Spectroscopy and Exotics at LHCb

Daniel Craik

University of Edinburgh

2nd May, 2016

on behalf of the LHCb Collaboration

- Wide range of spectroscopy analyses performed at LHCb
- Talk will focus on most recent results
- Will cover meson spectroscopy and exotics
 - D_s^+ spectroscopy in inclusive D^*K
 - Light spectroscopy in $D^0 o K^0_{
 m s} K^+ \pi^-$
 - Pentaquarks in $\Lambda_b^0 \rightarrow J/\psi \, pK^-$
 - Tetraquark search in $B_s^0 \pi^{\pm}$
- All results based on analyses of full Run I dataset

The LHCb Detector

- Instrumentation in the forward region $(2 < \eta < 5)$
- Excellent vertex reconstruction
- Precise tracking before and after magnet
- Good PID separation up to ~ 100 GeV/c

Int. J. Mod. Phys. A 30 (2015) 1530022

- Meson spectroscopy tests refine models of QCD
- D⁺_s mesons particularly interesting with one heavy and one light quark
- Unexpected large mass splitting seen between the 1P states
- Two states recently observed by LHCb considered two of the four 1D states
- At least three more states expected up to 3 GeV/c²
 - all with unnatural J^P

PRD 89 (2014) 074023

- Inclusive analysis of $pp \rightarrow D^{*+}K^0_s X$ and $D^{*0}K^+X$ decays
- Use $D^{*+} \rightarrow D^0 \pi^+$, $D^0 \rightarrow K^- \pi^+$ (shown) or $K^- \pi^+ \pi^+ \pi^$ and $D^{*0} \rightarrow D^0 \pi^0$, $D^0 \rightarrow K^- \pi^+$ decay chains
- Builds on previous analyses of D^0K^+
- Access to natural (NP) and unnatural (UP) spin-parities
- Plots show (a) $|\cos \theta_H| < 0.5$ and (b) > 0.5 to emphasise NP and UP components
 - Resonant contributions seen due to $D_{s1}(2536)^+$, $D_{s2}^*(2573)^+$, $D_{s1}^*(2700)^+$ and $D_{s3}^*(2860)^+$ resonances

Weak evidence for structure around 3 GeV/c²

- NP and UP resonances identified by helicity angle distribution of D* decay
- NP resonances follow $\sin^2 \theta_H$ distribution
- UP resonances follow $1 + h \cos^2 \theta_H$
- Expected distributions seen for (a–c) $D_{s1}^*(2700)^+$, $D_{s3}^*(2860)^+$ and $D_{sJ}(3040)^+$
- Data consistent with additional UP contribution in 2.86 GeV/c² region

- First observation of $D^*_{s2}(2573)^+
 ightarrow D^{*+}K^0_{
 m s}$ decay
- Branching ratio relative to $D^*_{s2}(2573)^+ \rightarrow D^+ K^0_{s}$ measured to be

$$\frac{\mathcal{B}(D^*_{s2}(2573)^+ \to D^{*+}K^0_s)}{\mathcal{B}(D^*_{s2}(2573)^+ \to D^+K^0_s)} = 0.044 \pm 0.005 \, (\text{stat.}) \pm 0.011 \, (\text{syst.})$$

JHEP 02 (2016) 133

 $D^0
ightarrow K^0_{
m s} K^{\pm} \pi^{\mp}$

- Dalitz plot (DP) analysis of D⁰ → K⁰_sK[±]π[∓] of interest to determine CP violation as a function of position in the phasespace
- Amplitude model would offer improved sensitivity to the CKM angle γ in analyses using these final states compared to the alternative "coherence factor" approach
- Also an excellent environment in which to study light-flavour spectroscopy
- Use $D^{*+}
 ightarrow D^0 \pi^+_{
 m slow}, \ D^0
 ightarrow K^0_{
 m s} K^\pm \pi^\mp$ decay chain
- Charge of the slow pion tags flavour of D⁰ meson

