First observation of $B^0 \rightarrow \rho^0 \rho^0$

Charmless B decays at LHCb

Lars Eklund, on behalf of the LHCb collaboration

University of Glasgow

The 16th International Conference on B-physics at Frontier Machines 5 May 2016 Marseille, France

First observation of $B^0 \rightarrow \rho^0 \rho^0$

Outline

- First observation of $B_s^0 \rightarrow \eta' \eta'$ • Phys. Rev. Lett. **115** (2015) 051801
- 3 First observation of $B^0 \rightarrow \rho^0 \rho^0$ • Phys. Lett **B747** (2015) 468

First observation of ${\rm B}^0_s \to \eta^{\,\prime} \eta$ 00000

First observation of ${
m B}^0 o
ho^0
ho^0$

Introduction

Why charmless B decays?

- $|V_{ub}|$ is small: significant loop contributions
- FCNC: forbidden at tree level
- Sensitive to contributions beyond the SM

Why LHCb?

- Full spectrum of B hadrons: B^0 , B_s^0 , B^+ , B_c^+ , Λ_b^0 , etc.
- Very large production x-section
 75.3 ± 5.4 ± 13 μb @ 7 TeV (Phys. Lett. B694 (2010) 209)
- Excellent trigger, tracking and PID

- First observation of B⁰_s → η'η'
 Phys. Rev. Lett. **115** (2015) 051801
- 3 First observation of $B^0 \rightarrow \rho^0 \rho^0$ • Phys. Lett **B747** (2015) 468

4 Summary

 $B^{0}_{(s)} \rightarrow \phi \phi$ branching ratio

First observation of ${
m B}^0_s
ightarrow \eta' \eta'$

First observation of $B^0 \rightarrow \rho^0 \rho^0$ 000000 Summary

Motivation: $B^0_{(s)} \rightarrow \phi \phi$ branching fraction

Measurement of the ${\rm B_s^0} \rightarrow \phi \phi$ branching fraction

- Key decay for CP violation studies
- Important normalisation mode
- Theoretical predictions $1.5 2.0 \times 10^{-5}$
- Previous measurement: 1.91 ± 0.31 × 10⁻⁵ (CDF: PRL 95 (2005) 031801)

Search for ${\rm B^0}\!\rightarrow\phi\phi$ decays

- Highly suppressed in the SM
- SM predictions $1 30 \times 10^{-9}$
- Could be enhanced in BSM models 10⁻⁷
- Previous limit: < 2.0 × 10⁻⁷ (Belle: PRL 101 (2008) 201801)

The $B_s^0 \rightarrow \phi \phi$ branching fraction is determined w.r.t. $B^0 \rightarrow \phi K^{*0}$

$$\frac{\mathcal{B}(\mathrm{B}^{0}_{\mathrm{s}} \rightarrow \phi \phi)}{\mathcal{B}(\mathrm{B}^{0} \rightarrow \phi \mathrm{K}^{*0})} = \frac{\mathcal{N}_{\phi\phi}}{\mathcal{N}_{\phi\mathrm{K}^{*0}}} \frac{\varepsilon^{\mathsf{sel}}_{\phi\mathrm{K}^{*0}}}{\varepsilon^{\mathsf{sel}}_{\phi\phi}} \frac{\mathcal{B}(\phi \rightarrow \mathrm{K}^{+}\pi^{-})}{\mathcal{B}(\phi \rightarrow \mathrm{K}^{+}\mathrm{K}^{-})} \cdot \frac{f_{d}}{f_{\mathrm{s}}}$$

- Efficiencies determined from MC, apart from PID determined from charm decays
- f_s/f_d hadronisation probability to B_s^0/B^0 mesons
- Selection: trigger, pre-selection, boosted decision tree, particle ID
- Vetoes against $\phi\phi \leftrightarrow \phi K^{*0}$ cross feed and D^+ and D_s^+ decays

