

CL violation in mixing at LHCb CL violation in mixing at THCp

J.A. de Vries on behalf of the LHCb collaboration

OUTLINE

- Introduction
- **a**_{sl}^d (2015)
- a_{sl}^{s} (new result)

CPV IN MIXING

• Neutral mesons: mass eigenstates vs flavour eigenstates $|B_{\rm H,L}\rangle = p |B\rangle \pm q |\bar{B}\rangle$

CPV IN MIXING

• CPViolation in mixing: $\mathcal{P}(B_q \to \bar{B}_q) \neq \mathcal{P}(\bar{B}_q \to B_q)$

$$a_{sl}^{q} = \frac{P(\overline{B}_{q} \to B_{q}) - P(B_{q} \to \overline{B}_{q})}{P(\overline{B}_{q} \to B_{q}) + P(B_{q} \to \overline{B}_{q})}$$

$$(q = d, s)$$

$$= \frac{1 - |q/p|^4}{1 + |q/p|^4} \approx \frac{\Delta \Gamma_q}{\Delta m_q} \tan(\phi_q^{12})$$

Lenz, Nierste [JHEP 0706:072 (2007)]

- Semileptonic inclusive final state (flavour specific)
- 2 neutral B mesons:

 $\begin{array}{ll} B^0_d \to D^- \mu^+ \nu_\mu X & a^d_{\rm sl} \\ B^0_s \to D^-_s \mu^+ \nu_\mu X & a^s_{\rm sl} \end{array}$

$$a_{sl}^d = (-4.7 \pm 0.6) \times 10^{-4}$$

 $a_{sl}^s = (2.22 \pm 0.27) \times 10^{-5}$

MEASURING asl

'Raw' untagged asymmetry:

$$A_{\text{raw}} = \frac{N(D^-\mu^+) - N(D^+\mu^-)}{N(D^-\mu^+) + N(D^+\mu^-)} = \frac{a_{\text{sl}}}{2} + \dots$$

Production asymmetry: $A_P = \frac{N(B) - N(\bar{B})}{N(B) + N(\bar{B})}$

Detection asymmetry:

$$A_D = \frac{\epsilon(D^-\mu^+) - \epsilon(D^+\mu^-)}{\epsilon(D^-\mu^+) + \epsilon(D^+\mu^-)}$$

For a_{sl}^d: measure offset and amplitude to disentangle A_P and a_{sl}^d

$$A_{\rm raw}(t) = \frac{N(f,t) - N(\bar{f},t)}{N(f,t) + N(\bar{f},t)} \approx A_D + \frac{a_{\rm sl}^d}{2} + \left(A_P - \frac{a_{\rm sl}^d}{2}\right) \cos(\Delta m_d t)$$

THE STORY SO FAR

LHCb:

$$\mathbf{a_{sl}^d} = (-0.02 \pm 0.19(\text{stat}) \pm 0.30(\text{syst}))\%$$

 $\mathbf{a_{sl}^s} = (-0.06 \pm 0.50(\text{stat}) \pm 0.36(\text{syst}))\%$

LHCb, PRL 114, 041601 (2015) LHCb, PLB 728C (2014) 607

LHCb-PAPER-2016-013

OVERVIEW

- Inclusive $\overline{B}^0_s \to D^+_s \mu^- \overline{\nu}_\mu X$
- Untagged, time-integrated analysis: $A_{\rm raw} \approx A_D + \frac{a_{\rm sl}^s}{2} + \left(A_P - \frac{a_{\rm sl}^s}{2}\right) \int \cos(\Delta m_s t) dt$

$$O(|0^{-4})$$

• Adding backgrounds: $\frac{a_{\rm sl}^s}{2} = \frac{1}{1 - f_{\rm bkg}} (A_{\rm raw} - A_D - f_{\rm bkg} A_{\rm bkg})$

LHCb-PAPER-2016-013

Ds SELECTION

D_SYIELDS

- Select $(D_s^-\mu^+)$, fit D_s^- mass peaks
- Directly produced Ds is removed
- Raw yield contains peaking backgrounds

PEAKING BACKGROUNDS

Peaking backgrounds dilute and bias the measurement

$$\frac{a_{\rm sl}^s}{2} = \frac{1}{1 - f_{\rm bkg}} (A_{\rm raw} - A_D - f_{\rm bkg} A_{\rm bkg})$$

$$\begin{array}{c} B^{+} \to D^{(*)0} D_{s}^{(*)+} X \\ B^{0} \to D^{0} D_{s}^{(*)+} X \\ B^{0} \to D^{-} D_{s}^{(*)+} X \\ B_{s}^{0} \to D_{s}^{(*)-} D_{s}^{(*)+} \\ \hline \Lambda_{b}^{0} \to \Lambda_{c}^{+} D_{s}^{(*)+} X \\ \hline B^{-} \to D_{s}^{+} K^{-} \mu^{-} \nu X \\ \hline B^{0} \to D_{s}^{+} K_{s}^{0} \mu^{-} \nu X \end{array} \right\} \text{ 'double-D'}$$

f_{bkg}: branching ratios (PDG) and efficiency

A_{bkg} mainly from production asymmetries: LHCb, JHEP 09 177 (2014) LHCb, PRL 114, 041601 (2015) LHCb, Chin.Phys.C 40, 1, 011001(2016)

