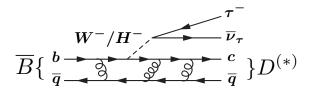
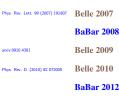
$B \rightarrow D^* \tau \nu$ at LHCb

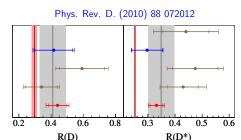
Greg Ciezarek, on behalf of the LHCb collaboration

Beauty 2016, Marseille


May 03, 2016

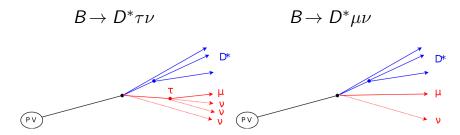
1. Introduction 2/25


$$B \rightarrow D^* \tau \nu$$

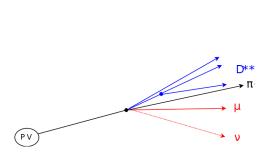


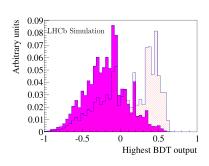
- In the Standard model, the only difference between $B \to D^{(*)} \tau \nu$ and $B \to D^{(*)} \mu \nu$ is the mass of the lepton
 - Theoretically clean: \sim 2% uncertainty for D^* mode
- Ratio R($D^{(*)}$) = $\mathcal{B}(B \to D^{(*)} \tau \nu)$ / $\mathcal{B}(B \to D^{(*)} \mu \nu)$ is sensitive to e.g charged Higgs, leptoquark

1. Introduction 3/25


History

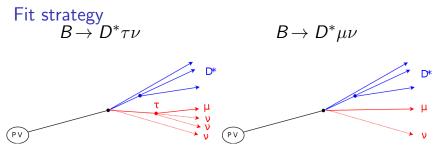
- Before 2015: measurements from B factories in $au o \ell
 u
 u$ channel
- Final measurement from BaBar (Phys. Rev. D. 88 072012) claimed 3 σ excess over SM expectation
 - \bullet More recent measurements from Belle not shown here \to presentation after next
- This talk: recent LHCb measurement of $B \to D^* \tau \nu$ with $\tau \to \mu \nu \nu$ published in Phys. Rev. Lett. 115 (2015) 111803
- B factory measurements based on reconstructing missing mass using opposite side reconstruction
 - This method not possible at LHCb → develop new techniques

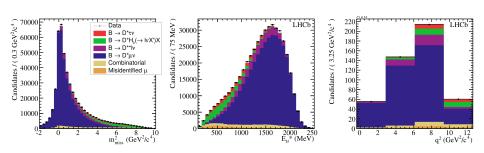

Experimental challenge

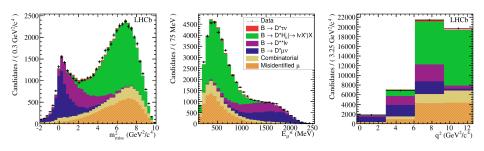


- Difficulty: neutrinos 3 for $(\tau \to \mu \nu \nu) \nu$
 - No narrow peak to fit (in any distribution)
- Main backgrounds: partially reconstructed B decays
 - $B \to D^* \mu \nu$, $B \to D^{**} \mu \nu$, $B \to D^* D(\to \mu X) X ...$
- · Also combinatorial background

1. Introduction 5/25


Isolation MVA

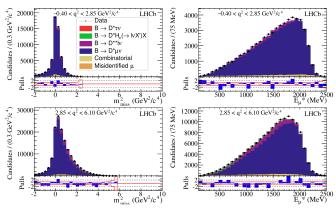

- Reject physics backgrounds with additional charged tracks
- MVA output distribution for (one) background (hatched) and signal (solid)
- \bullet Inverting the cut gives a sample hugely enriched in background \rightarrow control samples