PRD 93 (2016) 052018

 $D^0
ightarrow K_{
m s}^0 K^{\pm} \pi^{\mp}$

- Analysis uses pure sample of $110\,000 \ D^0 \rightarrow K_s^0 K^- \pi^+$ and $80\,000 \ D^0 \rightarrow K_s^0 K^+ \pi^-$ decays
- DP distributions show clear structures in *m*(*K*⁰_sπ[±]) and in *m*(*K*[∓]π[±])
- Structure also in m(K⁰_sK⁺)
- Model constructed using the isobar formalism

$$\mathcal{M}_{K_{\mathrm{S}}^{0}K^{\pm}\pi^{\mp}}(m_{K_{\mathrm{S}}^{0}\pi^{\pm}},m_{K^{\mp}\pi^{\pm}}) = \sum_{R} a_{R}e^{i\phi_{R}}\mathcal{M}_{R}(m_{K_{\mathrm{S}}^{0}\pi^{\pm}},m_{K^{\mp}\pi^{\pm}})$$

 Two alternative models used for complicated Kπ S-wave components – GLASS and LASS _{02/05/2016}

- Both fit models (GLASS shown) give good agreement with mass projections of datasets
- Models favour small (~ 1 %) but significant contributions (2Δ*LL* > 150) from ρ(1450, 1700)[±] resonances previously seen by OBELIX Eur. Phys. J C26 (2003) 371

02/05/2016

$D^0 ightarrow K_{ m s}^0 K^{\pm} \pi^{\mp}$

- No significant CP violation observed
- Consistent with CP conservation with p-value of 0.54 (0.45) for GLASS (LASS) fit model
- BF ratios measured for the full decay and the K^{*}(892)[±]K[∓] region

$$\begin{array}{ll} \displaystyle \frac{\mathcal{B}(D^0 \to K_{\rm s}^0 K^+ \pi^-)}{\mathcal{B}(D^0 \to K_{\rm s}^0 K^- \pi^+)} &= & 0.655 \pm 0.004 \, ({\rm stat.}) \, \pm \, 0.006 \, ({\rm syst.}) \, , \\ \\ \displaystyle \frac{\mathcal{B}(D^0 \to K^{*-} K^+)}{\mathcal{B}(D^0 \to K^{*+} K^-)} &= & 0.370 \pm 0.003 \, ({\rm stat.}) \, \pm \, 0.012 \, ({\rm syst.}) \end{array}$$

 Improved measurements of coherence factors (shown for GLASS model)

$$R_{K_s^0 K \pi} = 0.573 \pm 0.007 \pm 0.019$$
 $R_{K^* K} = 0.831 \pm 0.004 \pm 0.010$

Exotics

- Various LHCb analyses have observed/confirmed exotic states
- Resonant nature of Z(4430) determined from $B^0 \rightarrow \psi(2S)\pi^-K^+$ decays PRL 112 (2014) 222002

PRD 92 (2015) 112009

- Observation confirmed by model-independent analysis
- Quantum numbers of X(3872) confirmed from $B^+ \rightarrow J/\psi \rho^0 K^+$ decays PRD 92 (2015) 011102
- Will focus on most recent results...

Pentaquarks – $\Lambda_b^0 \rightarrow J/\psi \, \rho K^-$

- Feynman diagrams contributing to $\Lambda_b^0 \rightarrow J/\psi \, pK^-$ allow for resonant contributions in (a) $m(pK^-)$ or (b) $m(J/\psi \, p)$
- Resonances in *m*(*J*/ψ*p*) have a minimum quark content of *cc̄uud*
- Recent LHCb analysis based on a pure sample of 26 000 signal decays
- 6D amplitude analysis performed

Pentaquarks – $\Lambda_b^0 \rightarrow J/\psi \, pK^-$

- Two peaking components in m(J/ψ p) with opposite parities required to fit data
- Phase motion of each component consistent with that of a resonance

02/05/2016

Pentaquarks $-\Lambda_b^0 \rightarrow J/\psi \, pK^-$

- Could data be explained entirely by m(pK⁻) structures?
- Test hypothesis with model-independent analysis
- Bin data in m(pK⁻)
- Describe angular distribution in each mass bin with sum of

Legendre polynomials $\frac{dN}{d\cos\theta_{\Lambda^*}} = \sum_{l=0}^{l_{max}} \langle P_l^U \rangle P_l(\cos\theta_{\Lambda^*})$

- Λ* resonances of spin *j* give non-zero contributions up to 2*j*th moment (*P^U_{2i}*)
- Higher spin resonances are heavier
- Use theoretical predictions and experimental results to set Imax(m_{pK}-) for all masses within the kinematically allowed range

