

Experience The Beauty of Marseille Political Mess Experience The Beauty of Marseille | Official website for tourism in France

Marseille's and Damilia Marseille is a favourite tourist destination preferred for its warm Mediterranean climate, prehistoric sites, and the allure of the allure of the worldfamous tourist attractions in $\mathsf{Fermilab}$ Theory Summary Estia Eichten

3th International Conference on R-nhysics at Fra The 16th International Conference on B-physics at Frontier Machines Any visitor visiting the church would not miss the 'Good Mother', a **30 ft statue of Virgin Mary holding** BEAUTY 2016

Marseille, France 2-6 May 2016 is regilded periodically after every 25 years. It is a **pilgrimage site** with thousands of pilgrims visiting

as it bears it bears scars scars of the Marseilles' Liberation War of 1944 with visible bullet markings, but h

Outline

- LHC (high \sqrt{s}) and B decays (rare processes)
- Hitoshi Murayama Theory in the LHC era Joachim Brod Higgs
- B Physics
- Kristof De Bruyn Penguins in $\Phi(s,d)$
- Sebastien Descotes-Genon BSM fits (B decays)
- Paolo Gambino Semileptonic Decays (Vxbll)
- Andreas Crivellin B-anomalies (LFUV)
- Jorge Martin Camalich Semileptonic B decays (hadronic uncertainties)
- Charm Physic, Kaons, EMD's, LFV
- Alexey Petrov D mixing and rare decays
- Stefan Schacht Non-leptonic D decays
- Serendipity
- Richard Lebed Hadron Spectroscopy
- **Summary**
- - Jerome Charles CP violation
	- Ruth Van de Water Lattice QCD
	- Enrico Lunghi Rare Decays (Lattice)
	- Mateusz Koren $B_s \rightarrow K e \nu$ (Lattice HQET)
	- Andrew Lytle B_c Decays (Lattice HISQ)

- Andrzej Buras Rare K Decays
- Martin Jung EDM and LFV
- Yasuhiro Okada Belle 2

apéritif

LHC (high √s) and B decays (rare processes)

STATE OF THEORY (< 2012)

EBH (Era Before the Higgs)

Two theoretical arguments for new physics at the LHC and rare decays

1. Unitarity argument set a scale in the TeV region:

- SK New strong dynamics, or
- SUSY particles begin to appear.
- 2. Naturalness:
	- SK New strong dynamics at the TeV scale -> new spectrum of particles
	- SK SUSY -> supersymmetric partners begin to appear

STATE OF THEORY (today)

ABH (Era After the Higgs):

One theoretical argument for new physics at the LHC and rare decays

1. Unitarity argument set a scale in the TeV region:

- Signal New strong dynamics, or
- SUSY particles begin to appear.
- 2. Naturalness:
	- Composite Higgs -> scale of new dynamics raised moderately
	- SK SUSY: X MSSM -> More elaborate models higher gluino masses some

fine tuning

X New ideas bubbling about conformal theories

• The observed Higgs mass combined with the failure (to date) to find SUSY partners suggests that the SUSY scale postponed and there is fine tuning $(\sim 1\%)$ (Murayama's Talk)

- Standard Model completed with the discover of the Higgs
- Except: (1) Neutrino masses, mixing and CP violation -> new degrees of freedom or new interactions, (2) What is dark matter?, (3) How to explain observed baryon asymmetry, and (4) What is dark energy?
- \cdot We know of no nearby new physics scale. Only GUT, Planck, and seesaw $[M(v_R)]$ scales.
- Discoveries of BSM physics at the LHC would guide the search for non SM effects in rare decays and help to distinguish among BSM models.
- But even if no new particles are found at the LHC there is still power to probe high scale physics in rare decays.

le plat principal B physics

10

 $\mathbf{A} \, \mathbf{0}$ $\mathbf{F} = \mathbf{F} \mathbf$

 \overline{a} and the 10 -corresponding to 10

• Experimental results continue to sharpen the picture. Theoretical efforts need to keep pace. Belle II data, and probably corresponds to the middle mental uncertainties are taken from Refs. [17, 18, 21, 22]. white continue to sharpen the picture The fits include the fits include the constraints from the measurements from the measurements from the measurements from the measurements of α $\mathbf{C} = \mathbf{C} \cdot \mathbf{C$ Γ TS NEEQ TO KEEP PACE. Γ 0.14 Γ 0.14 Γ

Belle II projections, even if it makes some comparisons

• Puzzle of inclusive versus exclusive measures of CKM?

Updated A. Kronfeld

- Exclusive |Vcb| determinations:
	- Sensitive to LQCD calculations and experimental extrapolation to zero recoil.
		- Lattice D^* and D results differ. Updates to the D^* results might improve this. Particularly fitting to finite recoil as was recently done in the D case.
		- Different systematics in the baryon decays [Detmold, Lehner, & Meinel]. Agreement
- The extraction of $|V_{ub}|$ from inclusive decays have more theoretical challenges.
	- Has to be extracted in limited phase space range.
		- At and beyond endpoint of b->c decays.
		- Higher order contributions
		- Sensitivity to non perturbative contributions
		- Shape factors need to be determined
- Remaining issues are likely mostly in the extraction of the $|V_{ub}|$ inclusive results.

Paolo Gambino

Global fit toB→Dlν D.Bigi, PG

Estia Eichten Fermilab

NEW preliminary Babar endpoint analysis High sensitivity of the BR on the shape of the signal in the endpoint region. GGOU: $|V_{ub}| = 4.03^{+0.20}_{-0.22} \times 10^{-3}$

solid squares and triangles – X_c with mc constraint fit and $X_c+X_s\gamma$ fit of SF parameters (BLNP and GGOU)

solid and open - translation "kinetic" to "shape-function" with μ = 2.0GeV and μ = 1.5GeV (BLNP), respectively

results based on 0.8-2.6GeV/c momentum range

HFAG 2014 average based on tagged and untagged measurements

Consistent with and more precise than our previous result:

BaBar, Phys.Rev. D73(2006)012006 (p. > 2 GeV/c)

15

y.skovpen, eps-ph 2015

SUMMARY Paolo Gambino

- Improvements of OPE approach to s.l. decays continue. $O(\alpha_s A^2/m_b^2)$ effects implemented. **No sign of inconsistency in this approach so far**, **competitive** *mb* **determination.**
- Exclusive/incl. tension in V_{cb} remains $(3\sigma, 8\%)$ only in the D^{*} channel. The **D channel is becoming competitive and is compatible with both**. The remaining tension calls for new lattice analyses and new data (ongoing Belle analysis, Belle-II)
- Exclusive/incl tension in *Vub* appears receding because of new FNAL/ MILC and HPQCD results and of preliminary Babar results.
- New physics explanations less constrained for V_{ub} than for V_{cb} , but right handed current disfavoured. RH currents don't help.
- Belle-II will improve precision and allow for consistency checks of our methods, especially for inclusive V_{ub} . LHCb potential (for exclusives) greater than expected.

