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INTRODUCTION

Statistics plays a vital role in science, it is the way that we:
» quantify our knowledge and uncertainty
» communicate results of experiments
Big questions:
» how do we make discoveries, measure or exclude theoretical parameters, ...
» how do we get the most out of our data
» how do we incorporate uncertainties

» how do we make decisions

Statistics is a very big field, and it is not possible to cover everything in 3 hours. In
these talks | will try to:

- explain some fundamental ideas & prove a few things
- enrich what you already know
- expose you to some new ideas

| will try to go slowly, because if you are not following the logic, then it is not very
interesting.

- Please feel free to ask questions and interrupt at any time



LECTURE NOTES

Practical Statistics for the LHC

Kyle Cranmer
Center for Cosmology and Particle Physics, Physics Department, New York University, USA

Abstract

This document is a pedagogical introduction to statistics for particle physics.
Emphasis is placed on the terminology, concepts, and methods being used at
the Large Hadron Collider. The document addresses both the statistical tests
applied to a model of the data and the modeling itself . 1 expect to release
updated versions of this document in the future.
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FURTHER READING

By physicists, for physicists
G. Cowan, Statistical Data Analysis, Clarendon Press, Oxford, 1998.
R.J.Barlow, A Guide to the Use of Statistical Methods in the Physical Sciences, John Wiley, 1989;
F. James, Statistical Methods in Experimental Physics, 2nd ed., World Scientific, 2006;
- W.T. Eadie et al., North-Holland, 1971 (1st ed., hard to find);
S.Brandt, Statistical and Computational Methods in Data Analysis, Springer, New York, 1998.
L.Lyons, Statistics for Nuclear and Particle Physics, CUP, 1986.
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My favorite statistics book by a statistician:

Stuart, Ord, Arnold. “Kendall's Advanced Theory of Statistics” Vol. 2A Classical Inference &
the Linear Model.



OTHER LECTURES

Fred James's lectures
http://preprints.cern.ch/cgi-bin/setlink?base=AT&categ=Academic_Training&id=AT00000799

http://www.desy.de/~acatrain/
Glen Cowan’s lectures

http://www.pp.rhul.ac.uk/~cowan/stat_cern.html

Louis Lyons

http://indico.cern.ch/conferenceDisplay.py?confld=a063350
Bob Cousins gave a CMS lecture, may give it more publicly
Gary Feldman “Journeys of an Accidental Statistician”

http://www.hepl.harvard.edu/~feldman/Journeys.pdf

The PhyStat conference series at PhyStat.org:

PhYSTat Phystat Physics Statistics Code Repository

An open, loosely moderated repository for code, tools, and documents relevant to statistics in physics applications. Search and download access is universal; package
submission is loosely moderated for suitability.

Using the Site

= Lists of packages

= Search for a package

= Submit a Package

= Comment on a package (not yet available)

About the Repository

= Repository Policies and Procdures

= The Phystat Repository Steering Committee

= Comment on the repository site or policies

PHYSTAT Conference Links

= PHYSTAT @07 (CERN) @05 (Oxford) €»03 (SLAC) €02 (Durham)
= Phystat Workshops: €308 (Caltech) €306 (BIRS/Banff) €300 (Fermilab) 00 (CERN)

= More Conferences and Workshops ...


http://phystat.org
http://www.desy.de/~acatrain/
http://www.pp.rhul.ac.uk/~cowan/stat_cern.html
http://preprints.cern.ch/cgi-bin/setlink?base=AT&categ=Academic_Training&id=AT00000799
http://indico.cern.ch/conferenceDisplay.py?confId=a063350
http://www.hepl.harvard.edu/~feldman/Journeys.pdf

OUTLINE

Lecture 1: Preliminaries
» Probability Density Function vs. Likelihood
» Point estimates (measurements) and maximum likelihood estimators
Part 2: Building a probability model
» Examples of different “narratives”
» A generic template for high energy physics
Lecture 2: Hypothesis testing
» The Neyman-Pearson lemma and the likelihood ratio
» Composite models and the profile likelihood ratio
» Review of ingredients for a hypothesis test
Lecture 3: Limits & Confidence Intervals
» The meaning of confidence intervals as inverted hypothesis tests
» LHC-style CLs
» Asymptotic properties of likelihood ratios
» Bayesian approach
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TERMS
The next lectures will rely on a clear understanding of these terms:

- Random variables / “observables’” x

- Probability mass and probility density function (pdf) p(x)

- Parametrized Family of pdfs / “model” p(xla)

- Parameter a

- Likelihood L(a)

- Estimate (of a parameter) a(x)



RANDOM VARIABLE / OBSERVABLE

“Observables” are quantities that we observe or measure directly
» They are random variables under repeated observation

Discrete observables:
» number of particles seen in a detector in some time interval
» particle type (electron, muon, ...) or charge (+,-,0)

Continuous observables:
» energy or momentum measured in a detector
» Invariant mass formed from multiple particles



PROBABILITY MASS FUNCTIONS

When dealing with discrete random variables, define a
Probability Mass Function as probability for it possibility

P(x;) = p;

Defined as limit of long term frequency

» probability of rolling a 3 := limit #riais—- (# rolls with 3 / # trials)
- you don’t need an infinite sample for definition to be useful

And it Is normalized

10



PROBABILITY DENSITY FUNCTIONS

When dealing with continuous random variables, need to
introduce the notion of a Probability Density Function

