GAMMA MEASUREMENTS AT LHCb

FAYE CHEUNG UNIVERSITY OF OXFORD

UNIVERSITY OF

ON BEHALF OF THE LHCb COLLABORATION

16TH INTERNATIONAL CONFERENCE ON B-PHYSICS AT FRONTIER MACHINES MARSEILLE, FRANCE 2 – 6 MAY 2016

 $\gamma \, {\rm can} \, {\rm be} \, {\rm measured} \, {\rm at} \, {\rm tree}$ level

no V_{tx} terms: the only angle that can be measured with **no penguin pollution** (indirect measurement contains loop contributions)

To probe New Physics:

Are direct and indirect measurements of γ consistent?

World average from **direct** and **indirect** measurements:

BaBar: $(70 \pm 18)^{\circ}$ Belle: $(73^{+13}_{-15})^{\circ}$ LHCb: $(74.6^{+8.4}_{-9.2})^{\circ}_{CKM2014}$ $\gamma = (73.2^{+6.3}_{-7.0})^{\circ}$ $\gamma = (66.85^{+0.94}_{-3.44})^{\circ}$ Vital goal of LHCb (and flavour physics!) to measure tree-level γ to degree-level precision

LHCD

${\rm Tree-level} \ \gamma \ {\rm from} \ B \to DK$

Typical CP violation observables:

Charge asymmetries

 $A = \frac{\Gamma(B^- \to f_D K^-) - \Gamma(B^+ \to \bar{f}_D K^+)}{\Gamma(B^- \to f_D K^-) + \Gamma(B^+ \to \bar{f}_D K^+)}$

Partial width ratios

 $R = \frac{\Gamma(B^- \to f_D K^-) + \Gamma(B^+ \to \bar{f}_D K^+)}{\Gamma(B^- \to f'_D K^-) + \Gamma(B^+ \to \bar{f}'_D K^+)}$

Hadronic parameters can be determined experimentally:

 $\delta_B = \text{strong-phase difference}$

 $r_B \sim 0.1$ for $B^- \to DK^-$ = size of interference = sensitivity to γ driven by CKM factors and colour suppression factors, determined experimentally

<u>Many methods using different *D* decays:</u> may require external charm inputs for r_D or δ_D or dilution factors for multi-body decays

LHCD

Today's talk

 \succ Recent LHCb measurements of γ

• $B^- \rightarrow Dh^-, D \rightarrow \{h^+h^-, h^+h^-\pi^+\pi^-\}$ • ADS/GLW method

[arXiv:1603.08993]

• $B^0 \to DK^{*0}, D \to K^0_S \pi^+ \pi^-$

GGSZ model-dependent method

[arXiv:1605.01082]

• $B^0 \to DK^{*0}, D \to \{K^0_S \pi^+ \pi^-, K^0_S K^+ K^-\}$ [arXiv:1604.05204] • GGSZ model-independent method

"B decays to open charm" $B^0 \rightarrow DK^+\pi^-$ ADS/GLW Dalitz method [arXiv:1602.03455] S. Haines

> Latest combination of LHCb results from $B \rightarrow DK$ analyses

[LHCb-CONF-2016-001]

$B^{\pm} \rightarrow Dh^{\pm} \, \mathrm{GLW}/\mathrm{ADS} \, \mathrm{method}$

Combined analysis of $B \rightarrow DK$ and $B \rightarrow D\pi$ ($r_B^{D\pi} = 0.01$)

Gronau, London, Wyler PLB 352 (1991) 483 PLB 265 (1991) 172

Atwood, Dunietz, Soni PRL 78 (1997) 3257

GLW:
$$\Gamma(B^{\mp} \to f_D K^{\mp}) \propto 1 + r_B^2 + 2r_B \cos(\delta_B \mp \gamma)$$

ADS: $\Gamma(B^{\mp} \to f_D K^{\mp}) \propto (r_D^f)^2 + r_B^2 + 2r_B r_D^f \cos(\delta_B + \delta_D^f \mp \gamma)$