Combining All Approaches

- Lattice QCD provides essential non-perturbative information for the comparison of theory with experiment.
- Ruth Van de Water's talk
	- In the past year new results on $B \rightarrow D$, $B \rightarrow \pi$ form factors and $B_{(d,s)}$ significantly improved precision.

Lattice QCD Theoretical Tools

- ◆ Comparing theory & experiment at $w=1 \rightarrow$ large experimental errors in $|V_{cb}|$ because decay rate suppressed
- First three-flavor form-factor results over full kinematic range [Fermilab/ MILC, PRD92, 034506 (2015); HPQCD, PRD92, 054510 (2015)]
	- \bullet Independent calculations agree
	- **Shapes consistent with experiment**
- **Joint lattice + experiment fit using** w>1 data reduces error on $|V_{cb}|$
- Tensions remain

Combination with

- In addition to Lattice QCD there are a wealth of theoretical tools
	- HQET/SCETII, LCSR, pQCD, OPE

Enrico Lunghi

– Applying these methods to semileptonic B decays — distinct regions of applicability

• Analytic structure in the q^2 plane

• We will return to this shortly.

• Many B decay measurements - Some hints of deviations $\{(3 \pm 1) \sigma\}$ from the standard model:

$$
B_{(d,s)} \to \mu^+ \mu^-
$$
 B \to K^{(*)} \mu^+ \mu^- angular distributions

$$
R_K = \frac{BR(B \to K \mu^+ \mu^-)}{BR(B \to K e^+ e^-)}
$$
 Bs $\to \Phi \mu^+ \mu^-$

$$
R_{D^{(*)}} = \frac{BR(B \to D^{(*)} \tau \nu_{\tau})}{BR(B \to D^{(*)} \ l \nu_l)}
$$

• On the horns of a dilemma - 3σ deviations from the SM

BSM detectives SM magistrats **SUSY Leptoquarks** Extended Higgs Sector Little Higgs Models Z' 331 models

…

HQET/SCET Lattice QCD **OPE** Pert QCD **SCET** Sum Rules

…

Engrenages - Will these clues lead to the unwinding of the Standard Model?

• Clean theoretically:

```
BRR(B_s-\mu\mu)=(3.65+0.23)x10^{-9}BR(B_d->\mu\mu) = (1.06 + 0.09) \times10^{-10}
```
- With new Atlas results some tension with SM in B_s \mathbf{B}
- Await more data.
	- $-$ LHCb with 50 fb $^{-1}$
		- \cdot BR(B_s->µµ) to 5%
		- \cdot BR(B_d->µµ)/BR(B_s->µµ) to 35%

• Mixing and CP violation

 B^0 – $\overline{B}{}^0$ mixing phase ϕ_d

Golden Mode:
$$
B^0 \rightarrow J/\psi K^0_S
$$

\n
$$
\phi_{d,J/\psi K^0}^{\text{eff}} = [42.2 \pm 1.5]^\circ
$$
\n
$$
\phi_d^{\text{SM}} = [48.6 \pm 2.6]^\circ
$$

$$
B_s^0 - \overline{B}_s^0
$$
 mixing phase ϕ_s

Golden Mode: $B_s^0 \rightarrow J/\psi \phi$

$$
\phi_s^{\text{eff}} = -0.034 \pm 0.033 = [-1.9 \pm 1.9]^{\circ}
$$

$$
\phi_s^{\text{SM}} = -0.03761^{+0.00073}_{-0.00082} = [-2.155^{+0.042}_{-0.047}]^{\circ}
$$

[HFAG] & [CKMFitter]

- Need a strategy to systematically improve the theoretical calculations of penguins contributions to ϕ_d and ϕ_s Setting the Stage Framework *^B*⁰ [→] *^J*/ *^K*⁰ ^S *^B*⁰ *s* → *J*/ *B* → *DD* Penguin Shifts K. De Bruyn and R. Fleischer JHEP 1503 (2015) 145
- Strategy to control penguins:

$$
\frac{\mathcal{A}_{CP}^{\text{mix}}(B_{q}^{0} \to f)}{\sqrt{1 - (\mathcal{A}_{CP}^{\text{dir}}(B_{q}^{0} \to f))^{2}}} = \sin \left(\phi_{q}^{\text{eff}}\right) = \sin \left(\phi_{q}^{\text{SM}} + \phi_{q}^{\text{NP}} + \Delta \phi_{q}\right)
$$

 $-\Delta\phi_q$ small so need accurate method to determine them.

- Strategies to get these corrections directly from data using SU(3) flavor symmetry.

 \cdot B_s -> J/ $\psi \phi$

H

Jerome Charles

• Jarlskog invariant

Im
$$
(V_{ij}V_{kl}V_{il}^*V_{kj}^*)
$$
 = $J \sum_{m,n=1}^{3} \varepsilon_{ikm}\varepsilon_{jln}$
 $J = c_{12}c_{23}c_{13}^2s_{12}s_{23}s_{13}\sin\delta$

- Can determine from CP conserving observables. Special feature of the three generation standard model.
- Accuracy of predictions of CP asymmetries in quark sector depends on the possibility to get rid of hadronic $\hskip1cm \longrightarrow$ effects or compute them. m_{\cdot}

Exclusive Semileptonic Decays **EXCIUSIVE JEITHEP**

 R_D and R_{D^*}

$$
R_{D^{(*)}} = \frac{BR(B \to D^{(*)} \tau \nu_{\tau})}{BR(B \to D^{(*)} \ l \ \nu_{l})}
$$

lew Belle arXiv:1603.06711 R(D*)=0.302±0.030(stat)±0.011(syst) within 1.6σ of SM New

> HPQCD [arXiv:1505.03925] R(D)=0.300 (8) LQCD

- Depends on form factor shape. Dependence on CKM and m_b cancels. S_a is an interest.
	- Lattice QCD computes this form factor shape.