P(x € |[r,x + dx|) = f(z)dx

Note, f(x)is NOT a probability

N

é0.4 ;_I | | |
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PARAMETRIZED FAMILIES / MODELS

Often we are interested in a parametried family of pdfs
» We will write these as: f(x|a) said “f of x given
- where a are the parameters of the "model” (written in greek characters)
A discrete example:

» The Poisson distribution is a probability mass function for », the
number of events one observes, when one expects u events
. ne !t
Pois(n|p) = p o

A continuous example

» The Gaussian distribution is a probability density function for a
continuous variable x characterized by a mean x4 and standard
deviation o

1 (z—p)?
G(x|p,0) = e 202

V2o

12



THE LIKELIHOOD FUNCTION

Consider the Poisson distribution describes a discrete event count »
for a real-valued mean u.

e M
Pois(n|u) = ”7
The likelihood of i given » is the same i )
equation evaluated as a function of u 6— (@ —
» Now it's a continuous function 5 — -
—21n L(ne=31 1)

» But it is not a pdf! P -
L(p) = Pois(n|p)

Common to plotthe -In L (or -21In L)
» helps avoid thinking of it as a PDF

] ] n [ 3 | 6
» connection to 2 distribution .
Figure from R. Cousins,

Am. J. Phys. 63 398 (1995)

13



REPEATED OBSERVATIONS

In particle physics we are usually able to perform repeated
observations of x that are independent & identically distributed

» These repeated observations are written {x;}
» and the likelihood in that case Is

= Hf($i|04)

» and the log-likelihood is

log L(« Zlogf T;| o)

14
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ESTIMATORS

Given some model f(x|a) and a set of observations {x;} often one

wants to estimate the true value of a (assuming the model is true).

An estimator is function of the data written &(z1,...z,)
» Since the data are random, so is the resulting estimate

» often it is just written ¢, where the x-dependence is implicit
» one can compute expectation of the estimator

Ela(z)]o] = / &(2) f (z]a)dz

Properties of estimators:
» bias Efa(x)|lal —a  (unbiased means bias=0)
» variance E[(a(z) — a)*|a] = / (&(z) — &) f(z]a)dx
» asymptotic bias limit of bias with infinite observations

16



MAXIMUM LIKELIHOOD ESTIMATORS

There are many different possible estimators, but the most well-
known and well-studied is the maximum likelihood estimator (MLE)

) | | | | ]
&(x) = argmax, L(a) = argmax,, f(z|a) | y -
0 d
This is just the value of a that maximizes the likelihood 5| —
i =2 1In L(ne=3 1 ) ]
S0 E B
Example: the Poisson distribution SETTTTT -
e H 2 - -
Pois(n|p) = " —— 5 i
(n|p) . E -
Maximizing L(u) is the same as minimizing -In L(x) 055 M 5 s
d d n Figure from R. Cousins
——InL(p)|, =0=— | p—nl nn! | =1- = /
Ay ()l Ay (“ " ”“+§1%) y Am. J. Phys. 63 398 (1995)
= 1=n

In this case, the MLE is unbiased b/c E[n]=u
17



A SECOND EXAMPLE

Consider a set of observations {x;} and we want to estimate the mean
of a Gaussian with known ¢

Clalp,0) = —p—e™ T
. . p— 20
which gives Sl \/27“76
d d (#i — ) (zi — p)
dwﬂwww(z 7 L,_/”)Z =
v const v

= [ = % Z z; (an unbiased estimator) .
i

1

However, the MLE 6° = = » (z: - »)? is biased
1

It can be shown that 42 = 7 2w — ©)? IS unbiased

Thus, the MLE is asymptotially unbiased .

Note: if G2 is an unbiased estimate of 02, then \/{0?} is a biased estimate of T.

18



“(GREEDY BUMP BIAS”

MLE of cross-section when the mass is also allowed to float is also

biased.

» fit preferentially adjusts mass to find upward fluctuations
» For fixed s/b, the bias goes away asymptotically.

See “Greedy bump bias” by Tommaso Dorigo

http://www.science20.com/quantum_diaries_survivor/bump_hunting_ii_greedy bump_bias

Pseudoexperiment |

PE

Entries
Mean
2% | ndf
Prob
p0

pi

p2

1100
0.0528
99.39/97
0.4137
9.81:0.39
119=26

-0.2942 = 0.2266

Number of fitted events

Results

120
100

80|~

60—
40

20

Entries 1000

Mean 103.7

o—lllllllllillllllllll
-300 -200 -100 O

100 200 300

19


http://www.science20.com/quantum_diaries_survivor/bump_hunting_ii_greedy_bump_bias

COVARIANCE AND CORRELATION

Define covariance covlx,y] (also use matrix notation V) as

covlz,y] = Elzy] — papy = El(z — pa)(y — py)]
Correlation coefficient (dimensionless) defined as

cov|z, y]

Pry —
Y O';Ea'y

If x, y, independent, i.e., f(x,y) = fz(x)fy(y), then

Elry] = / / ry f(x,y) dedy = pgpy
— cov|z,y] =0 x and y, ‘uncorrelated’

N.B. converse not always true.

[G. Cowan]
20



CORRELATION (CONT.)

p=0.75

p = 0.95

(@)

10

()

10

(b)

10

10

p= —0.75

p=0.25

[G. Cowan]
21



CORRELATION (CONT.)