First observation of $B_s^0 \rightarrow \eta' \eta'$

First observation of ${\rm B}^0 \to \, \rho^0 \, \rho^0$ 000000

Summary

Fits to the $B_s^0 \rightarrow \phi \phi$ and $B^0 \rightarrow \phi K^{*0}$ mass spectra

Fit to the K⁺K⁻K⁺K⁻ spectrum

- Only $B_s^0 \rightarrow \phi \phi$ and combinatorial
- $N_{\mathrm{B_s^0} o \phi \phi} =$ 2349 \pm 49 candidates

Fit to the $K^+K^-K^+\pi^-$ spectrum

- $B^0_{(s)} \rightarrow \phi K^{*0}$ signal peaks
- Combinatorial plus $\Lambda^0_b \to \phi p \pi^-$ and $\Lambda^0_b \to \phi p K^-$ peaking backgrounds
- $N_{\mathrm{B^0} \to \phi \mathrm{K^{*0}}} = 6680 \pm 86$ candidates

 $B^{0}_{(s)} \rightarrow \phi \phi$ branching ratio

First observation of $B_s^0 \rightarrow \eta' \eta''$

First observation of $B^0 \rightarrow \rho^0 \rho^0$ 000000

Summary

$B_s^0 \rightarrow \phi \phi$ branching ratio determination

Non-resonant contributions (from angular analysis)

- $B_s^0 \rightarrow \phi \phi$ S-wave: 2.1 ± 1.6%
- $B^0 \rightarrow \phi K^{*0}$ S-wave: 26.5 ± 1.8%
- Corrected for, but dominant systematic uncertainty

Final result

$$\frac{\mathcal{B}(B_s^0 \to \phi \phi)}{\mathcal{B}(B^0 \to \phi K^{*0})} = 1.84 \pm 0.05 \,(\text{stat}) \pm 0.07 \,(\text{syst}) \pm 0.11 \,(f_s/f_d)$$

 $\begin{aligned} \mathcal{B}(\mathrm{B}^{0}_{\mathrm{s}} \to \phi \phi) &= \\ (1.84 \pm 0.05\,(\mathrm{stat}) \pm 0.07\,(\mathrm{syst}) \pm 0.11\,(f_{s}/f_{d}) \pm 0.12\,(\mathrm{norm})) \times 10^{-5} \end{aligned}$

Consistent with previous measurement and $\sim \times 2$ more precise

$\rightarrow \phi \phi$ branching ratio

$B^0 \rightarrow \phi \phi$ limit setting

Tighter selection, maximising FoM = $\frac{\varepsilon_{s}}{3/2 + \sqrt{N_{ba}}}$

- ε'_{s} : BDT selection efficiency
- N[']_{bg}: estimated background yield
- Signal Yield compatible with zero $N_{\rm B^0 \rightarrow \phi \phi} = 5 \pm 6$ candidates
- Limit set with frequentist approach $CL_s = CL_{s+b}/CL_b$

Result: $\mathcal{B}(B^0 \to \phi \phi) < 2.8 \times 10^{-8}$ @ 90%

Seven times better than previous limit and excluding some BSM predictions.

Fit to the K⁺K⁻K⁺K⁻ spectrum

- First observation of $B_s^0 \rightarrow \eta' \eta'$ • Phys. Rev. Lett. **115** (2015) 051801
- First observation of $B^0 \rightarrow \rho^0 \rho^0$ Phys. Lett **B747** (2015) 468

4 Summary

First observation of $B_s^0 \rightarrow \eta' \eta'$ First observation of $B^0 \rightarrow \rho^0 \rho^0$

Motivation: $B_s^0 \rightarrow \eta' \eta'$, $B^+ \rightarrow \eta' K^+$ & $B^+ \rightarrow \phi K^+$

