〈K(pK)|V k(0)|Bs〉 = pkKh⊥(EK) = pkKCVk

(Mb/ΛMS)h
stat,RGI
⊥ (EK) · [1 + O(1/mb)].

The conversion factors Cx connect the matrix elements between HQET and QCD.

I On the lattice, the 2-point as well as the 3-point correlators needed to extract h
stat,bare
‖,⊥ :

CK(tK) ∼ (κ(0))2
e−E

(0)
K tK, CBs

ij (tBs
) ∼

NBs∑
n=0

β
(n)
i β

(n)
j e−E

(n)
Bs
tBs,

CBs→K
µ,i (tK, tBs

) ∼
NBs∑
n=0

κ(0)ϕ
(0,n)
µ β

(n)
i e−E

(0)
K tK e−E

(n)
Bs
tBs,

(2)

for tK large enough to obtain ground-state dominance in the Kaon sector. The desired form factors are

given by the ground-state matrix elements h
stat,bare
‖ = ϕ

(0,0)
0

√
2EK and h

stat,bare
⊥ = ϕ

(0,0)
k

√
2EK/p

k
K.

Correlation Functions, Matrix Elements and Form Factors

In the figures below, we show the results for EK, EBs
as a function of the source-sink separations of

the 2-point functions. The results are for the finest lattice spacing.
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Effective mass plateaus for CK and CBs

I Using the parameters of the 2-point functions as input, we perform combined fits to the CK, CBs

and CBs→K
µ , eq. (2). We need NBs

= 2 excited states to obtain a good description of the data and

safely extract the form factors ϕ
(0,0)
0,k .

I We fit CBs→K
µ in rectangles of tK3

min ≤ tK ≤ tK3
max,µ and tB3

min ≤ tBs
≤ tB3

max,µ. The maximum times

are chosen to suppress noise and finite-T effects, and we analyze the stability of the fit parameters

with respect to tB3
min and tK3

min. The results are for the the finest lattice spacing.
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min/a (different groups) and tK3

min/a (within the group).

Form factor extraction via combined fits

The renormalized form factors h
stat,RGI
‖,⊥ are obtained using eq. (1) at fixed q2 for different lattice

spacings. The continuum limit can be now be taken.
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Combining the continuum limits for two lattice discretizations (HYP1 and HYP2), we obtain:

h
stat,RGI
‖ = 0.976(41)GeV1/2, h

stat,RGI
⊥ = 0.876(43)GeV−1/2.

Continuum Limit

I Translating to more conventional form factor f+(q2 = 21.22(5) GeV2) = 1.63(8)(6), where the
second error is the perturbative uncertainty in Cx.

I There is an additional ∼ 15% uncertainty/ambiguity coming from LO treatment in HQET which
will be reduced to 1 – 2% when we include the O(1/m) terms, yielding a result of direct phenomeno-
logical interest.

I Within errors, our numbers confirm previous lattice estimates of the form factors, despite entirely
different source of systematic errors, and the Vub puzzle seems to remain.

Conclusions

Results
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