$B^{\pm} \to Dh^{\pm} \, \mathrm{GLW}/\mathrm{ADS}$

+ four-body analogues:

fractional CP-even content $F_+ = 0.737 {\pm} 0.028 \\ 2F_+ {-}1 \approx 0.5$

Malde et al., PLB 747 (2015) 9

quasi-ADS: $r_B e^{i(\delta_B - \gamma)}$ $(K^{+}\pi^{-}\pi^{+}\pi^{-})K^{-}$

 $\begin{array}{l} \text{coherence factor} \\ \kappa_D^{K3\pi} = 0.32 \pm 0.10 \end{array}$

Atwood and Soni, PRD 68 (2003) 033003 LHCb collaboration, arXiv:1602.07430

GLW: $\Gamma(B^{\mp} \to f_D K^{\mp}) \propto 1 + r_B^2 + (2F_+ - 1)2r_B\cos(\delta_B \mp \gamma)$ ADS: $\Gamma(B^{\mp} \to f_D K^{\mp}) \propto r_B^2 + (r_D^f)^2 + 2r_B r_D^f \kappa_D^f \cos(\delta_B + \delta_D^f \mp \gamma)$

$E \to DK^{\pm}$ GLW

400

 $N(B^+ + B^-)$ LHCD Енсь

[arXiv:1603.08993]

7

$B^{\pm} \rightarrow Dh^{\pm}$ ADS 2-body

[arXiv:1603.08993]

LHCD

$B^{\pm} \rightarrow Dh^{\pm}$ ADS 4-body

[arXiv:1603.08993]

 $A_{\text{ADS}(\pi)}^{\pi K \pi \pi} = 0.023 \pm 0.048 \pm 0.005$

$B^{\pm} \rightarrow Dh^{\pm}$ GLW/ADS summary

[arXiv:1603.08993]

= 1σ expectation from current knowledge of r_B , δ_B , γ

• Significant improvement in knowledge of ADS observables:

• *DK* GLW charge asymmetries:

- Results of partial width ratios consistent with expectation
- $D\pi$ modes will provide constraints on upcoming DK+ $D\pi$ γ combination

$\gamma \operatorname{from} B^0 \to DK^{*0}\operatorname{decays}$

 $\overline{K}^{*0} \to K^- \pi^+$

charge of kaon tags flavour of B unambiguously

Factor 20 lower BR than $B^{\pm} \rightarrow DK^{\pm}$ but larger interference effects $r_{B^0} = 0.3$

$B^0 \to DK^{*0}$ GGSZ model-dependent

[arXiv:1605.01082]

Decay rate at a point of the Dalitz plot: $d\Gamma(B^{0} \to DK^{*0}) \propto |A_{D}|^{2} + r_{B^{0}}^{2} |\bar{A}_{D}|^{2} + 2\kappa \operatorname{Re}\left(A_{D}^{*} \bar{A}_{D} r_{B^{0}} e^{i(\delta_{B^{0}} + \gamma)}\right)$ $d\Gamma(\overline{B}^{0} \to D\overline{K}^{*0}) \propto |A_{D}|^{2} + r_{B^{0}}^{2} |\bar{A}_{D}|^{2} + 2\kappa \operatorname{Re}\left(A_{D}^{*} \bar{A}_{D} r_{B^{0}} e^{i(\delta_{B^{0}} - \gamma)}\right)$

 $\begin{array}{l} \underline{\text{Coherence factor}} & \kappa = 0.958 \, {}^{+0.005}_{-0.010} \, {}^{+0.002}_{-0.045} \\ \\ & |m(K^{*0}) - m(K^{*0})_{\rm PDG}| < 50 \, {\rm MeV}, \ |\cos(\theta^*)| > 0.4 \\ \\ & \text{Measured in LHCb } B^0 \to DK^+\pi^- \text{ amplitude analysis} \end{array}$