1 0.8 0.4 0 -0.4 -0.8
1 1 1 -1 -1

2R 4
- S S

0 0 0
&‘ . .“.('. c'\ . L
‘s g '::.' -}’%\ \'r-.} x ~ e
oW N &
% ’ 1.'3’-; A ‘ . : o .l' ” -] y
7}33? B pher - .

http://en.wikipedia.org/wiki/Correlation_and_dependence
22


http://en.wikipedia.org/wiki/Correlation_and_dependence

MUTUAL INFORMATION

Mutual Information is a more general notion of ‘correlation’

I(X;Y)=> > plx,y) log( p(z.y) ), I(X:Y) = H(X) — H(X|Y)

yeY zeX p1(z) pa(y) — H(Y) — H(Y|X)
= H(X)+ H(Y) - H(X,Y)
v it is symmetric: [(X;Y) = I(Y;X)
» If and only if X)Y totally independent: 1(X;Y)=0

» possible for X,Y to be uncorrelated, but not independent

Mutual Information doesn’t seem
to be used much within HEP, but
it seems quite useful

23



CRAMER-RAO BOUND

The minimum variance bound on an estimator is given by the
Crameér-Rao inequality:

» simple univariate case:
var(0) = E[(0 — 0)?]
» For an unbiased estimator the Crameér-Rao bound states
A 1
v
var(6) > 1(9)
» where 1(0) is the Fisher information

(Z(0)),,=E [ade (X 9)—lnf X;O)IH] .

» General form for multiple parameters

cov[f|];; > ()

Maximum Likelihood Estimators asymptotically reach this bound

24
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BAYES' THEOREM

Bayes’ theorem relates the conditional and
marginal probabilities of events A & B

P(B|A)P(A)
P(B)

= P(A) is the prior probability. It is "prior" in the sense that
it does not take into account any information about B.

P(A|B) =

= P(A1B) is the conditional probability of A, given B. It is
also called the posterior probability because it is
derived from or depends upon the specified value of B.

= P(B1A) is the conditional probability of B given A.

= P(B) is the prior or marginal probability of B, and acts
as a normalizing constant.

f(x]0)7(0)
N

w(0|x) = x L(0)m(0)

26


http://en.wikipedia.org/wiki/Prior_probability
http://en.wikipedia.org/wiki/Conditional_probability
http://en.wikipedia.org/wiki/Posterior_probability
http://en.wikipedia.org/wiki/Normalizing_constant

... IN PICTURES (FROM BOB COUSINS)

P, Conditional P, and Derivation of Bayes’ Theorem
in Pictures
0 P(B) =

P(A) = ——

@
Whole space L

0
‘B P(AIB) = " P(BIA) =

P(A N B) = —

.‘-

Don't forget about “Whole space™ (3 | will drop it from the
notation typically, but occasionally it is important.

Bob Cousins, CMS, 2008 — P(BIA) = P(AIB) X P(B) / P(A)

27



LOUIS'S EXAMPLE

P (Data;Theory) %= P (Theory;Data)

Theory = male or female

Data = pregnant or not pregnant

P (pregnant ; female) ~ 3%
but

P (female ; pregnant) >>>3%

28



AXIOMS OF PROBABILITY

These Axioms are a mathematical starting point
for probability and statistics

1. probabillity for every element, E, is non-
negative P(E)>0 VECF =2°

2. probability for the entire space of
possibilitiesis 1 P(Q2) = 1.

3. If elements E; are disjoint, probability is
additive P(E,UE,U---) = P(E;).

Consequences:
P(AU B) = P(A)+ P(B) — P(AN B)

P(Q\ E) =1 — P(E)

Kolmogorov
axioms (1933)

29



DIFFERENT DEFINITIONS OF PROBABILITY

Frequentist -
» defined as limit of long term frequency . ;’ A
» probability of rolling a 3 := limit of (# rolls with 3 / # trials) ‘\ ’

- you don’t need an infinite sample for definition to be useful

- sometimes ensemble doesn’t exist
« eg. P(Higgs mass = 125 GeV), P(it will snow tomorrow)

» Intuitive if you are familiar with Monte Carlo methods

» compatible with orthodox interpretation of probability in Quantum Mechanics.
Probability to measure spin projected on x-axis if spin of beam is polarized
along +z

Subjective Bayesian (D = 1
- Probability is a degree of belief (personal, subjective) 2
- can be made quantitative based on betting odds

- most people’s subjective probabilities are not coherent and do not obey
laws of probability

http://plato.stanford.edu/archives/sum2003/entries/probability-interpret/#3.1
30
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CHANGE OF VARIABLES

What happens with x— cos(x) 2500
1 import numpy as np 2000
2 import matplotlib.pyplot as plt
2
4 N_MC=100000 # number of Monte Carlo Experiments 1500
5 nBins = 50 # number of bins for Histograms
b
7 data_x, data_y = [],[] #lists that will hold x and vy 1000
9 ¥ do experiments 500

16 for i in range(N_MC):

11 ¥ generate observation for X

12 X = np.random.uniform(@,2%np.pi) 0

3 7

14 y = np.cos(x)

15 data_x.append(x) 10000

16 data_y.append(y)

17

18 ¥setup figures 8000

19 fig = plt.figure(figsize=(13,5))