HFAG fit:4σ disagreement with SM

 \cdot b -> s transitions b -> s transition

✓3

◆ ✓⇡

$$
\mathcal{H}_{\text{eff}} = \frac{G_F}{\sqrt{2}} \left(\sum_{i=1}^2 (\lambda_u C_i \mathcal{O}_i^u + \lambda_c C_i \mathcal{O}_i^c) - \lambda_t \sum_{i=3}^{10} C_i \mathcal{O}_i \right) , \qquad \lambda_i \equiv V_{is}^* V_{ib} \qquad \lambda_u + \lambda_c + \lambda_t = 0.
$$

$$
\mathcal{O}_{1}^{q} = (\bar{s}_{i}q_{j})_{V-A}(\bar{q}_{j}b_{i})_{V-A} \qquad \qquad \mathcal{O}_{2}^{q} = (\bar{s}_{i}q_{i})_{V-A}(\bar{q}_{j}b_{j})_{V-A} \n\mathcal{O}_{3} = (\bar{s}_{i}b_{i})_{V-A} \sum_{q} (\bar{q}_{j}q_{j})_{V-A} \qquad \qquad \mathcal{O}_{4} = (\bar{s}_{i}b_{j})_{V-A} \sum_{q} (\bar{q}_{j}q_{i})_{V-A} \n\mathcal{O}_{5} = (\bar{s}_{i}b_{i})_{V-A} \sum_{q} (\bar{q}_{j}q_{j})_{V+A} \qquad \qquad \mathcal{O}_{6} = (\bar{s}_{i}b_{j})_{V-A} \sum_{q} (\bar{q}_{j}q_{i})_{V+A} \n\mathcal{O}_{7} = -\frac{em_{b}}{8\pi^{2}} \bar{s}\sigma \cdot F(1+\gamma_{5})b \qquad \qquad \mathcal{O}_{8} = -\frac{g_{s}m_{b}}{8\pi^{2}} \bar{s}\sigma \cdot G(1+\gamma_{5})b \n\mathcal{O}_{9} = \frac{\alpha}{2\pi} (\bar{\ell}\gamma^{\mu}\ell)(\bar{s}\gamma_{\mu}(1-\gamma_{5})b) \qquad \qquad \mathcal{O}_{10} = \frac{\alpha}{2\pi} (\bar{\ell}\gamma^{\mu}\gamma_{5}\ell)(\bar{s}\gamma_{\mu}(1-\gamma_{5})b)
$$

where *^v*(*s*) ⌘ ^p¹ ⁴*m*²

$$
C_{-A}(\bar{q}_j b_i)_{V-A}
$$

\n
$$
C_2^q = (\bar{s}_i q_i)_{V-A} (\bar{q}_j b_j)_{V-A}
$$

\n
$$
C_4 = (\bar{s}_i b_j)_{V-A} \sum_q (\bar{q}_j q_i)_{V-A}
$$

\n
$$
C_5 = (\bar{s}_i b_j)_{V-A} \sum_q (\bar{q}_j q_i)_{V+A}
$$

\n
$$
C_6 = (\bar{s}_i b_j)_{V-A} \sum_q (\bar{q}_j q_i)_{V+A}
$$

\n
$$
\bar{s}_\sigma \cdot F(1+\gamma_5)b
$$

\n
$$
C_8 = -\frac{g_s m_b}{8\pi^2} \bar{s}_\sigma \cdot G(1+\gamma_5)b
$$

\n
$$
C_{10} = \frac{\alpha}{2\pi} (\bar{\ell} \gamma^\mu \gamma_5 \ell)(\bar{s} \gamma_\mu (1-\gamma_5)b)
$$

 $prime (L \leftrightarrow R)$ At high *q*², by which we mean above the narrow charmonium resonances, the numerically most relevant contributions to $\mathbf{v} = \mathbf{v} \cdot \mathbf{v} = \mathbf$ $\overline{\mathsf{prime}}\left(1\right)\right)$ **B** $\frac{1}{2}$ are given by the form $\frac{1}{2}$ and $\frac{1}{2}$ are $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$ are the tree-level four $\frac{1}{2}$ and $\frac{1}{2}$ are the tree-level four $\frac{1}{2}$ and $\frac{1}{2}$ are the tr $\textsf{prime}~(\textsf{L}{\leftrightarrow}\textsf{R})$

$$
\cdot \qquad B_{d} \rightarrow K^{(\star)} \mu + \mu -
$$

$B \to (\pi, K, K^*)\ell\ell$: general considerations

- Amplitudes (L,R): A_0 , $A_{||}$, A_{\perp}
	- **4-body decay**

 $\frac{d^{(4)}\Gamma}{dq^2}$ *d*(cos θ_I)*d*(cos θ_k)*d* ϕ = $\frac{9}{32\pi}$ (*I*₁^s sin² θ_k + *I*₁^c cos² θ_k $+$ (*I*₂^s sin² $\theta_k + I_2^c \cos^2 \theta_k$) cos 2 $\theta_l + I_3 \sin^2 \theta_k \sin^2 \theta_l \cos 2\phi$

- $+$ *I*₄ sin 2 θ_k sin 2 θ_l cos $\phi+$ **I₅** sin 2 θ_k sin θ_l cos $\phi+$ I_6 sin 2 θ_k cos θ_l
- $+$ *I*₇ sin 2 θ_k sin θ_l sin $\phi + l_8$ sin 2 θ_k sin 2 θ_l sin $\phi + l_9$ sin² θ_k sin² θ_l sin 2 ϕ)

Estia Eichten Fermilab Estia Eichten

$$
P_4' = \sqrt{2} \frac{\text{Re}(A_0^L A_{\parallel}^{L*} + A_0^R A_{\parallel}^{R*})}{\sqrt{|A_0|^2(|A_{\perp}|^2 + |A_{\parallel}|^2)}}
$$
\n
$$
P_5' = \sqrt{2} \frac{\text{Re}(A_0^L A_{\perp}^{L*} - A_0^R A_{\perp}^{R*})}{\sqrt{|A_0|^2(|A_{\perp}|^2 + |A_{\parallel}|^2)}}
$$

 $B \to K^*(\to K \pi) \ell \ell$ with rich kinematics and many observables

[Ali, Hiller, Matias, Krüger, Mescia, SDG, Virto, Hofer, Bobeth, van Dyck, Buras, Altmanshoffer, Straub, Bharucha...]