Search for the $B_s^0 \rightarrow \eta' \eta'$ decay

- Charmless B⁰_s decays less studied than B⁰ and B⁺ decays
- U-spin related decays ($B^+ \rightarrow \eta' K^+ \& B^+ \rightarrow \phi K^+$) have large \mathcal{B}
- Theoretical predictions $\mathcal{B} \sim 1.4 5.0 \times 10^{-5}$
- CP eigenstate time dependent CPV studies similar to $B_s^0 \rightarrow \phi \phi$

CP asymmetry of $B^+ \rightarrow \eta' K^+$ and $B^+ \rightarrow \phi K^+$ decays

- Predicted to have negligible CP violation in the SM
- Tree and loop diagrams of comparable size
 - Sensitive to BSM contributions
 - BaBar, Belle, CLEO: $\mathcal{A}^{CP}(B^+ \rightarrow \eta' K^+) = 0.013 \pm 0.017$
 - LHCb: $\mathcal{A}^{CP}(B^+ \to \phi K^+) = 0.022 \pm 0.023$ BaBar: $A^{CP}(B^+ \to \phi K^+) = 0.128 \pm 0.046$

 ${\rm B}^{0}_{({\rm s})} \rightarrow \phi \phi$ branching ratio

First observation of ${\rm B}^0_s \to \eta^\prime \eta^\prime \\ {\rm oo} \bullet {\rm oo}$

First observation of ${\rm B}^0 \to \, \rho^0 \, \rho^0$ 000000

Summary

${ m B}^0_s \! ightarrow \eta' \eta'$ selection and fit (3 fb⁻¹ Run 1 data)

Reconstruction & selection

- Reconstruct decays of $\eta' \rightarrow \pi^+ \pi^- \gamma$
- Selection with rectangular cuts
- Maximise FoM = $\frac{\varepsilon_s}{5/2 + \sqrt{N_{bg}}}$

Fit to the $\eta' \eta'$ spectrum

- $\bullet \ B^0_s$ and η' signal peaks
- Combinatorial and partially reconstructed backgrounds

$$J_{B_{s}^{0}
ightarrow \eta' \eta'} = 36.4 \pm 7.8 \, (\mathrm{stat}) \pm 1.6 \, (\mathrm{syst})$$

First observation of $B_s^0 \rightarrow \eta' \eta'$

$$\begin{split} &\frac{\mathcal{B}(B_s^0 \to \eta' \eta')}{\mathcal{B}(B^+ \to \eta' K^+)} = 0.47 \pm 0.09 \, (\text{stat}) \pm 0.04 \, (\text{syst}) \\ &\mathcal{B}(B_s^0 \to \eta' \eta') = (3.31 \pm 0.64 \, (\text{stat}) \pm 0.28 \, (\text{syst}) \pm 0.12 \, (\text{norm})) \times 10^{-5} \end{split}$$

L. Eklund (Glasgow)

First observation of $B^0 \rightarrow \rho^0 \rho^0$ 000000 Summary

CP asymmetries of $B^+ \rightarrow \eta' K^+ \& B^+ \rightarrow \phi K^+$

Raw asymmetries (A_{raw}) from fits

- For small asymmetries: $A_{raw} = A^{CP} + A_{D,k} + A_P$
- $\mathcal{A}_{D,k} + \mathcal{A}_P$ is identical to that of $\mathrm{B}^+ \to \mathrm{J}/\psi\,\mathrm{K}^+$

Measure the difference in asymmetry

$$\mathcal{A}^{CP}(ext{signal}) - \mathcal{A}^{CP}(B^+ \rightarrow J/\psi K^+) = \mathcal{A}_{ ext{raw}}(ext{signal}) - \mathcal{A}_{ ext{raw}}(B^+ \rightarrow J/\psi K^+)$$

Adding the control mode asymmetry $({\cal A}^{C\!P}(B^+ \to J\!/\!\psi\,K^+)$

 $\begin{array}{l} \mathcal{A}^{CP}(B^+ \to \eta' K^+) = (-0.2 \pm 1.2 \, (\text{stat}) \pm 0.1 \, (\text{syst}) \pm 0.6 \, (\text{norm})) \ \times \ 10^{-2} \\ \mathcal{A}^{CP}(B^+ \to \phi K^+) = (+1.7 \pm 1.1 \, (\text{stat}) \pm 0.2 \, (\text{syst}) \pm 0.6 \, (\text{norm})) \ \times \ 10^{-2} \end{array}$