20 fig_x = fig.add_subplot(1,2,1)

21 fig_y = fig.add_subplot(1,2,2) 6000

22

23 fig_x.hist(data_x,nBins)

24  fig_x.set_xlabel('angle') 4000

25

26 fig_y.hist(data_y,nBins) 000

27  fig_y.set_xlabel('cos(angle)"')

28

29  plt.show() 0
~1.0 —0.5 0.0

cos(angle)



CHANGE OF VARIABLES

If f{(x) is the pdf for x and y(x) is a change of variables, then the pdf
g(y) must satisfy

Tp y(zp)
Plr, <x<umyp) = / f(x)dx = /( | g(y)dy = P(y(x,) <y < y(xp))

We can rewrite the integral on the right

y(fli'b) Iy dy
/ g(y)dyI/ g(y(r)) | 5| do
y(a?a) La dCE

therefore, the two pdfs are related by a Jacobian factor

f(x) = g(y) Z—i




AN EXAMPLE

0.18

0.16

0.14

0.12

1 2
27 |sin(z)|

0.10

g(y) =

0.08

0.06

0.04

0.02

7 O'91.0 -0.5 0.0 0.5 1.0

cos(angle)




SUMMARY
Change of variable x, change of parameter 0

For pdf p(xI0) and change of variable from x to y(x):
p(y(x)10) = p(xI6) / Idy/dxI.

Jacobian modifies probability density, guaranties that
P(y(X;)<y<y(x,)) = P(x;<x<Xx,),i.e., that

Probabilities are invariant under change of variable x.

— Mode of probability density is not invariant (so, e.g.,
criterion of maximum probability density is ill-defined).

— Likelihood ratio is invariant under change of variable x.
(Jacobian in denominator cancels that in numerator).

For likelihood £(6) and reparametrization from 6 to u(6):
L£(0) = L(u(e)) ().

— Likelihood £ (0) is invariant under reparametrization of
parameter 0 (reinforcing fact that £ is not a pdf in 0).

Bob Cousins, CMS, 2008
35



PROBABILITY INTEGRAL TRANSFORM

Consider a specific change of variables related to the cumulative for
some arbitrary f(x)

y(x) = /:; f(z")dx’

Using our general change of variables formula:

f(x) = g(y) Z—i

We find for this case the Jacobian factor is

dy|
. = f(x)

Thus g(y) =1



SUMMARY
Probability Integral Transform

“...seems likely to be one of the most fruitful conceptions
introduced into statistical theory in the last few years”
— Egon Pearson (1938)

Given continuous x € (a,b), and its pdf p(x), let
y(x) =/, p(x)dx’ .
Theny e (0,1) and p(y) = 1 (uniform) for all y. (!)
So there always exists a metric in which the pdf is uniform.

Many issues become more clear (or trivial) after this
transformation®. (If x is discrete, some complications.)

The specification of a Bayesian prior pdf p(u) for parameter
u is equivalent to the choice of the metric f(u) in which
the pdf is uniform. This is a deep issue, not always
recognized as such by users of flat prior pdf’s in HEP!

*And the inverse transformation provides for efficient M.C. generation of p(x) starting from RAN().
Bob Cousins, CMS, 2008

37



Modeling:
The Scientific Narrative



BUILDING A MODEL OF THE DATA
Before one can discuss statistical tests, one must have a “model” for
the data.

» by “model”, | mean the full structure of P(data | parameters)

- holding parameters fixed gives a PDF for data
- provides ability to generate pseudo-data (via Monte Carlo)
- holding data fixed gives a likelihood function for parameters

* note, likelihood function is not as general as the full model because it doesn’t
allow you to generate pseudo-data

Both Bayesian and Frequentist methods start with the model
» it's the objective part that everyone can agree on

» it's the place where our physics knowledge, understanding, and
intuiting comes in

» building a better model is the best way to improve your statistical
procedure

39



THE SCIENTIFIC NARRATIVE

The model can be seen as a quantitative summary of the analysis

» If you were asked to justify your modeling, you would tell a story
about why you know what you know

- based on previous results and studies performed along the way

» the quality of the result is largely tied to how convincing this story
Is and how tightly it is connected to model

| will describe a few “narrative styles”

» The “Monte Carlo Simulation” narrative

» The “Data Driven” narrative

» The “Effective Modeling” narrative

Real-life analyses often use a mixture of these

40



THE SIMULATION NARRATIVE

1 The language of the Standard Model is Quantum Field Theory
Phase space Q) defines initial measure, sampled via Monte Carlo

1 1 1
ESM = _WMV . WHY — _BMVB/U/ el G/;V

4 4 4 H

\ 4
VY

kinetic energies and self-interactions of the gauge bosons

_ 1 1 _ 1
+  L~*(i0, — 597 W, — §g’YBM)L + Ry*(i0,, — §g'YBH)R

kinetic energies and electroweak interactions of fermions

7

1 1

L, . , 2
2 ’(Zau - §gT'Wu - 59 YBM)CM — V(9

W*,Z ~,and Higgs masses and couplings

4

"

!l = a T —
9" (v Taq) G}, + (G\LoR + G:Rp.L+ h.c.)
~ TV - N TV -
interactions between quarks and gluons fermion masses and couplings to Higgs

41



THE SIMULATION NARRATIVE

b) splitting functions, Sudokov form factors, and hadronization models

2 ) ) Perturbation theory used to systematically approximate the theory.

c) all sampled via accept/reject Monte Carlo P(particles | partons)

4/

.