S. Haines

 $B^0 \rightarrow DK^{*0}$ GGSZ model-dependent

Decay rate at a point of the Dalitz plot:

$$d\Gamma(B^{0} \to DK^{*0}) \propto |A_{D}|^{2} + r_{B^{0}}^{2} |\bar{A}_{D}|^{2} + 2\kappa \operatorname{Re}\left(\bar{A}_{D}A_{D}^{*} r_{B^{0}}e^{i(\delta_{B^{0}} + \gamma)}\right)$$
$$d\Gamma(\overline{B}^{0} \to D\overline{K}^{*0}) \propto |A_{D}|^{2} + r_{B^{0}}^{2} |\bar{A}_{D}|^{2} + 2\kappa \operatorname{Re}\left(\bar{A}_{D}A_{D}^{*} r_{B^{0}}e^{i(\delta_{B^{0}} - \gamma)}\right)$$

Fit amplitude model to data to extract CP observables: $x_{\pm} = r_{B^0} \cos(\delta_{B^0} \pm \gamma)$ BaBar
PRL 105 (2010) 121801 $y_{\pm} = r_{B^0} \sin(\delta_{B^0} \pm \gamma)$

Faye Cheung (Oxford), Beauty 2016

$B^0 \rightarrow DK^{*0}$ GGSZ model-independent

Decay rate at a point of the Dalitz plot:

 $N_{i}(B^{0}) \propto F_{\mp i} + (x_{+}^{2} + y_{+}^{2})F_{\pm i} + 2\kappa\sqrt{F_{+i}F_{-i}}(x_{+}c_{\pm i} - y_{+}s_{\pm i})$ $N_{i}(\overline{B}^{0}) \propto F_{\pm i} + (x_{-}^{2} + y_{-}^{2})F_{\mp i} + 2\kappa\sqrt{F_{+i}F_{-i}}(x_{-}c_{\pm i} + y_{-}s_{\pm i})$

Observables

 $\begin{aligned} x_{\pm} &= r_{B^0} \cos(\delta_{B^0} \pm \gamma) \\ y_{\pm} &= r_{B^0} \sin(\delta_{B^0} \pm \gamma) \end{aligned}$

Extract from simultaneous fit of $K_{\rm S}^0\pi^+\pi^-$ & $K_{\rm S}^0K^+K^$ signal yields

$B^0 \to DK^{*0}$ GGSZ model-independent

[arXiv:1604.05204]

LHCb $\gamma \operatorname{combination} \operatorname{from} B \to DK$

LHCb γ combination

Complementarity of different methods: ADS/GLW, quasi-ADS/GLW, GGSZ

Faye Cheung (Oxford), Beauty 2016

LHCb γ combination

• Most precise measurement from a single experiment:

$$\gamma = \left(70.9^{+7.1}_{-8.5}\right)^{\circ}$$

• Consistent with B-factory averages: BaBar: $(70 \pm 18)^{\circ}$ Belle: $(73^{+13}_{-15})^{\circ}$

Summary

Most precise measurement from a single experiment

 $\gamma = \left(70.9^{+7.1}_{-8.5}\right)^{\circ}$

➤ Latest LHCb γ analyses presented: $B \rightarrow DK \text{ and } B \rightarrow D\pi \text{ with ADS/GLW}$ $B^0 \rightarrow DK^{*0} \text{ with GGSZ model-independent}$ $B^0 \rightarrow DK^{*0} \text{ with GGSZ model-dependent}$

Stay tuned!

