Theory News Higgs

Joachim Brod

BEAUTY 2016 Marseille, May 2, 2016

The Higgs in the SM

- Gauge sector:
 - Gauge-boson masses
 - Unitarization of gauge-boson scattering in the UV
- Yukawa sector:
 - Fermion masses
 - Yukawa interactions
- Higgs couplings completely determined in the SM
- SM Yukawas are
 - flavor-diagonal
 - real (CP-conserving)
- Experimentally, we know very little about the light-fermion Yukawas

Higgs Couplings

[ATLAS/CMS 2015]

How can we change the Higgs couplings?

Operator	Mass term	Higgs-fermion coupling
$y_t(\bar{Q}_L t_R H^c) + h.c.$	$m_t = rac{y_t v}{\sqrt{2}}$	$\frac{y_t}{\sqrt{2}}$
$rac{H^{\dagger}H}{\Lambda^2}(ar{Q}_L t_R H^c) + ext{h.c.}$	$\delta m_t \propto rac{(v/\sqrt{2})^3}{\Lambda^2}$	$\delta y_t \propto 3 rac{(v/\sqrt{2})^2}{\Lambda^2}$

- Mass and Yukawa term become independent
- Relative complexe phase \rightarrow CP violation
- Misalignment \rightarrow Flavor violation

We write

 $y_f/y_f^{SM} \equiv \kappa_f$

[and – apologies! – sometimes $\kappa_f = \text{Re}(y_f/y_f^{\text{SM}}), \tilde{\kappa}_f = \text{Im}(y_f/y_f^{\text{SM}})$]

Plan of this talk

- Size of Yukawa couplings
- Beyond the SM
 - CP Violation
 - Flavor Violation
- New Ideas

How to measure the Yukawas

Changing the Yukawa Couplings

• Higgs-dependent Yukawa couplings [Guidice et al. 0804.1753]

$$Y_{ij}^{u,d}(H) = c_{ij}^{u,d} \left(\frac{H^{\dagger}H}{M^2}\right)^{n_{ij}^{u,d}}$$

•
$$\epsilon = m_b/m_t \simeq 1/60$$

- Predicts $\kappa_b \simeq 3$ excluded by $h \rightarrow bb$
- Modify by using two Higgs doublets $\Rightarrow \kappa_b \simeq -\sin \alpha / \cos \beta$ [Bishara et al. 1504.04022; see also Bauer et al. 1506.01719]
- Enhance light Yukawas up to factor $\kappa_q \sim 10$
- Yukawa-less light generations $\kappa_q = 0$ [Ghosh et al. 1508.01501]
- Look also for new states! (*H*, H^{\pm} , A^0 ...)

Exclusive Higgs Decays

- Processes with off-shell Higgs and external SM particles difficult:
 - Scalar Higgs current competes with neutral currents induced by g, γ , Z
- Use on-shell Higgs decays [Isidori et al. 1305.0663; Bodwin et al. 1407.6695; Kagan et al. 1406.1722; König et al. 1505.03870]

$$\begin{array}{ll} \mathsf{Br}(h \to \phi \gamma) & (2.31 \pm 0.11) \times 10^{-6} \\ \mathsf{Br}(h \to J/\Psi \gamma) & (2.95 \pm 0.17) \times 10^{-6} \\ \mathsf{Br}(h \to \Upsilon(1S) \gamma) & (4.61^{+1.76}_{-1.23}) \times 10^{-9} \end{array}$$

Exclusive Higgs Decays – Charms vs. Bottom

Charm Yukawa

• Several ways to constrain charm Yukawa [Perez et al. 1503.00290, 1505.06689]

- Total width
- Global fit
- Exclusive decays (e.g. $h
 ightarrow J/\Psi \gamma$)
- Charm tagging

$$\mu_{f} \equiv \frac{\sigma_{h} \text{BR}_{ff}}{\sigma_{h}^{\text{SM}} \text{BR}_{ff}^{\text{SM}}}$$
$$\mu_{b} \rightarrow \frac{\sigma_{h} \text{BR}_{bb} \epsilon_{b_{1}} \epsilon_{b_{2}} + \sigma_{h} \text{BR}_{cc} \epsilon_{c_{1}} \epsilon_{c_{2}}}{\sigma_{h}^{\text{SM}} \text{BR}_{bb}^{\text{SM}} \epsilon_{b_{1}} \epsilon_{b_{2}} + \sigma_{h}^{\text{SM}} \text{BR}_{cc}^{\text{SM}} \epsilon_{c_{1}} \epsilon_{c_{2}}} \propto \left(\mu_{b} + \frac{\text{BR}_{cc}^{\text{SM}} \epsilon_{c_{1}} \epsilon_{c_{2}}}{\text{BR}_{bb}^{\text{SM}} \epsilon_{b_{1}} \epsilon_{b_{2}}}\right)$$