Pentaquarks $-\Lambda_b^0 \rightarrow J/\psi \, pK^-$

- Resonances in *m*(*J*/ψ*K*⁻) or *m*(*J*/ψ*p*) introduce sharp structures in the angular distribution
- Compare null hypothesis (moments up to *I*_{max}) with alternative hypothesis (include higher moments)
- Construct DLL from ratio of likelihoods and compare data to toys assuming null hypothesis
- (Left) reject null hypothesis with significance $> 9\sigma$
- (Right) null hypothesis gives poor description of $m(J/\psi p)$

$B_s^0 \pi^{\pm}$ spectroscopy

- $X(5568)^{\pm} \rightarrow B_s^0 \pi^{\pm}$ decay reported by D0 in February with a significance of 5.1 σ
- Signal implies large production rate within D0 acceptance

$B^0_s \pi^\pm$ spectroscopy

- LHCb search first reported at Moriond
- Study based on large clean samples of B⁰_s decays
- (Right) no peak observed in $m(B_s^0\pi)$ from X(5568)
- Upper limits set on production in the LHCb acceptance

$$\rho_{X,}^{\text{LHCb}} < \begin{cases} 0.009 \ (0.010) \ @ 90 \ (95) \ \% \ \text{CL} \\ 0.016 \ (0.018) \ @ 90 \ (95) \ \% \ \text{CL} \end{cases} p_{\text{T}_{B_{\text{S}}^0}} > \begin{cases} 5 \ \text{GeV}/c \\ 10 \ \text{GeV}/c \end{cases}$$

17

- Inclusive D^*K spectroscopy gives first observation of $D^*_{s2}(2573)^\pm \rightarrow D^{*\pm}K^0_s$
- Dalitz plot analysis of D⁰ → K⁰_sK[±]π[∓] shows no significant CP violation but significant ρ(1450, 1700)[±] → K⁰_sK[±] contributions
- Model-independent analysis supports pentaquark hypothesis for structures in $J/\psi pK^-$
- No sign of X(5568) tetraquark candidate within LHCb acceptance with 10× D0 statistics

Data		D _{s1} (2700)+	D*sJ(2860)+	χ^2/ndf
(a) $D^{*+}K_{\rm s}^0$	Mass	$2732.3 \pm 4.3 \pm 5.8$	$2867.1 \pm 4.3 \pm 1.9$	
$D^0 \! ightarrow K^- \pi^+$	Width	$136\pm19\pm24$	$50\pm11\pm13$	
	Yield	$(1.57\pm 0.28) imes 10^4$	$(3.1\pm0.8) imes10^3$	94/103
	Significance	8.3	6.3	
(b) <i>D</i> *+ <i>K</i> ⁰ _s	Mass	$\textbf{2729.3} \pm \textbf{3.3}$	$\textbf{2861.2} \pm \textbf{4.3}$	
$D^0 \! ightarrow K^- \pi^+$	Width	136 (fixed)	57 ± 14	
NP sample	Yield	$(1.50\pm 0.11)\times 10^{4}$	$(2.50\pm 0.60) imes 10^3$	90/104
	Significance	7.6	7.1	
(c) $D^{*+}K_{\rm s}^0$	Mass	2732.3 (fixed)	2876.7 ± 6.4	
$D^0 \! ightarrow K^- \pi^+$	Width	136 (fixed)	50 ± 19	
UP sample	Yield	$(0\pm0.8) imes10^3$	$(1.0\pm0.4) imes10^3$	100/105
	Significance	0.0	3.6	
(d) D*+K_s^0	Mass	2725.5 ± 6.0	$\textbf{2844.0} \pm \textbf{6.5}$	
$D^0 ightarrow K^- \pi^+ \pi^+ \pi^-$	Width	136 (fixed)	50 ± 15	
	Yield	$(2.6\pm0.4) imes10^3$	490 ± 180	89/97
	Significance	4.7	3.8	
(e) <i>D</i> * ⁰ <i>K</i> +	Mass	$\textbf{2728.3} \pm \textbf{6.5}$	$\textbf{2860.9} \pm \textbf{6.0}$	
	Width	136 (fixed)	50 (fixed)	
	Yield	$(1.89 \pm 0.30) imes 10^3$	290 ± 90	79/99
	Significance	6.6	3.1	