0 Q.
4"
[

.
\
U
U

hard scattering

partonic decays, e.g.

t - bW

parton shower
evolution

colour singlets
colourless clusters

cluster fission

42



THE SIMULATION NARRATIVE

Detailed simulations of particle interactions with matter.

3 ) Next, the interaction of outgoing particles with the detector is simulated.

Key:

Transverse slice
through CMS

Accept/reject style Monte Carlo integration of very complicated function
P(detector readout | initial particles)

[ I | | | I | T

Om m 2m im am 5m 6m /m

Muon

Electron

Charged Hadron (e.g. Pion)
Neutral Hadron (e.g. Neutron)
Photon

©)

Silicon
Tracker

|

Electromagnetic
Calorimeter

Hadron Superconducting
Calorimeter Solenoid

Iron return yoke interspersed
with Muon chambers

[ et \ || e

D Bamaey, CERN, Febriguy 2004

N
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THE SIMULATION NARRATIVE

on the simulated data as if it were from real data. This allows us to look at distribution
of any observable that we can measure in data.
P( observable | detector readout)

4 ) From the simulated response of the detector, we run reconstruction algorithms

> 1 06 T T T T | T T T T T T T T | T T T T | T T T T |§
8 1 05 ATLAS ® data
s ] Z+jets
< 1 04 H— eevv (mH=4OO GeV) [Jtop
(2 _ -1 B Diboson
£ q0° f L dt = 35 pb T Warets
e+ w10 \s © —— Signal (m =400 GeV
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THE EFFECTIVE MODEL NARRATIVE

In contrast, one can describe a distribution with some parametric function
» “we fit background to a polynomial”, exponential, ...

» While this is convenient and the fit may be good, the narrative is weak
PHYSICAL REVIEW D 79, 112002 (2009)
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THE EFFECTIVE MODEL NARRATIVE

In contrast, one can describe a distribution with some parametric function
» “we fit background to a polynomial®, exponential, ...
» while this is convenient and the fit may be good, the narrative is weak
» often effective, parametric model is “validated” with simulation

> 10000f— ~ ~ v~ T T T T r T
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N 5000 e  Data2011+2012 N
; | Sig+Bkg Fit (mH=126.8 GeV) _|
I I S EELEEEEE Bkg (4th order polynomial) =
Q 6000~ ATLAS Preliminary —
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2000 — s 1 &
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THE PARAMETRIZED RESPONSE NARRATIVE
The Matrix-Element technique (aka MELA) is conceptually similar to the simulation
narrative, but the detector response is parametrized.

» one still does integration over the unobserved “true” 4-momentum, but does not
need to do much larger integration over interactions inside detector

P
M+
L(z|H,) = -
|
_.ff‘—\ n\\"/\\‘ ‘ - :'fh-“"-_

.-"-'I. Y ,: "-‘.‘. :? s | TTTT TTTT TTTT LI UL | UL | UL | TTT7T | T
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\ \ o :
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c 0054 .

~1 T~ 1 A 3 |

A \ ol . Lol - -
J N 145 150 155 160 165 170 175 180 185

1877 1745 2219 1577 1785 @2r9 1577 175 2979 M, [GeV/c




CHOICE: DATA DRIVEN VS. SIMULATION

In the case of the CDF bump, the Z+jets control sample provides a data-driven
estimate, but limited statistics. Using the simulation narrative over the data-

driven is a choice. If you trust that narrative, it's a good choice.

Events/(8 GeV/c?)

—— CDF data (4.3 fo™)| 1

— Gaussian 2.5%
B WW+WZ 4.8%
I W+Jets 78.0%
Top 6.3%

B Z+jets 2.8%
QCD 5.1%

200
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THE DATA-DRIVEN NARRATIVE

Regions in the data with negligible signal expected used as control samples
- simulated events are used to estimate extrapolation coefficients

- extrapolation coefficients may have theoretical and experimental
uncertainties

: [ [
'S 10* ECMS Preliminary E
~ - —e— Signal, m =160 GeV|
QT I WeJets, tW .
q:, 3l [ di-boson B
> 107 ¢  ; 3
o - Bl Drell-Yan -
i ete” Channel i
10° E
10
1 — I
-1
10 ™50 40 60 80 100 12 60 180 200

2
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“ABCD” method




WHAT DO WE MEAN BY UNCERTAINTY?
Let's consider a simplified problem that has been studied quite a bit to
gain some insight into our more realistic and difficult problems

» number counting with background uncertainty
- In our main measurement we observe non With s+b expected

Pois(non|s + b)
» and the background has some uncertainty

- but what is “background uncertainty”? Where did it come from?
- maybe we would say background is known to 10% or that it has some pdf =(b)
« then we often do a smearing of the background:

P(non|s) = / db Pois(nnls + b) 7 (b)),

» Where does n(b) come from?

« did you realize that this is a Bayesian procedure that depends on some prior
assumption about what b is?
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THE “"ON/OFF"” PROBLEM

Now let’'s say that the background was estimated from some control
region or sideband measurement.