• Possibility to define optimised observables P_i with reduced the factor of the large K^* -recoil limit the 2015 **Parament with the 2016** Lemment with the 2015 Lemment with t_{sc} two observatives can be understood as the \mathcal{L} of the relative angle between the relative angle between the measure and p_{ref} perpendicular) transversity vector and the local one of p_{ref}

- $B_s^0 \rightarrow \phi \mu^+ \mu^-$
	- untagged B
	- angular distributions consistent with SM expectations
	- but differential branching ratio in the low q^2 bins is 3σ below the SM expectations.

Light Cone Sum Rules:

W. Altmannshofer and D. M. Straub

[Eur. Phys. J. C75 (2015) 382, arXiv:1411.3161]

A. Bharucha, D. M. Straub, and R. Zwicky [arXiv:1503.05534]

- \cdot B -> $K^* e^+ e^-$
	- Can reach very low q^2 (0.02 < $|q|$ < 1.0 $(GeV/c^2))$
	- Measure angular observables.
	- No large disagreements with SM expectations

$$
\frac{1}{d\Gamma/dq^2} \frac{d^3\Gamma}{d\cos\theta_l d\cos\theta_K d\Phi} = \frac{9}{32\pi} \left[\frac{3}{4} (1 - F_L) \sin^2 \theta_K + F_L \cos^2 \theta_K \right. \n+ \frac{1}{4} (1 - F_L) \sin^2 \theta_K \cos 2\theta_l - F_L \cos^2 \theta_K \cos 2\theta_l \n+ S_3 \sin^2 \theta_K \sin^2 \theta_l \cos 2\Phi + S_4 \sin 2\theta_K \sin 2\theta_l \cos \Phi \n+ A_5 \sin 2\theta_K \sin \theta_l \cos \Phi + A_6 \sin^2 \theta_K \cos \theta_l \n+ S_7 \sin 2\theta_K \sin \theta_l \sin \Phi + A_8 \sin 2\theta_K \sin 2\theta_l \sin \Phi \n+ A_9 \sin^2 \theta_K \sin^2 \theta_l \sin 2\Phi \right].
$$

line represents the *^B*⁰ ! *^K*⇤0*e*+*e* contribution and the grey area corresponds to the 3*.*8%

Sebastien Descotes-Genon, Lars Hofer, Joaquim Matias, Javier Virto arXiv:1510.04239 • $b \rightarrow s\gamma$ and $b \rightarrow s\ell^+\ell^-$ Flavour-Changing Neutral Currents ● enhanced sensitivity to New Physics effects • analysed in model-independent approach effective Hamiltonian $b \rightarrow s\gamma(^*)$: $\mathcal{H}^\mathsf{SM}_{\Delta\mathsf{F}=1} \propto \sum V^\ast_{\mathsf{t}\mathsf{s}}V_{\mathsf{t}\mathsf{b}}\mathcal{C}_i\mathcal{O}_i + \ldots$ W $\mathcal{O}_7 = \frac{e}{g^2} m_b \, \bar{\mathbf{s}} \sigma^{\mu\nu} (1 + \gamma_5) \mathcal{F}_{\mu\nu} \, \mathbf{b}$ [real or soft photon] $\mathcal{O}_9=\frac{e^2}{g^2} \bar{s}\gamma_\mu$ (1 – $\gamma_5)$ *b* $\bar{\ell}\gamma^\mu\ell$ *[b* \rightarrow *s* $\mu\mu$ *via Z/hard* γ_{\cdots} *]* ${\cal O}_{10}=\frac{e^2}{g^2}{\bar s}\gamma_\mu(1-\gamma_5)b\; \bar\ell\gamma^\mu\gamma_5\ell\quad \ [b\to s\mu\mu$ via *Z*] $\mathcal{C}_7^{\rm SM} = -0.29, \; \mathcal{C}_9^{\rm SM} = 4.1, \; \mathcal{C}_{10}^{\rm SM} = -4.3 \; @ \; \mu_b = m_b$

NP changes short-distance *Cⁱ* for SM or new long-distance ops *Oⁱ*

• Global analysis of b -> s I⁺I⁻ transitions

-
-
- Chirally flipped $(W \to W_R)$ $\mathcal{O}_7 \to \mathcal{O}_{7'} \propto \bar{s} \sigma^{\mu\nu} (1 \gamma_5) F_{\mu\nu} b$ • (Pseudo)scalar $(W \to H^+)$ $\mathcal{O}_9, \mathcal{O}_{10} \to \mathcal{O}_S \propto \bar{s}(1 + \gamma_5) b \bar{\ell} \ell, \mathcal{O}_P$ • Tensor operators $(\gamma \to T)$ $\mathcal{O}_9 \to \mathcal{O}_T \propto \bar{s}\sigma_{\mu\nu}(1 - \gamma_5)b \bar{\ell}\sigma_{\mu\nu}\ell$

Sebastien Descotes-Genon

$b \rightarrow s \mu \mu$: 1D hypotheses

- SM pull: $\chi^2(\mathcal{C}_i = 0) \chi^2_{\text{min}}$ (metrology, how far best fit from SM ?)
- *p*-value: $\chi^2_{\rm min}$ and \mathcal{N}_{dot} (goodness of fit, how good is best fit ?)
- **•** contribution to C_9 always favoured

Some favoured scenarios

- Other groups' fits agree well
- Belle agrees with LHCb
- What is causing the NP contribution to (principally) C9 ?