- LHCb combination including $D\pi$ modes in progress
- On-going analyses of new B decays; inclusion of Run 2 data
- $B_s \rightarrow D_s K \operatorname{Run} 1$ update

EXTRA SLIDES

5#0 520 5°C

LHCb detector

Analyses presented: $1 \text{ fb}^{-1} @ 7 \text{ TeV} + 2 \text{ fb}^{-1} @ 8 \text{ TeV}$

Important features γ for analyses

3 LHCb trigger 45% of Run 1 L0 bandwidth dedicated to hadronic trigger

VELO

B flight distance ~1 cm, impact parameter resolution ~20 µm: powerful discriminator of B mesons and essential for triggers and offline selection **RICH I & II** Particle identification: π , K, pIdentify B, D decays + cross-feed suppression

>90% kaon efficiency with 5% pion contamination

$B^{\pm} \to Dh^{\pm}\,\text{GLW/ADS}$

- Observables: charge asymmetries, partial width ratios
- Normalise to the favoured $D \to K^- \pi^+ (\pi^- \pi^+)$ decay
- Assuming $A_{CP}=0$, its charge asymmetry is a measure of combined $A_{\text{prod}} \times A_{\text{det}}$

LHCD

$\rightarrow Dh^{\pm}$ GLW/ADS results

[arXiv:1603.08993]

= 1σ expectation from current knowledge of r_B , δ_B , γ

Faye Cheung (Oxford), Beauty 2016

Gamma measurements at LHCb

$B^0 \to DK^{*0} \operatorname{GGSZ}$

Comparison of strong-phase difference from CLEO measurements and amplitude model expectation

LHCb γ combination inputs

[LHCb-CONF-2016-001]

x_D	=	0.0037 ± 0.0016	$, \qquad \kappa_D^{K3\pi} = 0.32 \pm 0.10 ,$
y_D	=	0.0066 ± 0.0009	$, \delta_D^{K3\pi} = 2.97 \pm 0.66 ,$
$\delta_D^{K\pi}$	=	3.35 ± 0.21	$, \qquad \kappa_D^{K2\pi} = 0.81 \pm 0.07 ,$
$R_D^{K\pi}$	=	0.00349 ± 0.00004	$, \qquad \delta_D^{K2\pi} = 3.14 \pm 0.30 ,$
$A_{C\!P}^{ m dir}(\pi\pi)$	=	0.0010 ± 0.0015	$, r_D^{K3\pi} = 0.0552 \pm 0.0007 ,$
$A_{CP}^{\mathrm{dir}}(KK)$	=	-0.0015 ± 0.0014	$\cdot r_D^{K2\pi} = 0.0440 \pm 0.0012.$
$F_{\pi\pi\pi^0}$ =	0.97	$73 \pm 0.017,$	$\delta_D^{K_S K \pi} = 0.46 \pm 0.28 ,$
$F_{KK\pi^0} =$	0.73	32 ± 0.055 ,	$\kappa_D^{K_S K \pi} = 1.00 \pm 0.16$.
$F_{\pi\pi\pi\pi}$ =	0.73	37 ± 0.032 .	$B^{K_S K \pi} = 0.370 \pm 0.003 \pm 0.012$
$\kappa_B^{DK^{*0}} = 0$).958 :	$\pm 0.008 \pm 0.024,$	$d_{D} = -0.010 \pm 0.000 \pm 0.012$
$\bar{R}_B^{DK^{*0}} = 1$.020	$\pm 0.020 \pm 0.060,$	$\varphi_s = -0.010 \pm 0.0091 a \mathrm{d}$.
$\bar{\Delta}_B^{DK^{*0}} = 0$).020 :	$\pm 0.025 \pm 0.110.$	

LHCb γ combination

Quantity	Value
γ (°)	70.9
68% CL (°)	[62.4, 78.0]
95% CL (°)	[51.0, 85.0]
r_B^{DK}	0.1006
$68\%~{ m CL}$	$\left[0.0946, 0.1065 ight]$
$95\%~{ m CL}$	[0.0890, 0.1120]
δ_B^{DK} (°)	141.1
68% CL (°)	[133.4, 147.2]
95% CL (°)	[122.0, 153.0]
$r_B^{DK^{*0}}$	0.217
$68\%~{ m CL}$	[0.169, 0.261]
$95\%~{ m CL}$	$\left[0.115, 0.303 ight]$
$\delta_B^{DK^{st 0}}$ (°)	189.0
68% CL (°)	$\left[169.0, 213.0\right]$
95% CL (°)	[149.0, 243.0]