ATLAS SEARCHES FOR NEW HEAVY FLAVOUR STATES

Vladimir Lyubushkin (on behalf of the ATLAS collaboration) May 2, 2016

Beauty 2016, Marseille, France

- 1. Observation of an excited B_c^{\pm} meson state with the ATLAS Detector
 - Phys. Rev. Lett. 113, no. 21, 212004 (2014), arXiv:1407.1032 [hep-ex]
 - 4.9 fb⁻¹ of $\sqrt{s} =$ 7 TeV and 19.2 fb⁻¹ of $\sqrt{s} =$ 8 TeV pp collision data
- 2. Search for the X_b and other hidden-beauty states in the $\pi^+\pi^-\Upsilon(1S)$ channel at ATLAS
 - Phys. Lett. B 740, 199 (2015), arXiv:1410.4409 [hep-ex]
 - 16.2 fb⁻¹ of $\sqrt{s} = 8$ TeV pp collision data

ATLAS DETECTOR AND TRIGGER SYSTEM

ATLAS: general purpose detector:

- Subsystems essential for B-physics: Inner detector and Muon spectrometer,
- Inner detector: tracking, momentum and vertexing, $|\eta| < 2.5$, d_0 resolution $\sim 10 \mu m$,
- Muon spectrometer: trigger and muon identification,
- J/ ψ mass resolution ~ 60 MeV, $\Upsilon(1S)$ ~ 120 MeV,
- ATLAS trigger system: hardware Level-1 trigger and two-level software High-Level Trigger

Trigger selection for heavy flavour studies is mostly based on di-muon signature:

- \cdot muon p_T threshold (4 or 6 GeV)
- · di-muon vertex reconstruction
- invariant mass window

The B_c mass spectrum, taken from Phys. Rev. D 70, 054017 (2004).

- Excited states of B_c^{\pm} are predicted by nonrelativistic potential models, pertubative QCD and lattice calculations,
- mass of B[±]_c(2S) in range 6835–6917 MeV,
- both the 1S and 2S states have pseudoscalar (0⁻) and vector (1⁻) spin states that are predicted to differ in mass by about 20–50 MeV,
- ATLAS not sensitive enough to distinguish 0⁻ and 1⁻ states: missing soft gamma, mass resolution.

$|B_c^{\pm} ightarrow J/\psi(\mu^+\mu^-)\pi^{\pm}$ selection and fit

 $B_c^+(1S)$ selection for 7 TeV (8 TeV) data:

- $p_T(\mu_1) > 4$ GeV and $p_T(\mu_2) > 6$ GeV,
- $\cdot~J/\psi$ vertex fit $\chi^2/{\rm NDF}<15$,
- $m(J/\psi)$ within $\pm 3\sigma$ of the nominal (σ depending on the rapidity range),
- B_c^+ vertex fit $\chi^2/\text{NDF} < 2.0$ (1.5) with dimuon mass constrained to mass J/ψ ,
- p_T(B⁺_c) > 15 GeV (18 GeV),
- pion candidate from $B_c^+ p_T(\pi^+) > 4$ GeV and its impact $d^0/\sigma(d^0)(\pi^+) > 5$ (4.5)

Extended unbinned fit of the mass distribution

- · Signal: Gaussian with per-candidate errors
- Background: exponential
- the stability of B_c^{\pm} yield was checked through its normalization to $B^{\pm} \rightarrow J/\psi K^{\pm}$ that were reconstructed with similar requirements.

Selection of $B_c^{\pm}(2S)$ candidates:

- $B_c^+(1S)$ candidates within $\pm 3\sigma$ of the fitted mass
- pion tracks from primary vertex with $p_T(\pi^+,\pi^-) > 400$ MeV,
- cascade vertex fitter was applied to build decay topology: the refitted triplet of B⁺_c(1S) tracks and the pair of PV pion tracks must intersect in two separate vertices,
- for several candidates in event, the one with the best cascade fit χ^2 is kept

Extended unbinned fit of *Q*-value distribution:

- use $Q = m(B_c^+\pi^+\pi^-) m(B_c^+) 2m(\pi^+)$ to improve resolution,
- Signal: Gaussian,
- · Background: 3rd order polynomial,
- Wrong charge combination (same-sign π) used for background control

- Significance of the observed signal calculated with toy studies accounting for a "look elsewhere effect",
- \cdot combined significance is 5.2 σ (3.7 σ and 4.5 σ in 7 and 8 TeV data, respectively),
- dominant source of systematic of the *Q*-value is the *fitting procedure*,
- a new state observed at $Q = 288.3 \pm 3.5$ (stat.) ± 4.1 (syst.) MeV (error-weighted mean of 7 and 8 TeV values),
- this new state corresponds to a mass 6842 ± 4 (stat.) ± 5 (syst.) MeV, and is consistent with the predicted mass of $B_c(2S)$.