DD

 μ_{c}

Charm Yukawa – Summary

Charm – Future Sensitivity

Electron Yukawa: Hadron Colliders

$$\mathsf{Br}(h o e^+e^-) = rac{|\kappa_e|^2\mathsf{Br}(h o e^+e^-)_{\mathsf{SM}}}{1+(|\kappa_e|^2-1)\mathsf{Br}(h o e^+e^-)_{\mathsf{SM}}}$$

- CMS limit Br $(h \to e^+e^-) < 0.0019$ [CMS, 1410.6679] leads to $|\kappa_e| < 611$ [Altmannshofer et al. 1503.04830]
- Estimated future sensitivities at hadron colliders:
 - 14 TeV LHC with 3000/fb: $|\kappa_e| \sim 150$
 - 100 TeV collider with 3000/fb: $|\kappa_e|\sim75$

Electron Yukawa: e^+e^- machines

- A future e^+e^- machine...
 - collecting 100 fb⁻¹ on the Higgs resonance
 - assuming 0.05% beam-energy spread
- ullet . . . would be sensitive to $|\kappa_e|\sim 15$ [Altmannshofer et al. 1503.04830]

Electron Yukawa: Indirect bounds

• Usually, the measurement of $a_e\equiv (g-2)_e/2$ is used to extract lpha

• Using independent α measurement, can make a prediction for a_e [cf. Giudice et al., 1208.6583]

With

- $\alpha = 1/137.035999037(91)$ [Bouchendira et al., 1012.3627]
- $a_e = 11596521807.3(2.8) \times 10^{-13}$ [Gabrielse et al. 1009.4831]
- ullet . . . we find $|\kappa_e| \lesssim 3000$ [Altmannshofer et al. 1503.04830]
- Bound expected to improve by a factor of 10 in the next few years

Beyond the SM – CP Violation

Electroweak Baryogenesis

- Sakharov conditions:
 - Baryon number non-conservation
 - P, CP violation
 - Thermal non-equilibrium
- A minimal setup:

$$\mathcal{L} = \frac{1}{\Lambda^2} (H^{\dagger} H)^3 + \frac{Z_t}{\Lambda^2} (H^{\dagger} H) \bar{Q}_3 H^c t_R$$

• Can we test it?

Image Credit: D. Morrisey et al.

Top Yukawa – Higgs Production and decay

- Modified top Yukawa will change Higgs production and $h \rightarrow \gamma \gamma$ decay
- $t\bar{t}h$ production also sensitive, but need very high statistics

Top Yukawa – Constraints from EDMs

- EDM induced via "Barr-Zee" diagrams [Weinberg 1989, Barr & Zee 1990]
- $|d_e/e| < 8.7 \times 10^{-29}$ cm (90% CL) [ACME 2013, 1310.7534] with ThO molecules leads to $|\tilde{\kappa}_t| \lesssim 0.01$
- Plus further constraints from mercury EDM, neutron EDM [Brod et al. 1310.1385]
- See also [Jung et al. 1308.6283; Chien et al. 1510.00725] for comprehensive analysis of theory uncertainties

Joachim Brod (TU Dortmund)

Theory News Higgs

Top Yukawa – Summary

CP Violation – Bottom Yukawa

- $h
 ightarrow b ar{b}$ dominant SM decay channel
- $\kappa_b \neq 1$ will modify all branching ratios
- EDMs lead to comparable constraints [Brod et al. 1310.1385]
- Fragmentation to baryons retains spin information [Galanti et al. 1505.02771]

CP Violation – τ Yukawa

- $\kappa_{ au} \neq 1$ will modify branching ratios
- Electron EDM gives indirect constraint
- $\tau^+ \tau^-$ spin correlation sensitive to the CP phase
- Use momentum distribution for decay $\tau^{\pm} \rightarrow (\rho^{\pm} \rightarrow \pi^{\pm}\pi^{0})\nu$ [Harnik et al. 1308.1094]