 $D^0
ightarrow K^0_{
m s} K^\pm \pi^\mp$

Fixed parameters

Parameter		Value	
K*(000)+	m _R	891.66±0.26	MeV/c ²
K (892)-	Γ _B	50.8±0.9	MeV/C ²
K*(1410)±	m _B	1.414±0.015	GeV/C ²
K (1410)-	Γ _B	0.232±0.021	GeV/c^2
(K0-)±	m _B	1.435±0.005	GeV/C ²
$(n_s \pi)_{S-wave}$	Γ _B	0.279±0.006	GeV/c^2
K*(000)0	m _R	895.94±0.22	MeV/C ²
V (095)	Γ _B	48.7±0.8	MeV/c ²
K*(1410)0	m _R	1.414±0.015	GeV/C ²
V (1410)	Γ _B	0.232±0.021	GeV/c^2
K*(1400)0	m _R	1.4324±0.0013	GeV/C ²
N ₂ (1430)	Γ _B	0.109±0.005	GeV/c^2
(K-)0	m _R	1.435±0.005	GeV/c ²
(KT)S-wave	Γ _B	0.279±0.006	GeV/c^2
	r	1.8±0.4	(GeV/C)-1
	а	1.95±0.09	$(GeV/c)^{-1}$
	mB	0.980±0.020	GeV/c ²
$a_0(980)^{\pm}$	$g_{\eta\pi}$	324±15	MeV
	$\frac{g_{K\overline{R}}^2}{g_{n\pi}^2}$	1.03±0.14	
a (1220)±	m _R	1.3181±0.0007	GeV/c ²
a2(1320)	Γ _R	0.1098±0.0024	GeV/c ²
a (1450)±	m _R	1.474±0.019	GeV/C ²
a ₀ (1450)	Γ _R	0.265±0.013	GeV/c ²
o(1450)±	m _R	1.182±0.030	GeV/C ²
p(1430)=	Γ _B	0.389±0.020	GeV/c^2
o(1700)±	тя	1.594±0.020	GeV/C ²
$\rho(1700)^{*}$	Γø	0.259±0.020	GeV/c ²

Floated params (GLASS)

Floated params (LASS)

Paramete	r	Value	
K7(000)±	m _R	$893.1 \pm 0.1 \pm 0.9$	MeV/C ²
N (692)	Γ _B	$46.9 \pm 0.3 \pm 2.5$	MeV/c ²
K*(1410)±	Γ _B	$210 \pm 20 \pm 60$	MeV/C ²
	F	1.785 (fixed)	
	а	$4.7 \pm 0.4 \pm 1.0$	$(GeV/c)^{-1}$
$(K_s^0\pi)_{S,wave}^{\pm}$	φF	$0.28 \pm 0.05 \pm 0.19$	rad
	ϕ_S	$2.8 \pm 0.2 \pm 0.5$	rad
	r	$-5.3 \pm 0.4 \pm 1.9$	$(GeV/c)^{-1}$
K*(1410)0	m _R	$1426 \pm 8 \pm 24$	MeV/C ²
V.(1410)-	ΓR	$270\pm20\pm40$	MeV/c^2
	F	$0.15 \pm 0.03 \pm 0.14$	
	а	$4.2 \pm 0.3 \pm 2.8$	$(GeV/C)^{-1}$
$(K\pi)^0_{S,wowp}$	φ _E	$-2.5 \pm 0.2 \pm 1.0$	rad
	ϕ_S	$-1.1 \pm 0.6 \pm 1.3$	rad
	r	$-3.0 \pm 0.4 \pm 1.7$	$(GeV/c)^{-1}$
a ₀ (1450) [±]	m _R	$1430\pm10\pm40$	MeV/c^2
$\rho(1450)^{\pm}$	ΓR	$410\pm19\pm35$	MeV/c^2
$a(1700)^{\pm}$	mo	$1530 \pm 10 \pm 40$	MeV/c ²