- X(3872) is the best-studied new hidden-charm state, observed by many experiments
 - mass, narrow width, $J^{PC} = 1^{++} \rightarrow$ unlikely a conventional quarkonium,
 - \cdot weakly bound $D^0 \bar{D}^{*0}$ molecule or $[qc][\bar{q}\bar{c}]$ tetraquark
 - the relative production rate R for X(3872) (CMS, JHEP 1304, 154 (2013))

$$R = \frac{\sigma_{pp \to X(3872)} \cdot \mathcal{B}_{X(3872) \to J/\psi\pi^+\pi^-}}{\sigma_{pp \to \psi(2S)} \cdot \mathcal{B}_{\psi(2S) \to J/\psi\pi^+\pi^-}} = (6.56 \pm 0.29 \pm 0.65)\%$$

- Heavy-quark symmetry suggests a hidden-beauty partner X_b ;
 - mass predictions vary (e.g. 10561 MeV for the molecular model of Swanson, while tetraquark predicts 10492, 10593, or 10682 MeV, depending on the flavour of the light quarks)
 - Decay $X_b \rightarrow \pi^+ \pi^- \Upsilon(1S)$ is a straightforward way to reconstruct X_b ,
 - as by-product, $\Upsilon(1^3D_J)$, $\Upsilon(10860)$, $\Upsilon(11020)$ can be studied with the same final state.

X_b RECONSTRUCTION AND SELECTION

$\Upsilon(1S)$ reconstruction

- Pairs of oppositely charged muons with $p_T(\mu) > 4$ GeV and $|\eta(\mu)| < 2.3$ are fitted to the common vertex,
- require the matching between the reconstructed and trigger-level muons,
- dimuons in mass range ± 350 MeV around $\Upsilon(1S)$ mass are retained.

Build X_b candidate

- Dipion candidate are formed from oppositely charged pions with $p_T(\pi) > 400$ MeV and $|\eta(\pi)| < 2.5$
- $\Upsilon(1S) \rightarrow \mu^+ \mu^-$ candidate and dipion system are combined by performing a four-track common-vertex fit ($\chi^2 < 20$),
- the $\mu^+\mu^-$ mass constrained to mass $\Upsilon(1S)$; this significantly improve the mass resolution,
- candidates with mass < 11.2 GeV are retained.

X_b analysis binning

The analysis is performed in 8 bins

- $\cdot |y(X_b)|$: barrel (|y| < 1.2) and endcap (1.2 < |y| < 2.4) due to different mass resolution,
- $(p_T(X_b), \cos \theta^*)$: split into 4 quadrants different S/B ratio, $(\theta^* \text{ is an angle between } \pi^+\pi^- \text{ momentum in the parent rest frame and the parent momentum in lab frame),$
- fraction of the signal in each bins are defined by *splitting functions* derived from the simulation,
- optimize the expected significance for a weak signal at 10561 MeV,
- binned, extended maximum-likelihood fit is performed simultaneously to the 8 bins $(|y|, p_T, \cos \theta^*)$ in a local region around the mass of interest.

$\Upsilon(2S)$ and $\Upsilon(3S)$ fits

- · Clear peaks of $\Upsilon(2S)$ and $\Upsilon(3S)$ are observed; no other visible signals,
- kinematic bin most sensitive to an X_b signal: |y| < 1.2, $p_T > 20$ GeV and $\cos \theta^*$,
- normalized to $\Upsilon(2S)$ yields and validated on $\Upsilon(3S)$.

