Semileptonic B_c decays from full lattice QCD

Andrew Lytle (HPQCD Collaboration) University of Glasgow

> 03.05.16 Beauty 2016 Marseille, France

- Obtain $|V_{cb}|$ from $b \to c$ transitions in semileptonic decays.
- Treatment of c and especially b quarks challenging in lattice simulations due to lattice artifacts which grow as $(am_q)^n$.
- We use two complementary approaches:
 - ► Highly improved relativistic action at small a, extrapolate $m_h \rightarrow m_b$.
 - Improved non-relativistic formalism (NRQCD) at m_b .
- First study:
 - ► $B_c \to \eta_c$
 - ▶ $B_c \rightarrow J/\psi$ [measureable at LHCb and/or Belle II ?]
- More precise $b \to c$ currents used in $B \to D, B \to D^*$.

Computations carried out on the Darwin cluster at Cambridge.

Includes:

- 9600 Intel Sandy Bridge cores
- $\bullet~2.6~\mathrm{GHz},\,4~\mathrm{GB}~\mathrm{RAM/core}$
- 2 PB storage

Part of STFC's HPC facility for theoretical particle physics and astronomy.

$$B_c \to \eta_c$$

$$Z\langle \eta_c(p)|V^{\mu}|B_c(P)\rangle = f_+(q^2) \left[P^{\mu} + p^{\mu} - \frac{M^2 - m^2}{q^2}q^{\mu}\right] + f_0(q^2) \frac{M^2 - m^2}{q^2} q^{\mu} ,$$

From PCVC,

$$\langle \eta_c(p)|S|B_c(P)\rangle = \frac{M^2 - m^2}{m_{b0} - m_{c0}} f_0(q^2)$$

Find Z by calculating both matrix elements at q_{max}^2 .

$$B_c \to \eta_c$$

 f_0 and f_+ are determined in the NRQCD formalism from matrix elements of the vector current $\langle V_{\mu}^{\text{nrqcd}} \rangle$, where

$$V_0^{\text{nrqcd}} = (1 + \alpha_s z_0^{(0)}) \left[V_0^{(0)} + (1 + \alpha_s z_0^{(1)}) V_0^{(1)} + \alpha_s z_0^{(2)} V_0^{(2)} \right]$$

$$V_k^{\text{nrqcd}} = (1 + \alpha_s z_k^{(0)}) \Big[V_k^{(0)} + (1 + \alpha_s z_k^{(1)}) V_k^{(1)} + \alpha_s z_k^{(2)} V_k^{(2)} + \alpha_s z_k^{(3)} V_k^{(3)} + \alpha_s z_k^{(4)} V_k^{(4)} \Big].$$

One goal of the present work is to constrain the coefficients entering V_{μ}^{nrqcd} using fully relativistic HISQ data.

$B_c \rightarrow \eta_c$ form factors from NRQCD

6/8

Summary

- A promising approach to study of $b \to c$ transitions:
 - \blacktriangleright Lattice NRQCD with HISQ quarks, plus
 - Fully relativistic formulation, extrapolate m_h to m_b .
- Proof-of-principle demonstrated for f_0 .
 - Controlled calculation over full q^2 range.
 - ► Good agreement seen with NRQCD results.
- Outputs:
 - B_c to $J/\Psi \rightarrow$ new possible determination of $|V_{cb}|$.
 - ► Improved understanding of NRQCD currents feeds into additional calculations (B to D, B to D*, ...).