A few recent analyses

 \Rightarrow Good overall agreement for the results of the three fits

Large power corrections, Nonperturbative QCD effects (charmonium),…

S. Descotes-Genon (LPT-Orsay) BSM (?) fits for $b \to s \ell \ell$ Beauty 16, 3/5/16 11

Connecting theory to experiment: The helicity amplitudes

 \bullet Helicity amplitudes $\lambda = \pm 1, 0$

$$
H_V(\lambda) = -iN\Big\{\overbrace{\left[C_9 \tilde{V}_{L\lambda} + \frac{m_B^2}{q^2}h_{\lambda}\right]}^{\text{Ceff}} - \frac{\hat{m}_b m_B}{q^2} C_7 \tilde{T}_{L\lambda}\Big\},
$$

$$
H_A(\lambda) = -iNC_{10}\tilde{V}_{L\lambda}, \qquad H_P = iN\frac{2 m_l \hat{m}_b}{q^2} C_{10} \Big(\tilde{S}_L + \frac{m_s}{m_b}\tilde{S}_R\Big)
$$

 \bullet Hadronic form factors: **7** independent q^2 -dependent nonperturbative functions

Jorge Martin Camalich

$b \rightarrow s \ell \ell$

- Many observables, more or less sensitive to hadronic unc.
- Confirmation of LHCb results for $B \to K^* \mu\mu$, supporting $\mathcal{C}_9^\mathsf{NP} < 0$ with large significance and room for NP in other Wilson coeffs
- Several discrepancies in $b \rightarrow s \mu \mu$ require more global viewpoint
- Global fit does not seem to favour hadronic explanations

Sebastien Descotes-Genon

Jorge Martin Camalich

The observable *P*⁰ 5Matias *et al.*'12

$$
P_5'|_\infty = \frac{I_5}{2\sqrt{-I_{2s}I_{2c}}} \simeq \frac{C_{10}\left(C_{9,\perp}+C_{9,\parallel}\right)}{\sqrt{(C_{9,\parallel}^2+C_{10}^2)(C_{9,\perp}^2+C_{10}^2)}}, \hspace{5ex} \left\{ \begin{array}{c} c_{9,\perp}=c_9^{\rm eff}(q^2)+\frac{2\,m_b\,m_B}{q^2}\,C_7^{\rm eff}\\ c_{9,\parallel}=c_9^{\rm eff}(q^2)+\frac{2\,m_b\,m_B}{q^2}\,C_7^{\rm eff} \end{array} \right.
$$

· "Factorizable power corrections" (Λ_{QCD}/m_b): Jäger&JMC, JHEP1305(2013)043

$$
\mathcal{F}^{\text{p.c.}}=\pm a_{\mathsf{F}}\pm b_{\mathsf{F}}\frac{q^2}{m_B^2}
$$

1 Identify soft- with QCD-FFs: E.g. $[T_{-}(q^{2}), S(q^{2})]$ or $[V_{-}(q^{2}), V_{0}(q^{2})]$ (Scheme dependence?) Hofer *et al.*, JHEP1412(2014)125

2 QCD exact relations $\implies a_{T_+} = 0$ and $a_{V_0} = a_S$

^T⁺ ⁼ *^V*⁺ ⁼ ⁰*, ^T* ⁼ *^V* ⁼ ²*^E*

3 PC's estimated dim. analysis: $\Lambda/m_b = 10\%$

$$
P_5' = P_5' \big|_{\infty} \left(1 + \frac{a_{V_{-}} - a_{T_{-}}}{\xi_{\perp}} \frac{m_B}{|\vec{k}|} \frac{m_B^2}{q^2} C_7^{\text{eff}} \frac{C_9_{,+} C_{9,\parallel} - C_{10}^2}{(C_{9,\perp}^2 + C_{10}^2)(C_{9,\perp} + C_{9,\parallel})} + \frac{a_{V_0} - a_{T_0}}{\xi_{\parallel}} 2 C_7^{\text{eff}} \frac{C_{9,\perp} C_{9,\parallel} - C_{10}^2}{(C_{9,\parallel}^2 + C_{10}^2)(C_{9,\perp} + C_{9,\parallel})} + 8 \pi^2 \frac{\tilde{h}_{-}}{\xi_{\perp}} \frac{m_B}{|\vec{k}|} \frac{m_B^2}{q^2} \frac{C_{9,\perp} C_{9,\parallel} - C_{10}^2}{C_{9,\perp} + C_{9,\parallel}} + \dots \right) + \mathcal{O}(\Lambda^2 / m_B^2) \qquad \text{Jäger and JMC, PRD93(2016)no.1,014028}
$$

Predictions for P'_5

Better understanding of had. uncert. desirable!

- **Scheme dependence?** Hofer et al.
- **USE LCSR?** Bharucha, Straub and Zwicky, arXiv: 1503.05534
- **Charm under control?** Lyon&Zwicky arXiv:1406.0566, Ciuchini *et al.* arXiv:1512.07157

Jorge Martin Camalich

What about the high $q²$ region?

o Theoretical approach based on **OPE+HQET** Lunghi's talk

$$
\lim_{x\to 0}\int d^4x \frac{e^{iq\cdot x}}{q^2} T\{j^{\text{em,had},\mu}(x),\mathcal{H}^{\text{had}}(0)\} = \sum_n C_{3,n} \mathcal{O}_{3,n}(q^2) + 0 + \mathcal{O}(\text{dim} > 4)
$$

Grinstein *et al.* PRD70(2004)114005, Bobeth *et al.* JHEP1007(2010)098, Beylich *et al* EPJC71(2011)1635

- U p to $\mathcal{O}(\Lambda^2/m_b^2) \, \sim 1\%$ "**charm**" described by form factors
	- **O** FFs in LQCD!! Horgan et al. PRL112(2014)212003 However: Duality violations!!