	Parameter		Value	
	K*(000)±	m _R	$893.4 \pm 0.1 \pm 1.1$	MeV/c ²
	K (092)	Γ _B	$47.4 \pm 0.3 \pm 2.0$	MeV/c ²
1	$K^{*}(1410)^{\pm}$	m _R	$1437 \pm 8 \pm 16$	MeV/c ²
1		<i>b</i> ' ₁	$60\pm30\pm40$	
	$(K_s^0\pi)_{S-wave}^{\pm}$	<i>b</i> ₂	$4\pm1\pm5$	
		b'_3	$3.0 \pm 0.2 \pm 0.7$	
1	K*(1410) ⁰	m _R	$1404\pm9\pm22$	MeV/c ²
		<i>b</i> ₁	$130\pm30\pm80$	
	$(K\pi)^0_{S,wave}$	<i>b</i> ₂	$-6\pm1\pm14$	
		b'_3	$2.5 \pm 0.1 \pm 1.4$	
		r	$1.2\pm0.3\pm0.4$	$(GeV/C)^{-1}$
1	a ₀ (980) [±]	m _R	$925\pm5\pm8$	MeV/C ²
	a (1450)±	m _R	$1458 \pm 14 \pm 15$	MeV/c ²
	a ₀ (1450)-	Γ _B	$282\pm12\pm13$	MeV/c ²
1	$\rho(1450)^{\pm}$	m _R	$1208\pm8\pm9$	MeV/c ²
1	ρ(1700) [±]	m _R	$1552 \pm 13 \pm 26$	MeV/c ²

CPV parameters for $D^0 \rightarrow K_s^0 K^- \pi^+$

	Δa_R		$\Delta \phi_R(^\circ)$		∆(Fit fraction) [%]	
Resonance	GLASS	LASS	GLASS	LASS	GLASS	LASS
K*(892) ⁺	0.0 (fixed)	0.0 (fixed)	0.0 (fixed)	0.0 (fixed)	$0.6 \pm 1.0 \pm 0.3$	$0.9 \pm 1.0 \pm 0.3$
K*(1410)+	$0.07 \pm 0.06 \pm 0.04$	$0.03 \pm 0.06 \pm 0.04$	$3.9 \pm 3.5 \pm 1.9$	$2.0\pm2.9\pm1.9$	$1.4\pm0.8\pm0.2$	$1.2 \pm 1.6 \pm 0.2$
$(K_s^0 \pi^+)_{Swave}$	$0.02\pm 0.08\pm 0.07$	$-0.05\pm0.08\pm0.07$	$2.0\pm1.7\pm0.0$	$2.0\pm1.7\pm0.0$	$1\pm4\pm3$	$-2.3 \pm 3.5 \pm 3.3$
<i>K</i> [∗] (892) ⁰	$-0.046 \pm 0.031 \pm 0.005$	$-0.051\pm0.030\pm0.005$	$1.2\pm1.6\pm0.3$	$1.5\pm1.7\pm0.3$	$-0.43 \pm 0.30 \pm 0.03$	$-0.47 \pm 0.29 \pm 0.03$
$\overline{K}^{*}(1410)^{0}$	$0.006 \pm 0.034 \pm 0.017$	$0.02 \pm 0.04 \pm 0.02$	$2\pm5\pm5$	$-3\pm 6\pm 5$	$0.3\pm1.0\pm0.1$	$0.4\pm0.7\pm0.1$
$(K^{-}\pi^{+})_{Swave}$	$0.05 \pm 0.04 \pm 0.02$	$0.03 \pm 0.04 \pm 0.02$	$0.4\pm1.6\pm0.6$	$1.0\pm1.4\pm0.6$	$2.2 \pm 1.3 \pm 0.4$	$2.6 \pm 2.2 \pm 0.4$
a2(1320)-	$-0.25 \pm 0.14 \pm 0.01$	$-0.24 \pm 0.13 \pm 0.01$	$2\pm9\pm3$	$-1\pm9\pm3$	$-0.20 \pm 0.13 \pm 0.05$	$-0.15\pm0.10\pm0.05$
a ₀ (1450) ⁻	$-0.01\pm0.14\pm0.12$	$-0.13 \pm 0.14 \pm 0.12$	$0\pm5\pm4$	$-4\pm 6\pm 4$	$-0.0 \pm 0.4 \pm 0.4$	$-0.4 \pm 0.4 \pm 0.4$
$\rho(1450)^{-}$	$0.06 \pm 0.13 \pm 0.11$	$-0.05\pm0.12\pm0.11$	$-13\pm10\pm9$	$-5\pm9\pm9$	$0.3 \pm 0.7 \pm 0.6$	$-0.3 \pm 0.7 \pm 0.6$