- Can use *B* flight direction to measure transverse component of missing momentum
- No way of measuring longitudinal component \rightarrow use approximation to access rest frame kinematics
 - B boost >> energy release in decay
 - Assume $\gamma \beta_{z,visible} = \gamma \beta_{z,total}$
 - \sim 18% resolution on B momentum, long tail on high side
- Can then calculate rest frame quantities $m_{missing}^2$, E_{μ} , q^2

Fit strategy

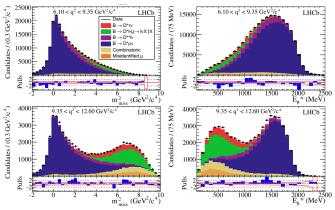
- Three dimesional template fit in E_{μ} (left), $m_{missing}^2$ (middle), and q^2
 - Projections of fit to isolated data shown
- All uncertainties on template shapes incorporated in fit:
 - Continuous variation in e.g different form factor parameters


Background strategy


Three main physics backgrounds:

$$B o D^{**}(o D^*\pi)\mu\nu$$
, $B o D^{**}(o D^*\pi\pi)\mu\nu$, $B o D^*DX$

- Three control samples used to model shapes:
 - Isolation MVA selects a single pion, two pions, or one kaon
 - Each sample fitted using full model
 - Data-driven systematic uncertainties
 - Quality of fit used to justify modelling
- All combinatorial or misidentified backgrounds taken from data
- More details on everything in backups

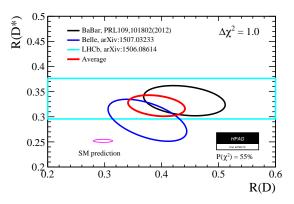


Signal fit

- Fit to isolated data, used to determine ratio of $B \to D^* \tau \nu$ and $B \to D^* \mu \nu$
- Model fits data well

Signal fit

2. Fit


- Fit to isolated data, used to determine ratio of $B \to D^* au
 u$ and $B \to D^* \mu
 u$
- Model fits data well
 - Fit model uncertainties listed on next slide

Systematics / efficiencies

Model uncertainties	Size (×10 ⁻²)		
Simulated sample size	2.0		
Misidentified μ template shape	1.6		
D^* form factors $B \to D^*DX$ shape	0.6 0.5	Multiplicative uncertainties	Size $(\times 10^{-2})$
$\mathcal{B} \to D^*D^*$ snape $\mathcal{B}(B \to D^{**}\tau\nu)/\mathcal{B}(B \to D^{**}\mu\nu)$	0.5	Simulated sample size	0.6
$B \to [D^*\pi\pi]\mu\nu$ shape	0.4	Hardware trigger efficiency	0.6
Corrections to simulation	0.4	Particle identification efficiencies Form-factors	0.3 0.2
Combinatoric background shape D^{**} form factors	0.3 0.3	$\mathcal{B}(au o \mu u u)$	< 0.1
$B \to D^*(D_s \to \tau \nu)X$ fraction	0.3	Total multiplicative uncertainty	0.9
Total model uncertainty	2.8	Total systematic uncertainty	3.0

- Statistical uncertainty on $\mathcal{R}(D^*)$ (fixing all templates to nominal shapes): 2.7% (absolute)
- ullet Largest systematic from simulation statistics o reducible in future
- Next largest systematic from choice of method used to construct fake muon template
- Other systematic from background modelling depend on control samples in data
 - No uncertainties limited by external inputs
- Systematics from ratio of $B \to D^* \mu \nu$ and $B \to D^* \tau \nu$ efficiencies small

Result

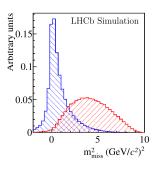
- We measure $\mathcal{R}(D^*) = 0.336 \pm 0.027 \pm 0.030$
 - In good agreement with other measurements
 - \bullet Agreement with SM at 2.1σ level
- HFAG average July 2015: 3.9σ from SM(!)
- Average subsequently updated to include new Belle measurement
 - No spoilers here