No satisfactory (model-independent) solution (yet?)

$$
R_K = \frac{BR(B \to K \mu^+ \mu^-)}{BR(B^+ \to K^+ \mu^+ \mu^-)} = 0.745^{+0/090}_{-0.074} \text{ (stat)} \pm 0.036 \text{ (syst)}
$$

\n
$$
R_K = \frac{BR(B^+ \to K^+ \mu^+ \mu^-)}{BR(B^+ \to K^+ e^-)} = 0.745^{+0.090} \text{ (stat)} \pm 0.036 \text{ (syst)}
$$

\n2.6 \sigma from $8M \rightarrow K^+ e^- e^-$

– Z '

BSM Explanations

- We have considered the flavor anomalies in b -> s µ+µ- , B -> $D^{(\star)}$ τ v and h-> τ µ
- Possible New Physics to explain these anomalies
	- U. Haisch et al. arXiv:1308.1959; W. Altmannshofer et al. arXiv:1403.1269; A. Crivellin et al. arXiv:1501.00993; …
	- Extended Higgs Sector
		- J. Heeck et al. arXiv:1412.3671;
		- A. Greljo et al. arXiv:1502.07784;
		- A. Crivellin et al. arXiv:1501.00993; …
	- Leptoquarks
- M. Bauer, M. Neubert arXiv:1511.01900;
- L. Calibbi, A. Cruvellin, T. Ota arXiv:1506.02661
- More complete models:
	- 2HDM with gauged $L\tau$ -Lµ
	- 2HDM-X: one higgs couples to quarks, one to leptons Crivellin, J. Heck, P. Stoffer arXiv:1507.07567

Andreas Crivellin

- $\texttt{-}$ b -> s µ+µ- ⊕ R(D $^{(\star)}$) \Rightarrow Leptoquarks \Rightarrow B_s -> µµ, b -> s $\tau\tau$
- $a_\mu \oplus R(D^{(\star)}) \Rightarrow$ 2HDM-X \Rightarrow t -> Hc, B_s->µµ, τ -> µvv
- $-$ b -> s u+u- \oplus h -> $\tau \uplus \tau \Rightarrow \tau \Rightarrow$ uuu

plats d'accompagnement Charm physics, kaons, EDM's, LFV

Charm Physics

Alexey Petrov

★ Constraints on particular NP models available E.Golowich, J. Hewett, S. Pakvasa and A.A.P.

272711-222712-2227
|-
|-

Phys. Rev. D76:095009, 2007

key Petrov

 \triangleright These decays also proceed at one loop in the SM; GIM is very effective - SM rates are expected to be small

• Rare leptonic/semileptonic decays of charm Rare leptonic/semileptonic decays of charm

- * Rare decays $D \rightarrow e^+e^-/\mu^+\mu^-$ are mediated by c \rightarrow u ll, but helicity suppressed: Br ~ m²l.
- ★ Rare decays $D \to M$ ete⁻/µ⁺µ⁻ just like $D \to e^+e^-/\mu^+\mu^-$ are mediated by c \to u ll

$$
\mathcal{L} \, \text{SP}_{\text{eff}} = \frac{G_F}{\sqrt{2}} V_{cb}^* V_{ub} \sum_{i=7,9,10} C_i Q_i,
$$

$$
Q_9 = \frac{e^2}{16\pi^2}\bar{u}_L\gamma_\mu c_L\bar{\ell}\gamma^\mu\ell, \quad Q_{10} = \frac{e^2}{16\pi^2}\bar{u}_L\gamma_\mu c_L\bar{\ell}\gamma^\mu\gamma_5\ell,
$$

- SM contribution is dominated by LD effects
- could be used to study NP effects

★ Example: R-parity-violating SUSY

- operators with the same parameters contribute to D-mixing
- feed results into rare decays

Burdman, Golowich, Hewett, Pakvasa; Fajfer, Prelovsek, Singer

• Studies of D*(B*) -> e+

Alexey Petrov

 \triangleright Is it at all possible and feasible experimentally???

$$
\mathcal{B}_{D^* \to e^+ e^-}^{SD} = \frac{\Gamma(D^* \to e^+ e^-)}{\Gamma_0} \approx 2.0 \times 10^{-19}
$$

★ D* has a small width defined by strong and radiative decays

$$
\Gamma_0 = \Gamma(D^{*0} \to D^0 \pi^0) + \Gamma(D^{*0} \to D^0 \gamma)
$$
\n
$$
\simeq \frac{\Gamma_+ \mathcal{B}_{D^{*+} \to D^0 \pi^+}}{2} \left(\frac{\lambda(m_{D^{*0}}^2, m_{D^0}^2, m_{\pi^0}^2)}{\lambda(m_{D^{*+}}^2, m_{D^0}^2, m_{\pi^+}^2)} \right)^{3/2} \left(1 + \frac{\mathcal{B}_{D^{*0} \to D^0 \gamma}}{\mathcal{B}_{D^{*0} \to D^0 \pi^0}} \right) \simeq 60 \text{ keV}
$$

e- in resonance production

★ … with contributions from higher excitations being highly suppressed

$$
\left| \frac{f_{D^{0*'}} g_{D^{*'}0 D^0 \pi^0} m_{D^{*0'}} }{f_{D^{0*}} g_{D^{*0} D^0 \pi^0} m_{D^{*0}}} \right| \times \left| \frac{i \Gamma_0}{2 \Delta - i \Gamma_{D^{*'}}} \right| \sim 5.0 \cdot 10^{-5}
$$

★ ... thus running for a "Snowmass year" (~10⁷ s) with $L \approx 1.0 \times 10^{32}$ cm⁻²s⁻¹

$$
\mathcal{B}_{D^* \rightarrow e^+ e^-} \geq \left(\frac{1}{\epsilon \int L dt}\right) \times \frac{m_{D^*}^2}{12 \pi \; \mathcal{B}_{D^* \rightarrow D \pi}}.\quad \quad \text{probes} \qquad \mathcal{B}_{D^* \rightarrow e^+ e^-} > 4 \times 10^{-13}
$$

★ SM LD contributions are of the same order of magnitude or less compared to SD!!! ★ Great probe of NP contributions, wider reach than D -> ll with NO helicity suppression • Non Leptonic D decays