CP Violation – electron Yukawa

- $\ldots + 117$ more two-loop diagrams
- Complete analytic result [Altmannshofer et al. 1503.04830]
- $|d_e/e| < 8.7 imes 10^{-29} \, {
 m cm} \, (90\% \, {
 m CL})$ [ACME 2013, 1310.7534]
- \bullet leads to $|\tilde{\kappa}_e| < 0.017$

CP Violation: 1st generation quark Yukawas

- Complete analytic result [work in progress]
- PRELIMINARY results:

$$rac{d_n}{e} = (1.0 \pm 0.5) \left[0.36 \, ilde{\kappa}_u + 1.70 \, ilde{\kappa}_d
ight] \kappa_t imes 10^{-25} \, {
m cm} \, .$$

• \Rightarrow $|\tilde{\kappa}_u| \lesssim 0.8$, $|\tilde{\kappa}_d| \lesssim 0.2$

Beyond the SM - (Lepton) Flavor Violation

Low-Energy Constraints on Lepton Flavor Violation

g-2, EDMs

 $au
ightarrow 3\mu, \ \mu
ightarrow 3e$

 $\mu - e$ conversion

 $au
ightarrow \mu\gamma$, $\mu
ightarrow e\gamma$

$h \rightarrow \tau \mu$ at CMS

• BR
$$(h \to \tau \mu) = (0.84^{+0.39}_{-0.37})\%$$

 $\Rightarrow \sqrt{|Y_{\tau\mu}|^2 + |Y_{\mu\tau}|^2} = (2.6 \pm 0.6) \times 10^{-3}$
[Altmannshofer et al. 1507.07927]

$h \rightarrow \tau \mu$ – General Considerations

• Assume large $h \rightarrow \tau \mu$ branching ratio

- At least one particle in loop has to be charged
- \Rightarrow large dipole operator
- Either need fine tuning, or second source of EWSB [Altmannshofer et al., 1507.07927]

• 2HDM [E.g. Crivellin et al., 1501.00993; Altmannshofer et al., 1604.08221; Bizot et al. 1512.08508]

Leptoquarks [Cheung et al. 1508.01897; Dorsner et al. 1502.07784] Strong interactions [Altmannshofer et al. 1507.07927]

Theory News Higgs

Large BR($h \rightarrow \tau \mu$) in the MSSM?

- Consider the MSSM with R parity
- Soft SUSY-breaking terms violate lepton flavor at tree level
- Possible to get observed BR($h \rightarrow \tau \mu$) consistent with precision, but needs large fine tuning!
- However, all these solution ruled out by charge breaking vacua
- If BR $(h \rightarrow \tau \mu) \gtrsim O(1\%)$, the MSSM is ruled out [Aloni et al., 1511.00979]

$h \to \tau \mu$ at Belle II

- "Most direct" indirect constraint: $\tau \rightarrow \mu \pi \pi$ [Celis et al. 1309.3564]
- CMS result implies ${\rm BR}(\tau \to \mu \pi^+ \pi^-) < 1.6 \times 10^{-11}$
- BR($au
 ightarrow \mu \pi^+ \pi^-$) \lesssim few $imes 10^{-8}$ [Belle 1206.5595]
- BR $(\tau \to \mu \pi^0 \pi^0) < 1.4 \times 10^{-5}$ [Cleo hep-ex/9704010]
- Measure at Belle II?

New Ideas

Probing the atomic Higgs force

- Measure κ_e × κ_q in "atomic clock transitions" [Delaunay et al. 1601.05087]
- Characteristic $\Delta E \sim \Delta \nu$ in atomic transition
- Higgs force: Point-like, attractive small change in frequency
- Can't switch off Higgs force isotope shifts
- "Difference of differences" to eliminate nuclear uncertainties
- King's relation (1963):

 $m\delta\nu_{AA'}^2 = F_{21}\delta\nu_{AA'}^1 + K_{21} + \text{non-linear Higgs contr.}$

- Measure transitions in several isotopes (e.g., Yb^+ ion)
- Probe Yukawas with current LHC sensitivity or better

Charge asymmetries

• $hW^{\pm}
ightarrow (\ell^{\pm}
u)(\ell^{\pm}
u jj)$ charge asymmetry [Felix Yu, work in progress]

Charge asymmetries

Summary

- Higgs couplings completely determined in the SM
- That's why we need to measure them!
 - CP violation, flavor violation
- Interesting interplay between precision and collider probes
- Exciting experimental results and exciting new theoretical ideas