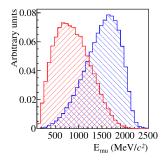
Future

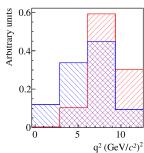
- Expect new measurements soon!
 - Evolution of muonic $\mathcal{R}(D^*)$: simultaneous measurement of R_D
 - Measurement of $\mathcal{R}(D^*)$ using $au o \pi\pi\pi
 u$
- Work underway with other B hadrons: $B_s o D_s^{(*)} au
 u$, $\Lambda_B o \Lambda_c^{(*)} au
 u$

4. Conclusion 14/25

Conclusion

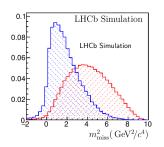

- LHCb measurement of $B \to D^* \tau \nu \ (\tau \to \mu \nu \nu)$ consistent with SM at 2.1σ level
 - First ever measurement of a $b \to \tau$ decay at a hadron collider
 - Phys. Rev. Lett. 115 (2015) 111803
 - Will continue to improve with more data
- World average for $\mathcal{R}(D^{(*)})$ in 3.9σ tension with SM
- LHCb will have much more to say on this in the near future
- And beyond program is expanding

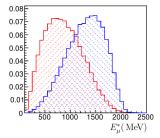

5. Backup 15/25

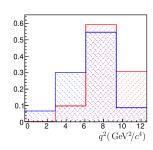

Backups

5. Backup 16/25

$$B \rightarrow D^* \mu \nu$$

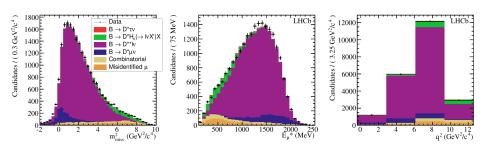




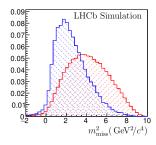

- $B \rightarrow D^* \mu \nu$ (black) vs $B \rightarrow D^* \tau \nu$ (red)
- $B \to D^* \mu \nu$ is both the normalisation mode, and the highest rate background ($\sim 20 \times B \to D^* \tau \nu$)
 - Use CLN parameterisation for form factors
 - \bullet Float form factors parameters in fit \to uncertainty taken into account

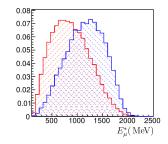
5. Backup 17/25

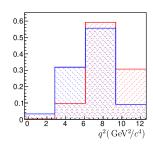
$$B \rightarrow D^{**} \mu^+ \nu$$



- $B \to D^{**} \mu^+ \nu$ refers to any higher charm resonances (or non resonant hadronic modes)
- Not so well measured
 - Set of states comprising D^{**} known to be incomplete
 - Decay models not well measured
- For the established states (shown in black):
 - Separate components for each resonance (D_1, D_2^*, D_1')
 - Use LLSW model (Phys. Rev. D. (1997) 57 307), float slope of Isgur-wise function

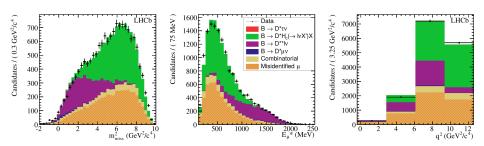

$$B \to D^{**} (\to D^{*+} \pi) \mu \nu$$
 control sample



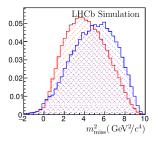

- Isolation MVA selects one track, $M_{D^{*+}\pi}$ around narrow D^{**} peak o select a sample enhanced in $B o D^{**}\mu^+\nu$
 - Use this to constrain, justify $B \to D^{**}\mu^+\nu$ shape for light D^{**} states
 - Also fit above, below narrow D^{**} peak region to check all regions of $M_{D^{*+}\pi}$ are modelled correctly in data