Stefan Schacht

- 4 Topological amplitudes in $SU(3)_F$ limit
- 14 new topological amplitudes in general
- can use $1/N_c$ arguments to order contributions
- Summary
- Global fit of $D \to PP'$ branching ratios to topological amplitudes: \Rightarrow multiple degenerate best-fit solutions.
- Likelihood ratio test of e.g. size of $SU(3)_F$ and $P_{\text{break}} \neq 0$ (GIM).
- Branching ratio predictions:
	- $\mathcal{B}(D_s^+ \to K_L K^+) = 0.012^{+0.007}_{-0.002}$ at 3σ $B(D^0 \rightarrow K_L \pi^0)$ < $B(D^0 \rightarrow K_S \pi^0)$ at 4σ
- CP asymmetries involve topological amplitudes not constrained by the fit. These can be eliminated by forming judicious combinations of several CP asymmetries \rightarrow sum rules.
- \bullet Sum rules test $SU(3)_F$ in penguin amplitudes and/or new physics.
- $D^0 \rightarrow K_S K_S$: $R =$ $\sqrt{ }$ $a_{CP}^{\text{dir 2}} + \left(\phi - \phi_{\text{mix}} + \text{Im} \frac{\lambda_b}{\lambda_{sd}}\right)^2 \le 1.1\%$ @95% CL.
- Violation of bound: New physics or enhancement of the penguin annihilation amplitude by QCD dynamics.
	- Would be visible also in other decays.

• LHCb: $\gamma = 70.9 \frac{+7.1}{-8.5}$

Correlations between $K^+ \to \pi^+ \nu \overline{\nu}$ and $K^+ \to \pi^0 \nu \overline{\nu}$ and the sign of $(\Delta M_K)^{NP}$ can distinguish between $(\epsilon'/\epsilon)_{NP}$ **from QCD Penguins and Electroweak Penguins.**

Z, Z´ tree-level exchanges, LHT model, 331 models and MSSM provide solutions to ϵ' / ϵ - anomaly and ϵ_K - $\Delta M_{s,d}$ tensions with different implications for $K^+ \to \pi^+ \nu \bar{\nu}$, $K^-\to \pi^0 \nu \bar{\nu}$, $B^-\to \mu^+ \mu^$ and $B \rightarrow K(K^*)I^+I^-$.

• EDMs \cdot $FNAc$ A single measurement does not restrict *d^e* directly A single measurement does not restrict *d^e* directly

Conclusions

$$
\omega = 2\pi \left(\frac{W^M_d}{2} d_e + \frac{W^M_c}{2} \mathcal{C}_S \right) \, .
$$

Model-independent extraction of *d^e* and *C^S* In principle: two unknowns, three measurements (Tl,YbF,ThO) \blacktriangleright Extract d_e , C_S model-independently [Dzuba et al.'11,MJ'13]

2016 **Problem:** Aligned constraints Mercury bound \sim orthogonal! Assumption: C_S , d_e saturate d_{Hg} Conservative!

$$
\begin{array}{l} d_e \leq 2.7 \times 10^{-28} e\mathrm{~cm}\\ C_S \leq 1.5 \times 10^{-8} \end{array}
$$

Further atomic measurements: Not competitive yet predicted from this fit!

Future measurements aim at precision beyond present constraints! Help to resolve the alignment problem

Requires precision measurements of low-Z and high-Z elements

Martin Jung

• Lepton Flavor Violation

Why is this relevant for LFV? \Rightarrow NP typically *not* in mass basis

Rotation to mass basis induces LFV [Glashow+, Bhattacharya+'14,...] ◆ Additional motivation to look for LFV *B* decays!

However. . .

- *•* "typically" does not mean "necessarily" diagnonal mass matrix possible
- **Examples:** [Altmannshofer+'14, Celis+'15 \Rightarrow]

Conclusions

Martin Jung

Conclusions *•* EDMs and LFV observables unique tests of NP models • Model-independent constraints on NP parameters difficult \rightarrow Need (at least) as many experiments as (eff.) parameters • Differentiation between (classes of) NP models possible! **u** model-dependent combination with $g = 2, m_{\nu}, \ldots$ *•* Quantitative results require close look at theory uncertainties ◆ Use conservative limits, allowing for cancellations \blacktriangleright For *e.g.* d_n , d_{Hg} bottleneck!

• Robust, model-independent limit on electron EDM (*C^S* not model-independently negligible):

 $|d_e| \leq 2.7 \times 10^{-28}$ e cm (95% CL, Hg)

- *•* Violation of LFU motivation for search of LFV in *B* decays. . . \bullet . but not guaranteed!
- *•* Plethora of new results to come
	- \rightarrow Might turn limits into determinations!

dessert Serendipity

Serendipity

 \sqrt{N}

- Tau Physics from ISR at B factories:
	- Belle 2 will be not only a superb facility for studying B physics y Wasuhiro Okada Belle II in part in the Internet II in the II

Current 2-3σ deviations will be clarified: new physics effect or just statistical fluctuations?! Example of B->D(*)τν Example of CPV in B->K*γ *Currently the deviation is ~3σ... Currently SM (#) consistent...* K. Hara and S. Mishima for B2TiP LAL NP-workshop
 \overline{A} . Ishikawa for B2TiP LAL NP-workshop **Belle 2006** $\sum_{0.45}^{8}$ 0.6 **HFAG 2015** Belle II, 5ab Belle, PRD92,072014(2015) + arXiv:1603.06711 Belle II, 50ab LHCb, PRL115,111803(2015) 0.4 HFAG Average (Winter 2016) \cdots Belle II, 5 ab⁻¹ **SM Prediction** Belle II, 50 ab 0.4 0.2 *SM* $0.35 0.3$ -0.2 *SM* 0.25 -0.4 $0.3\frac{1}{2}$ S vs A in $B \rightarrow K^{*0} \gamma$ 0.3 0.4 δ 5 0.6 -0.6 $R(D)$ *~3σ deviation?* $0.6 -0.4 -0.2 = 0$ $0.2 \quad 0.4$ 0.6 *Belle II prospect Belle II prospect* S *SM consistent? (with the current Belle central value) (with the current Belle central value) ~14(6)σ deviation with 50(5)ab-1 of data! ~16(6)σ deviation with 50(5)ab-1 of data! (SM uncertainty to be included) (#) SM prediction of CPV in B->K*γ is still under discussion in B2TiP...* 17

Serendipity

• Also can study LFV decays in taus.