Taken into account: $f_{bkg} = (18.4 \pm 6.0)\%$, $\sum_{i} f^{i}_{bkg} A^{i}_{bkg} = f_{bkg} A_{bkg} = (-0.045 \pm 0.033)\%$

DETECTION ASYMMETRIES

LHCb-PAPER-2016-013

TRACKING ASYMMETRY

Largest systematic in previous analysis Combine 2 methods:

- J/ ψ tag-and-probe
- D* partially reconstructed

+ simulation studies

LHCb-PAPER-2016-013

PID & TRIGGER

RESULTS

Source	Value	Stat. uncert.	Syst. uncert.	(%)
$A_{\rm raw}$	0.11	0.09	0.02	
$A_{\text{track}}(K^+K^-)$	-0.01	0.00	0.03	
$A_{ m track}(\pi^-\mu^+)$	-0.01	0.05	0.04	
A_{PID}	0.01	0.02	0.03	
$A_{\rm trig}({\rm hardware})$	-0.03	0.02	0.02	
$A_{\rm trig}({\rm software})$	0.00	0.01	0.02	
$f_{\rm bkg} A_{\rm bkg}$	-0.05	-	0.03	
$f_{ m bkg}$	_	-	0.06	
Total $a_{\rm sl}^s$	0.45	0.26	0.20	

RESULTS

New result! (preliminary) $a_{\rm sl}^s = (0.45 \pm 0.26({\rm stat}) \pm 0.20({\rm syst}))\%$

LHCb-PAPER-2016-013

CLOSING STATEMENTS

- Measured a_{sl}^s with full Run I dataset (3/fb) $a_{sl}^s = (0.45 \pm 0.26(\text{stat}) \pm 0.20(\text{syst}))\%$
- Most precise value of CPV in mixing in the Bs system
- Result compatible with Standard Model prediction
- Statistics limited!

BACKUP

LHCb, PRL 114 (2015) 041601

asld

22

$$A_{\text{meas}}(t) = \frac{N(f,t) - N(\overline{f},t)}{N(f,t) + N(\overline{f},t)} \approx A_D + \frac{a_{\text{sl}}^d}{2} + \left(A_P - \frac{a_{\text{sl}}^d}{2}\right) \cos(\Delta m_d t)$$

LHCb, PRL 114 (2015) 041601

J.A. de Vries - CPV in mixing at LHCb - BEAUTY 2016

ASLS PEAKING BKG DETAILS

Mode	$\mathcal{B} \ [\%]$	$\mathcal{B}(c \to \mu) \ [\%]$	$\varepsilon_{ m sig}/arepsilon_{ m bkg}$	$f_{\rm bkg}/f_{ m sig}$ [%]	$A_{\rm bkg}$ [%]
$B^+ \to D^{(*)0} D_s^{(*)+} X$	7.9 ± 1.4	6.5 ± 0.1	4.34	5.8 ± 1.1	-0.6 ± 0.6
$B^0 \to D^0 D_s^{(*)+} X$	5.7 ± 1.2	6.5 ± 0.1	4.08	4.4 ± 1.0	-0.18 ± 0.13
$B^0 \to D^- D_s^{(*)+} X$	4.6 ± 1.2	16.1 ± 0.3	6.41	5.6 ± 1.5	-0.18 ± 0.13
$B_s^0 \to D_s^{(*)-} D_s^{(*)+}$	4.5 ± 1.4	8.1 ± 0.4	3.68	1.0 ± 0.3	—
$\Lambda_b^0 \to \Lambda_c^+ D_s^{(*)+} X$	$10.3^{+2.1}_{-1.8}$	4.5 ± 1.7	4.51	3.0 ± 1.4	-0.4 ± 0.9
$B^- \to D_s^+ K^- \mu^- \nu X$	0.061 ± 0.010	_	2.43	1.3 ± 0.2	0.6 ± 0.6
$\overline{B}{}^0 \to D_s^+ K_{\rm S}^0 \mu^- \nu X$	0.061 ± 0.010	—	2.89	1.1 ± 0.2	0.18 ± 0.13