Most precise results to date and compatible with CP conservation

- First observation of B⁰_s → η'η'
 Phys. Rev. Lett. **115** (2015) 051801
- First observation of $B^0 \rightarrow \rho^0 \rho^0$ Phys. Lett **B747** (2015) 468

4 Summary

First observation of ${\rm B}^0 \to \, \rho^0 \, \rho^0 \, \\ \circ \bullet \circ \circ \circ \circ$

Summary

Motivation: Amplitude analysis of ${ m B}^0 ightarrow ho^0 ho^0$

Used in measurement of CKM angle α

- $\bullet~$ Combined analysis of $B^0\to \rho^+\rho^-,\,B^+\to \rho^+\rho^0$ and $B^0\to \rho^0\rho^0$
 - Measures $\beta + \gamma = \pi \alpha$

 $\bullet~$ LHCb ideal place to measure $B^0 \! \to \rho^0 \rho^0$

Experimental status

- $\bullet~$ Belle and BaBar found evidence for $B^0 \! \rightarrow \rho^0 \rho^0$
- $\mathcal{B}=(0.97\pm0.24) imes10^{-6}$ (Phys. Rev. D 89 (2014) 119903, Phys. Rev. D 78 (2008) 071104)
- Tension between measured values of the longitudinal polarisation

• BaBar $f_L = 0.75^{+0.12}_{-0.15}$

Selection of $B^0 \rightarrow \pi^+\pi^-\pi^+\pi^-$

- Combine two π⁺π⁻ pairs consistent with B⁰ decays
- Pre-selection, BDT and particle ID
- Vetoes against J/ψ, χ_{c0}, χ_{c2} and D⁰ two-body decays and the low mass region of three-body combinations

$$\begin{array}{l} N_{\rm B^0 \to \pi^+\pi^-\pi^+\pi^-} = 634 \pm 29 \\ N_{\rm B^0 \to \pi^+\pi^-\pi^+\pi^-} = 101 \pm 13 \\ {\rm B^0_s} \to \pi^+\pi^-\pi^+\pi^- \mbox{ significance:} > 10 \ \sigma \end{array}$$

Normalisation channel: $B^0 \rightarrow \phi K^{*0}$

- Resonant fraction determined from angular analysis
- Candidates/(16 MeV/c² 250 LHCb $\rightarrow (\pi^+\pi^-)(\pi^+\pi^-)$ 200 Partially reconstruct $B^0 \rightarrow (K^+\pi)(\pi^+\pi)$ 150 100 50 5100 5200 5300 5400 5500 $M (\pi^+\pi^-)(\pi^+\pi^-) [MeV/c^2]$ 2200 andidates/(16 MeV/c²) 2000 Data 1800 LHCb $\rightarrow (K^+K^-)(K^+\pi^-)$ 1600 $B^0 \rightarrow (K^+K^-)(K^-\pi^+)$ Combinatorial 1400 Partially reconstructed 1200 1000 800 600 400 200 5100 5200 5300 5400 5500 $M (K^+K^-)(K^+\pi^-) [MeV/c^2]$

L. Eklund (Glasgow)

First observation of $B_s^0 \rightarrow \eta' \eta'$ First observation of $B^0 \rightarrow \rho^0 \rho^0$

Amplitude model for the $B^0 \rightarrow \pi^+ \pi^- \pi^+ \pi^-$ decays

Amplitude variables

- Invariant mass $m_{1,2}(\pi^+\pi^-)$ and angles $\theta_{1,2}$ and ϕ
- Extracted with sPlot technique

Main components

•
$$B^0 \rightarrow VV: B^0 \rightarrow \rho^0 \rho^0 \& B^0 \rightarrow \rho^0 \omega$$