» We can treat these two measurements simultaneously:

- main measurement: observe non with s+b expected
- sideband measurement: observe nos with 7b expected

P(non, noft|s, b) = Pois(nen|s + b) Pois(neg|7b)

joint model main measurement sideband
- In this approach “background uncertainty” is a statistical error

- justification and accounting of background uncertainty is much more clear
How does this relate to the smearing approach?

P(nonls) = / dbPois(noy|s + b) 7(b),

» while 7 (b)is based on data, it still depends on some original prior (b)

L o P(noff|b)77(b)
m(0) = PORet) = 5 i B o by (5)
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VISUALIZING PROBABILITY MODELS

| will represent PDFs graphically as below (directed acyclic graph)
» eg. a GaussianG (x|, o) is parametrized by (u, o)
» every node is a real-valued function of the nodes below

100

80

AN
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ROOFIT: A DATA MODELING TOOLKIT

RooFit is a major tool developed at BaBar for data modeling.
RooStats provides higher-level statistical tools based on these PDFs.

RooAddPdf
sum
RooGaussian RooRealVar RooGaussian RooRealVar RooArgusBG
gaussl glfrac gauss2 g2frac argus
RooRealVar RooRealVar RooRealVar RooRealVar RooRealVar RooRealVar
meanl sigma X mean2 argpar cutoff
Elswgram OTXWSY XV MW Y__X Y

Mean x=-0.2493
Meany= 15
RMS x = 2,384

_ Addition — Composition (‘plug & play”)
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g(x,;m,s)

Possible in any PDF
No explicit support in PDF code needed

— Convolution
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MARKED POISSON PROCESS

Channel: a subset of the data defined by some selection
requirements.

» eg. all events with 4 electrons with energy > 10 GeV
» n. number of events observed in the channel
» v: number of events expected in the channel

Discriminating variable: a property of those events that can be
measured and which helps discriminate the signal from background

» eg. the invariant mass of two particles
» f{x): the p.d.f. of the discriminating variable x

D={x1,...,x,}
Marked Poisson Process / Extended Likelihood:

f(D|v) = Pois(n|v) | [ f(z)
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MIXTURE MODEL

Sample: a sample of simulated events corresponding to particular
type interaction that populates the channel.

» statisticians call this a mixture model

flzr) = — Vs fs(T) ,  Viot = Vs
Vt
ot
SESampleS Sésamples

>106""I""""I""I""
O ATLAS

5 e data
g 10 ] Z+jets
< 1 04 H— eevv ( —400 GeV) [ Jtop
2 B Dib
£ q0° f L dt = 35 pb” = e,
> 5 Js = 7 TeV [ Multijet
w10 —— Signal (m =400 GeV

IIIIIlIJJ IIIIILIJJ IIIIILIJJ Ilm IIIIIIH] IIIIIIH] IIIIIILI| R

-3
107, 50 100 150 200 250
ET° [GeV]
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PARAMETRIZING THE MODEL o = (i, 0)

Parameters of interest (u): parameters of the theory that modify the
rates and shapes of the distributions, eqg.

» the mass of a hypothesized particle
» the “signal strength” u=0 no signal, u=1 predicted signal rate

Nuisance parameters (0 or ap): associated to uncertainty in:
» response of the detector (calibration)
» phenomenological model of interaction in non-perturbative regime

Lead to a parametrized model: p — y(a), f(a:) — f(:zt|a)

n

£(D|a) = Pois(nlv(a)) [] (x|

e=1
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INCORPORATING SYSTEMATIC EFFECTS

Tabulate effect of individual variations of sources of systematic uncertainty
- typically one at a time evaluated at nominal and "+ 1 ¢”

» use some form of interpolation to parametrize p* variation in terms of
nuisance parameter o,

Events / 5 GeV

\

1 06 I I I I | : : : : : : : : | : : : : | : : : : = I_' L l T 0 T ] TV T I L B A l LA [ L B A l L A B l LA '_l 1
3 | A RooPlot of "x" | [ Histogram of hh__x_alpha | hh_x_aipha
s ATLAS e data ] naz 7300
10 B Z+ets - | s
104 H— eevv (m =400 GeV) [ top - 2 P gy s
B Diboson = .41 '
10° f L dt = 35 pb” o 5 N
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10 — Signal (m =400 GeV) 5 5.
10 E 3

;
10"
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f(D|a) = Pois(n|v(a)) | | f(ze|a)
e—=1
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VISUALIZING THE MODEL FOR ONE CHANNEL

10°
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VISUALIZING THE MODEL FOR ONE CHANNEL

After parametrizing each
component of the mixture model,
the pdf for a single channel might
look like this

Events / 5 GeV

107
0 50 100 150 200 250

o ’ E™ [GeV]
omm , ‘

ﬁ?ﬁiﬁ: ”‘|f‘
E

ZINS==27 m&;so ///////‘\\\\\ ///'\\\\\ /// \\\ DI )U' ‘\\\\D jf m
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SIMULTANEOUS MULTI-CHANNEL MODEL

Simultaneous Multi-Channel Model: Several disjoint regions of the
data are modeled simultaneously. |dentification of common
parameters across many channels requires coordination between
groups such that meaning of the parameters are really the same.

fsim(Dsim|a) — H POIS nc‘Vc H fc CEce

cEchannels

where Dsim — {Dh IR 7Dcmax}

Control Regions: Some channels are not populated by signal
processes, but are used to constrain the nuisance parameters

» attempt to describe systematics in a statistical language

» Prototypical Example: “on/off” problem with unknown v,
f(n,m|u,vy) = Pois(n|u + vp) - Pois(m|Tup)
— —

signal region control region
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CONSTRAINT TERMS

Often detailed statistical model for auxiliary measurements that
measure certain nuisance parameters are not available.