CPV parameters for $D^0 ightarrow K_{ m s}^0 K^+ \pi^-$

	Δa_R		$\Delta \phi_R(^\circ)$		∆(Fit fraction) [%]	
Resonance	GLASS	LASS	GLASS	LASS	GLASS	LASS
K*(892)-	0.0 (fixed)	0.0 (fixed)	0.0 (fixed)	0.0 (fixed)	$-1.1 \pm 0.7 \pm 0.2$	$-0.9 \pm 0.7 \pm 0.2$
K*(1410) ⁻	$0.05 \pm 0.12 \pm 0.08$	$-0.03 \pm 0.10 \pm 0.08$	$-6\pm4\pm3$	$-3.0 \pm 3.6 \pm 2.8$	$0.6 \pm 2.7 \pm 2.4$	$-2\pm4\pm2$
$(K_{s}^{0}\pi^{-})_{Swave}$	$0.10 \pm 0.25 \pm 0.24$	$-0.14 \pm 0.25 \pm 0.24$	$-7.7 \pm 3.4 \pm 0.0$	$-8\pm4\pm0$	$2\pm 6\pm 6$	$-4\pm 6\pm 6$
K*(892) ⁰	$-0.010\pm0.024\pm0.001$	$-0.012\pm0.022\pm0.001$	$-1.4 \pm 2.9 \pm 2.2$	$0.8 \pm 2.8 \pm 2.2$	$-0.4 \pm 0.4 \pm 0.0$	$-0.4 \pm 0.4 \pm 0.0$
K*(1410) ⁰	$0.10 \pm 0.10 \pm 0.09$	$0.19 \pm 0.13 \pm 0.09$	$-1\pm9\pm8$	$-9\pm9\pm8$	$1.9 \pm 1.1 \pm 0.2$	$1.6 \pm 0.8 \pm 0.2$
$(K^+\pi^-)_{Swave}$	$-0.07 \pm 0.06 \pm 0.05$	$-0.12\pm0.06\pm0.05$	$-2\pm4\pm4$	$2\pm4\pm4$	$-4\pm5\pm5$	$-9\pm6\pm5$
a0(980)+	$0.06 \pm 0.04 \pm 0.01$	$0.052 \pm 0.025 \pm 0.008$	$-3\pm5\pm2$	$-0.9 \pm 3.1 \pm 2.2$	$2.2 \pm 2.8 \pm 2.4$	$4.6\pm3.3\pm2.4$
a0(1450)+	$-0.11 \pm 0.10 \pm 0.04$	$-0.07\pm0.07\pm0.04$	$10\pm8\pm5$	$5\pm 6\pm 5$	$-0.21 \pm 0.30 \pm 0.23$	$-0.4 \pm 0.4 \pm 0.2$
$\rho(1700)^+$	$-0.03 \pm 0.13 \pm 0.09$	$-0.12\pm0.13\pm0.09$	$4\pm 6\pm 2$	$2\pm5\pm2$	$-0.07 \pm 0.25 \pm 0.19$	$-0.27 \pm 0.27 \pm 0.19$

Pentaquarks $-\Lambda_b^0 \rightarrow J/\psi \, pK^-$

02/05/2016

Daniel Craik

Spectroscopy and Exotics at LHCb

30

$B^0_s\pi^\pm$ spectroscopy

(Left) Plots $m(B_s^0 \pi^{\pm})$ distributions with best-fit signal yields (Right) Control fit to $m(B^0 \pi^+)$ distribution

02/05/2016

Spectroscopy and Exotics at LHCb

		$B^0_s ightarrow D^s \pi^+$	$B^0_{s} ightarrow J\!/\psi \phi$	Sum
$N(B_s^0)$	$B_s^0 \rho_{ m T} > 5 { m GeV}/c (10^3)$	66.3 ± 0.3	46.3 ± 0.2	112.6 ± 0.4
$N(B_s^0)$	$B_s^0 \ ho_{ m T} > 10 { m GeV}/c \ (10^3)$	$\textbf{30.1} \pm \textbf{0.2}$	14.1 ± 0.1	44.2 ± 0.2
N(X)	$B_{s}^{0} p_{\mathrm{T}} > 5 \mathrm{GeV}/c$	23 ± 55	-15 ± 37	8 ± 66
N(X)	$B_s^0 p_{ m T} > 10 { m GeV}/c$	70 ± 48	11 ± 30	81 ± 57
$\epsilon^{\rm rel}(X)$	$B_s^0 \ ho_{ m T} > 5 { m GeV}/c$	0.141 ± 0.002	0.102 ± 0.001	_
$\epsilon^{\rm rel}(X)$	$B_s^0 p_{\mathrm{T}} > 10 \mathrm{GeV}/c$	0.239 ± 0.003	$\textbf{0.230} \pm \textbf{0.003}$	_