•
$$B^0 \rightarrow VS: B^0 \rightarrow \rho^0 f_0(980) \& \rho^0 + (\pi^+ \pi^-)_0$$

• $B^0 \rightarrow VT: B^0 \rightarrow \rho^0 f_2(1270)$

• Contamination from $B^0 \rightarrow a_1^{\pm} \pi^{\pm}$

Definition of angles

Differential decay rate

$$\frac{\mathrm{d}^{5}(\Gamma+\overline{\Gamma})}{\mathrm{d}\cos\theta_{1}\,\mathrm{d}\cos\theta_{2}\,\mathrm{d}\varphi\,\mathrm{d}m_{1}^{2}\,\mathrm{d}m_{2}^{2}}$$

 $B^{0}_{(s)} \rightarrow \phi \phi$ branching ratio

First observation of $B_s^0 \rightarrow \eta' \eta'$

First observation of ${\rm B}^0 \to \, \rho^0 \rho^0$

Summary

Results of the amplitude analyssis

Fit results

 $\begin{array}{l} \mbox{Fraction of } B^{0} \to \rho^{0} \rho^{0} \\ P(B^{0} \to \rho^{0} \rho^{0}) = 0.619 \pm 0.072 \, (\mbox{stat}) \pm 0.049 \, (\mbox{syst}) \end{array}$

Longitudinal polarisation: $f_L = 0.745^{+0.048}_{-0.058} (\text{stat}) \pm 0.034 (\text{syst})$

First observation of ${\rm B}^0 \to \, \rho^0 \rho^0$ 000000

Branching ration determination

Efficiency corrections

- Integrated across the phase space, taking amplitude model into account
- Accounting for MC and data differences

Final result

Approximately 390 $B^0 \! \rightarrow \rho^0 \rho^0$ candidates observed

Signal significance 7.1 σ

 $\frac{\mathcal{B}(B^0 \rightarrow \rho^0 \rho^0)}{\mathcal{B}(B^0 \rightarrow \phi K^{*0})} = 0.094 \pm 0.017 \, (\text{stat}) \pm 0.009 \, (\text{syst})$

 $\mathcal{B}({\rm B^0}\!\to\rho^0\rho^0)=(0.94\pm0.17\,(\text{stat})\pm0.09\,(\text{syst})\pm0.06\,(\text{norm}))\times10^{-6}$

No evidence found for ${\rm B}^0\!\to\rho^0 {\rm f}_0(980)$

Consistent with previous measurement and $\sim \times 12$ more precise

Summary

Summary

- **1** $B^0_{(s)} \rightarrow \phi \phi$ branching ratio
 - Key decay mode for CPV studies
 - $\mathcal{B}(B^0_s \to \phi \phi) = (1.84 \pm 0.18) \times 10^{-5}$ $\mathcal{B}(B^0 \to \phi \phi) < 2.8 \times 10^{-8} @ 90\%$
- 2 First observation of $B_s^0 \rightarrow \eta' \eta'$ (6.4 σ)
 - First step towards CPV studies of $B_s^0 \rightarrow \eta' \eta'$
 - $\mathcal{B}(B^0_s \to \eta' \eta') = (3.31 \pm 0.71) \times 10^{-5}$

•
$$\mathcal{A}^{CP}(B^+ \to \eta' K^+) = (-0.2 \pm 1.3) \times 10^{-2}$$

•
$$\mathcal{A}^{CP}(\mathrm{B^+} o \phi \mathrm{K^+}) = (+1.7 \pm 1.3) \times 10^{-2}$$

3 First observation of $B^0 \rightarrow \rho^0 \rho^0$ (7.1 σ)

- Used for measuring CKM angle α
- $\mathcal{B}(B^0 \to \rho^0 \rho^0) = (0.94 \pm 0.20) \times 10^{-6}$
- Longitudinal polarisation $f_L = 0.745^{+0.059}_{-0.067}$