Yasuhiro Okada

LFV in SUSY seesaw model

T. Goto, Y. Okada, T.Sindou, M.Tanaka and R.Wataanabe, 2015

M_{\odot} in Ω into account of \sim 111.000 including the Higgs boson μ -ey vs. τ -> $\mu\gamma$

LFV in the little Higgs model with T-parity

T. Goto, Y.Okada and Y.Yamamoto ²⁰¹¹ T-odd ferimions can induce large FCNC and LFV.

Branching ratios of t-> μ γ and τ -3 μ can be similar.

 $Z(\mu$ -direction)-Asymmetry with

Asymmetries with respect to the tau polarization can give information of the LFV Interaction.

- Angular correlation at Belle ll
- Tau from W decays at LHC
- Insights into QCD dynamics:
	- New hadronic states involving heavy quarks.
		- $X(3872)$
		- Many have followed: Y(4260), …
		- $Z^+_{(b,c)}$ I=1 $J^{PC} = 1^{++}$
			- Two states observed in the charmonium (bottomonium) system just above the DD* (BB*) and D*D* (B*B*) thresholds
			- Impossible to interpreted as just a heavy quark antiquark quarkonium state.
	- First discovered in the B decay products. But now found by hadronic production (LHCb, CMS, Atlas) and ete⁻ (BES, Belle).
	- Tetraquarks and Pentaquarks
		- Threshold states
		- At or just above the opening of a conventional two hadron state in a relative S-wave.
		- Much remains to be understood about the dynamics of these states.
		- Both models and Lattice QCD can be employed to disentangle this QCD dynamics.
	- Spectroscopy explored here by Lebed and new experimental findings presented.

Neutral states in the charmonium region \vert Richard Lebed

What the Charmonium System Really Looks Like the Charmonium System Really Looks Like the Charmonium System Real
The Charmonium System Really Looks Like the Charmonium System Really Looks Like the Charmonium System Really L

- Below threshold the spectrum and decays are very well described by the conventional charmonium NRQCD.
- Above threshold additional states are observed.

Richard Lebed

The exotics scorecard: May 2016

- 29 observed exotics
	- 24 in the charmonium sector
	- 4 in the (much less explored) bottomonium sector
	- -1 with a single b quark (and an s, a u, and a d)
- 12 confirmed (& at most 1 of the other 17 disproved)

How are tetraquarks assembled?

Image from Godfrey & Olsen, Ann. Rev. Nucl. Part. Sci. **58** (2008) 51

- Lebed argues for a major role for the diquark-antidiquark dynamics
- Others argue for different pictures
- The physical states are likely to be a cocktail of these simple pictures.
- In the end this question is QCD dynamics and will need Lattice QCD calculations to disentangle the states.

The Present and the Future

Richard Lebed

- The past two years have provided confirmation of the existence of the tetraquark and observation of the pentaquark, the third and fourth classes of hadron
- Almost 30 such states (X, Y, Z, P_c) have thus far been observed
- All of the popular physical pictures for describing their structure seem to suffer some difficulty
- We propose an entirely new dynamical picture based on a diquark-antidiquark (or triquark) pair rapidly separating until forced to hadronize due to confinement
- Exotics is a **data-driven** field. Many more exotics remain to be discovered, especially in the beauty sector
- Four quark states with heavier light quarks should also be observed.
	- (cscs) X(4140) and others?
- CMS at √s = 8 TeV observes double ϒ production in the μ + μ - μ + μ - final state:
	- σ (pp -> ϒ ϒ) = 68.8 ± 12.7 (stat) ± 7.4 (syst) pb for $|y| < 2.0$ and p_T ^{Y} < 50 GeV
	- Possible to search for heavy quark hadrons (cccc), (cbcb), (bbbb)

Thomas Britton: APS April meeting

Two dimensional scatter plot of selected events. Significant excess of events around \sim 9.5 GeV.

Quarkonium Production at CMS (J16.00004) Presented at APS April Meeting 2016 on April 17, 2016 Session J16: Top Quark / Hadronic Physics

Speaker: Maksat Haytmyradov

Flag this Page

More distant future

- B_c a rich excitation spectrum of states.
	- Atlas observed: $Bc(2S) \rightarrow Bc(1S) + \pi \pi$. The first radially excited state.
	- Many states observable at the LHC and a future TevaZ factory.

- \cdot B_c is the only heavy-heavy meson that only has weak decays.
- Many opportunities to study CKM and BSM physics.

TABLE XI: Branching ratios of exclusive B_c^+ decays at the fixed choice of factors: $a_1^c = 1.20$ and $a_2^c = -0.317$ in the non-leptonic decays of c quark, and $a_1^b = 1.14$ and $a_2^b = -0.20$ in the non-leptonic decays of \bar{b} quark. The lifetime of B_c is appropriately normalized by $\tau[B_c] \approx 0.45$ ps.

Andrew Lytle (poster)

First lattice calculations Bc \rightarrow η_c and Bc \rightarrow J/ ψ weak form factors

tonic decays [43], relativistic effects [44], spectroscopy in

- Tremendous progress in the detailed measurements of B decays and other flavor sensitive systems.
- Theoretical expectations have also been tightened. Particularly important Lattice QCD inputs combined with analytic approaches: OPE, HQET, SCET, ...
- In spite of a number of \sim 3 σ deviations from the SM expectations, no smoking gun for BSM physics yet.
- Rich program in flavor physics for many years to come. LHCb, Belle2,…
	- "No Lose" Theorem:
		- If LHC discovers new physics in future running -> focussed searches for the effects in B decays.
		- If no new physics discovered at LHC -> leading probe for detecting BSM effect.
	- Surprises even in QCD.
- All this will require continual improvements in theoretical SM expectations.

" One more thing..." ... I mean, little things bother me. I'm a ... It's just one of those things that gets in my head and keeps rolling around in there like a marble. Peter Falk - as Detective Columbo