» one typically has MLE for a,, denoted ap and standard error
Constraint Terms: are idealized pdfs for the MLE.
fp(aplap) for pes
» common choices are Gaussian, Poisson, and log-normal
» New: careful to write constraint term a frequentist way
» Previously: m(aylay) = fplap|ap)n(ay,) with uniform n

Simultaneous Multi-Channel Model with constraints:

fiot (Dsim, G| ) = H Pois(n.|v.(a)) H fe(Tee|) | - H folaplap)

cE€channels L e=1 1  péES

where

Slm {DlwﬂaDcmaX}, Q:{ap} for peS
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CONCEPTUAL BUILDING BLOCKS

A Ensemble
B
Experiment
! =
~
> ~
C N
Channel Constraint Term

Legend:
A "has manyn Bs. ¢ € channels fp(ap I ap)
B "has a" C. f (xla) . :
Dashed is optional. c p € parameters with constraints

Event Sample
global observable
e € events s € samples

a

{1...nC}
We will use the following mnemonic index conventions:
A4

Observable(s) Distribution Expected Number of Events ® ¢ C events
xec fsc (xla) Us e b € bins
? \ e c € channels
“' e s € samples
Shape Variation Parameter

fscp(x | @, = X) a 0, e p € parameters




EXAMPLE OF DIGITAL PUBLISHING

EROOT Dbje':t BI‘OWSEI‘ File Edit View Options |Inspect Classes ---IEI]-IJeI—T;|
File View Options A RooPlot of "x"
Qwspaceroot +| @ [o, lEElE] <G[0 E] @] | 3o
All Folders Contents of "/ROOT Files/wspace.root" % ao:—
(] mot i B
(_JPROOF Sessions j 60—
C__]."user."ved&e*e."tooﬁt."woﬂ(dir : E
[:.I ROOT Fiks MyWorkSpace ;1 40-_
) P — E
RooFit's Workspace now provides the -
ability to save in a ROOT file the full ! : o
likelihood model, any priors you might LARooPlot of "m" |

want, and the minimal data necessary to
reproduce likelihood function.

Need this for combinations, as p-value is
not sufficient information for a proper 2
combination.

Projection of profile likelihood
o

U IIIIIIIlll]lllllllllllllllllllllll

I N N T T T e T T T
01 -0.08 006 004 002 0 002 004 0.06 008 041
m
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HISTFACTORY

32 page documentation of HistFactory tool + manual
» currently a “living document”

Report
number

o] o] o] hittp://cds.cern.ch/record/1456844

Preprint

CERN-OPEN-2012-016

Title

HistFactory: A tool for creating statistical models for use with RooFit and RooStats

Author(s)

Cranmer, Kyle (New York U.) ; Lewis, George (New York U.) ; Moneta, Lorenzo (CERN) ;
Shibata, Akira (New York U.) ; Verkerke, Wouter (NIKHEF, Amsterdam)

Collaboration ROOT Collaboration

Abstract

The HistFactory is a tool to build parametrized probability density functions (pdfs) in the
RooFit/RooStats framework based based on simple ROOT histograms organized in an XML file. The
pdf has a restricted form, but it is sufficiently flexible to describe many analyses based on template
histograms. The tool takes a modular approach to build complex pdfs from more primative
conceptual building blocks. The resulting PDF is stored in a RooWorkspace which can be saved to
and read from a ROOT file. This document describes the defaults and interface in HistFactory 5.32.
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COMBINED ATLAS HIGGS SEARCH
State of the art: At the time of the discovery, the combined Higgs search included
100 disjoint channels and >500 nuisance parameters

» Models for individual channels come from about 11 sub-groups performing
dedicated searches for specific Higgs decay modes

» In addition low-level performance groups provide tools for evaluating systematic
effects and corresponding constraint terms

Higgs Decay Sulf)s:f;ent Additional Sub-Channels R?Ifge L [fb~!]
H — vy — 9 sub-channels (pr, ®n, ® conversion) 110-150 4.9
ey {d4e,2e2u,2u2e,4u} 110-600 4.8
H— 77 vy {ee,uu}t ® {low pile-up, high pile-up} 200-280-600 4.7
llqq {b-tagged, untagged} 200-300-600 4.7
TAAY {ee,eu,uu}t @ {0-jet, 1-jet, VBF} 110-300-600 4.7

H—WW a : :
vqq' {e,u} ® {0-jet, 1-jet} 300-600 4.7
%R {eu} @ {0-jet} ® {1-jet, VBE,VH} 110-150 4.7
H—t 't {Thaq3V {e.nt @ {0et} ® {E%HSS < 20 GeV} 110-150 4.7
® {e,u} ® {1-jet, VBF}

Thad Thad 2V {l—jet} 110-150 4.7
Z—vv Emiss ¢ 1120 — 160, 160 — 200, > 200 GeV} 110-130 4.6
VH — bb W—tv  ple{<50,50 100,100 — 200, > 200 GeV} 110-130 4.7
Z— p% € {< 50,50 — 100,100 — 200, > 200 GeV} 110-130 4.7