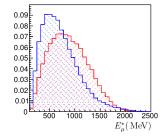
5. Backup 19/25

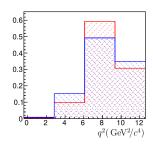
Higher $B \rightarrow D^{**}\mu^+\nu$ states



- Previously unmeasured $B \to D^{**} (\to D^{*+} \pi \pi) \mu \nu$ contributions recently measured by BaBar
 - Too little data to separate individual (non)resonant components
 - Single fit component, empirical treatment
- Constrain based on a control sample in data
 - Degrees of freedom considered: D^{**} mass spectrum, q^2 distribution
 - Effect of D** mass spectrum negligible

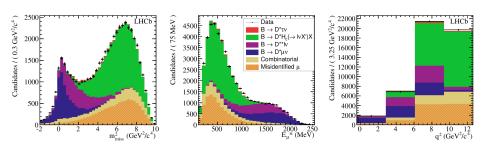

$B o D^{**} (o D^{*+} \pi \pi) \mu \nu$ control sample



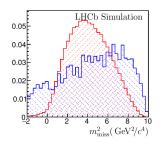

- Also look for two tracks with isolation MVA \to study $B \to D^{**} (\to D^{*+} \pi \pi) \mu \nu$ in data
- Can control shape of this background

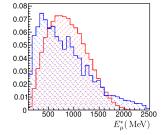
5. Backup 21/25

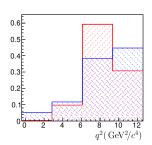
$B \rightarrow D^*DX$



- $B \rightarrow D^*DX$ consists of a very large number of decay modes
 - Physics models for many modes not well established
- Constrain based on a control sample in data
- Single component, empirical treatment
 - Consider variations in M_{DD}
 - Multiply simulated distributions by second order polynomials
 - Parameters determined from data

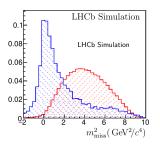


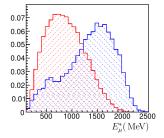

$B \rightarrow D^*DX$ control sample

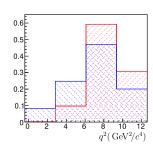


- Isolation MVA selects a track with loose kaon ID \rightarrow select a sample enhanced in $B \rightarrow D^*DX$
- Use this to constrain, justify $B \rightarrow D^*DX$ shape

Combinatorial backgrounds

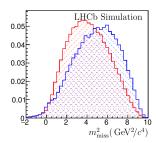


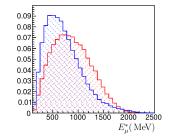


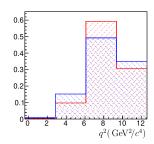


- ullet Combinatorial background modelled using same-sign $D^{*+}\mu^+$ data
- Two sources of combinatorial background are treated separately (shown on next slide)

Combinatorial backgrounds






- Non D^{*+} backgrounds (fake D^*) template modelled using $D^0\pi^-$ data (shown)
 - ullet Yield determined from sideband extrapolation beneath D^{*+} mass peak
- Hadrons misidentified as muons (fake muons)
 - Controlled using $D^{*+}h^{\pm}$ sample
 - Both template and expected yield can be determined
- Both of these are subtracted from $D^{*+}\mu^+$ template to avoid double counting

$D^{*+}\tau X$ backgrounds

- Two small backgrounds containing taus, each $<\sim 10\%$ of the signal yield: $B \to D^{**} \tau^+ \nu$ (shown) and $B \to D^* (D_s \to \tau \nu) X$
 - Both too small to measure
- $B \to D^{**} \tau^+ \nu$ constrained based on measured $B \to D^{**} \mu^+ \nu$ yield, theoretical expectations ($\sim 50\%$ uncertainty)
- $B \to D^*(D_s \to \tau \nu)X$ constrained based on $B \to D^*DX$ yield, and measured branching fractions ($\sim 30\%$ uncertainty)