- Differential production cross section $d^2\sigma/dydp_T$ for $\Upsilon(2S)$ and $\Upsilon(3S)$ measured by ATLAS/CMS at 7 TeV were used to calculate production weights, which are applied to 8 TeV $\Upsilon(2S)/\Upsilon(3S)$ simulated sample,
- $\Upsilon(2S)$ total fitted yield $N_{2S} = 34300 \pm 800$ is consistent with expected $N_{2S}^{\text{expected}} = (\sigma \mathcal{B})_{2S} \cdot \mathcal{L} \cdot \mathcal{A} \cdot \epsilon = 33300 \pm 2500,$
- $\Upsilon(3S)$ total fitted yield $N_{3S} = 11600 \pm 1300$ agrees with $N_{3S}^{\text{expected}} = 11400 \pm 1500$, statistical significance for simultaneous fit to the analysis bins is z = 8.7 while for individual fit to the most sensitive bin z = 6.5.

Strategy:

- A hypothesis test for signal presence across 10–11 GeV range every 10 MeV,
- simultaneous fit in 8 analysis bins
- for each mass, extract *p*-value and significance.

Assumptions:

- · Look for narrow state,
- resolution dependence on |y|, p_T is $\Upsilon(nS)$ -like,
- phase-space shape of $m(\pi^+\pi^-)$.

mass ranges near $\Upsilon(2S)$ and $\Upsilon(3S)$ are excluded

X_b UPPER LIMITS CALCULATION

- CL_s limit on $R = (\sigma B)/(\sigma B)_{2S}$ at 95% CL is evaluated as a function of mass,
- various assumptions on X_b production polarization shift the limits (1 longitudinal and 3 transverse spin-alignment scenarios),
- this is the most sensitive X_b production search for m > 10.1 GeV,
- the null result of the search $X_b \to \pi^+ \pi^- \Upsilon(1S)$ decay does not tell us if the X_b exists, because for an isoscalar with $J^{PC} = 1^{++}$ such a decay is forbidden by G-parity conservation.

Results for $\Upsilon(1^3D_J)$, $\Upsilon(10860)$, $\Upsilon(11020)$

- $\Upsilon(1^3D_J)$ triplet fit attempted with additional signal shapes for the three masses: 10156, 10164, and 10170 MeV; a significance of z = 0.12 is found,
- upper limit of relative cross-section $\sigma(\Upsilon(1^3D_2))/\sigma(\Upsilon(2S)) < 0.55$ (using known $\mathscr{B}(\Upsilon(1^3D_2) \rightarrow \pi^+\pi^-\Upsilon(1S)) = (6.6 \pm 1.6) \times 10^{-3}$ from BaBar)
- broad resonances $\Upsilon(10860)$, $\Upsilon(11020)$ searched for in grid of mass and width, (using world-average masses and uncertainties), largest significances of z = 1.1 and 0.6
- plots shown with rates $\sigma_{10860} = 10\sigma(2S)$ and $\sigma_{10860} = \sigma(2S)\cdot \mathcal{B}(2S)$

Two analyses performed by ATLAS are reported:

- 1. Observation of a new state decaying into $B_c^+\pi^+\pi^-$ in 7 TeV and 8 TeV data
 - First observation of an excited state in B_c^+ sector
 - Measured mass 6842 ± 4 (stat.) ± 5 (syst.) MeV is consistent with the predicted mass of the $B_c^+(2S)$ state
- 2. Search for X_b state in $\pi^+\pi^-\Upsilon(1S)$ channel in 8 TeV data
 - No evidence for new narrow state is found for masses 10.05–10.31 GeV and 10.40–11.00 GeV
 - Upper limits are set on the ratio $R = [\sigma(pp \to X_b)\mathcal{B}(X_b \to \pi^+\pi^-\Upsilon(1S))]/[\sigma(pp \to \Upsilon(2S))\mathcal{B}(\Upsilon(2S) \to \pi^+\pi^-\Upsilon(1S))], \text{ with}$ results ranging from **0.8%** to **4.0%**, depending on the X_b mass
 - \cdot No evidences for other searched states $\Upsilon(1^3D_J)$ triplet, $\Upsilon(10860)$ and $\Upsilon(11020)$
 - Upper limit on relative cross section is set $\sigma(\Upsilon(1^3D_2))/\sigma(\Upsilon(2S)) < 0.55$
 - The searches for the isospin-conserving X_b decays are in progress