VISUALIZING THE COMBINED MODEL

State of the art: At the time of the discovery, the combined Higgs search
included 100 disjoint channels and >500 nuisance parameters

RooFit / RooStats: is the modeling language (C++) which provides
technologies for collaborative modeling

» provides technology to publish likelihood functions digitally
» and more, it's the full model so we can also generate pseudo-data

fiot (Dsim, Glar) = H Pois(n.|v.(a)) H fe(Tee|l) | - H folaplap)

. cEchannels L e=1 pES
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HISTOGRAM INTERPOLATION

Several interpolation algorithms exist: eg. Alex Read’s “horizontal”

histogram interpolation algorithm (RoolntegralMorph in RooFit)

» take several PDFs, construct interpolated PDF with additional
nuisance parameter a

A.L. Read | Nuclear Instruments and Methods in Physics Research A 425 (1999) 357 360

P R Simple “vertical”
S oo o DELPHI interpolation bin-by-bin.
= 0.05 | . |
§ 0.04 | 3 —1‘;_.
0.03 [

0.02 F
0.0l £ -

0 ; e ---‘—"'7 — -"x.';“ el
40 S50 60 70 &80 90 100

Alternative “horizontal”

interpolation algorithm by
Max Baak called

o “RooMomentMorph” in
3+ RooFit (faster and

3] numerically more stable)
5]
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COMMON CONSTRAINTS TERMS

Many uncertainties have no clear statistical description or it is impractical to provide

Traditionally, we use Gaussians, but for large uncertainties it is clearly a bad choice

- quickly falling tail, bad behavior near physical boundary, optimistic p-values, ...

For systematics constrained from control samples and dominated by statistical uncertainty, a
Gamma distribution is a more natural choice [PDF is Poisson for the control sample]

» longer tail, good behavior near boundary, natural choice if auxiliary is based on counting

For “factor of 2" notions of uncertainty log-normal is a good choice

» can have a very long tail for large uncertainties

None of them are as good as an actual model for the auxiliary measurement, if available

S
5
To consistently switch between frequentist, “
Bayesian, and hybrid procedures, need to be k5
clear about prior vs. likelihood function S
(=}
o
PDF(y| B) Prior(3) Posterior(B|y)
Gaussian uniform Gaussian
Poisson uniform Gamma
Log-normal 1/3 Log-Normal

’_l ll llllllll Illll]llllllllll[llllllllllllll lllll
0.1
0.08/— Truncated Gaussian
006: Gamma
TR Log-normal
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PARAMETRIC VS. NON-PARAMETRIC PDFS
No parametric form, need to construct non-parametric PDFs
From Monte Carlo samples, one has empirical PDF
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PARAMETRIC VS. NON-PARAMETRIC P

Classic example of a non-parametric PDF is t

Thist(€) =

|z
1~
] =

D

-5

ne histogram

"Ll
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PARAMETRIC VS. NON-PARAMETRIC P
Classic example of a non-parametric PDF is

DFS

the histogram

but they depend on bin width and starting position

w.S 1 w
hist (L) = N Z h;
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PARAMETRIC VS. NON-PARAMETRIC PDFS
Classic example of a non-parametric PDF is the histogram

“Average Shifted Histogram” minimizes effect of binning
N
w 1 w
fasu(x) = NZK (x — ;)
I I I I I Zl I I I I I I I I
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KERNEL DENSITY ESTIMATION

Kernel estimation is the generalization of Average Shifted
Histograms

—  K.C., Comput.Phys.Commun. 136 (2001).
[hep-ex/0011057]

i =3 % ()

1/5
0= )
folx

Probability Density

nlh ool

T
] ] ] ] -| ] ] ] ] | ] ] ] ] | ] ] ] ]

0.94 0.95 0.96 0.97 0.98 0.99
Neural Network Output

“the data is the model”

Adaptive Kernel estimation puts wider kernels in regions of low
probability

Used at LEP for describing pdfs from Monte Carlo (KEYS)
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MULTIVARIATE, NON-PARAMETRIC PDFS

Kernel Estimation has a nice generalizations to higher dimensions
» practical limit is about 5-d due to curse of dimensionality

Max Baak has coded N-dim Correlations e g

T e U |

KEYS pdf described in L

Gomput Phys.Comrmun. 135 (2001) I « 2-d projection of ood B /. .
RooFit. pdf from previous Y oot | 4Lk
slide. _,

These pdfs have been used . RooNDKeys pdf
as the basis for a automatically

multivariate discrimination models (fine)

technique called “PDE” otmean SN

between
observables ...

fs(Z)
fs(f) -+ fb(f)

Max Baak

D(7) =




GAUSSIAN PROCESSES
§

https://speakerdeck.com/dfm/pydata-time-series-analysis-gps-and-exoplanets
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AN EXOPLANET EXAMPLE

10000 =%
5000

—o000
—10000

sanst

relative brightness [ppm|
&=

160 480 500 520
time |days|

https://speakerdeck.com/dfm/pydata-time-series-analysis-gps-and-exoplanets



GAUSSIAN PROCESSES

logp(y |, 0,0, @) =~ - [y~ Fo(@)]" Kal, )" [y~ fol(@)

1 N
~3 logdet Ko (@, 0) — 5 log2m

where

[Ka(a:, 0')] — 0'7;2 52'3' ka(a:i, Q?j)
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