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INTRODUCTION

Statistics plays a vital role in science, it is the way that we: 
‣ quantify our knowledge and uncertainty 
‣ communicate results of experiments 

Big questions: 
‣ how do we make discoveries, measure or exclude theoretical parameters, ... 
‣ how do we get the most out of our data 
‣ how do we incorporate uncertainties 
‣ how do we make decisions 

Statistics is a very big field, and it is not possible to cover everything in 3 hours.  In 
these talks I will try to: 
‣ explain some fundamental ideas & prove a few things 
‣ enrich what you already know 
‣ expose you to some new ideas  

I will try to go slowly, because if you are not following the logic, then it is not very 
interesting.   
‣ Please feel free to ask questions and interrupt at any time
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Links: 
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https://www.authorea.com/users/1369/articles/20483/_show_article
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FURTHER READING
By physicists, for physicists 

G. Cowan, Statistical Data Analysis, Clarendon Press, Oxford, 1998. 
R.J.Barlow, A Guide to the Use of Statistical Methods in the Physical Sciences, John Wiley, 1989; 
F. James, Statistical Methods in Experimental Physics, 2nd ed., World Scientific, 2006;  

‣ W.T. Eadie et al., North-Holland, 1971 (1st ed., hard to find); 
S.Brandt, Statistical and Computational Methods in Data Analysis, Springer, New York, 1998. 
L.Lyons, Statistics for Nuclear and Particle Physics, CUP, 1986. 

My favorite statistics book by a statistician: 
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OTHER LECTURES

Fred James’s lectures 

Glen Cowan’s lectures 

Louis Lyons 

Bob Cousins gave a CMS lecture, may give it more publicly  
Gary Feldman “Journeys of an Accidental Statistician” 

The PhyStat conference series at PhyStat.org:
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http://www.desy.de/~acatrain/

http://www.pp.rhul.ac.uk/~cowan/stat_cern.html

http://preprints.cern.ch/cgi-bin/setlink?base=AT&categ=Academic_Training&id=AT00000799

http://indico.cern.ch/conferenceDisplay.py?confId=a063350

http://www.hepl.harvard.edu/~feldman/Journeys.pdf
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OUTLINE

Lecture 1: Preliminaries 
‣ Probability Density Function vs. Likelihood 
‣ Point estimates (measurements) and maximum likelihood estimators 

Part 2: Building a probability model 
‣ Examples of different “narratives”  
‣ A generic template for high energy physics 

Lecture 2: Hypothesis testing 
‣ The Neyman-Pearson lemma and the likelihood ratio 
‣ Composite models and the profile likelihood ratio 
‣ Review of ingredients for a hypothesis test 

Lecture 3: Limits & Confidence Intervals 
‣ The meaning of confidence intervals as inverted hypothesis tests 
‣ LHC-style CLs 
‣ Asymptotic properties of likelihood ratios 
‣ Bayesian approach
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TERMS

The next lectures will rely on a clear understanding of these terms: 

‣ Random variables / “observables” x

‣ Probability mass and probility density function (pdf) p(x) 

‣ Parametrized Family of pdfs / “model” p(x|α) 

‣ Parameter α 

‣ Likelihood L(α) 

‣ Estimate (of a parameter)  α̂(x)

8



RANDOM VARIABLE / OBSERVABLE

“Observables” are quantities that we observe or measure directly  
‣ They are random variables under repeated observation  

Discrete observables: 
‣ number of particles seen in a detector in some time interval 
‣ particle type (electron, muon, ...) or charge (+,-,0) 

Continuous observables: 
‣ energy or momentum measured in a detector 
‣ invariant mass formed from multiple particles

9



PROBABILITY MASS FUNCTIONS

When dealing with discrete random variables, define a 
Probability Mass Function as probability for ith possibility 

Defined as limit of long term frequency 
‣ probability of rolling a 3 := limit #trials→∞ (# rolls with 3 / # trials) 

" you don’t need an infinite sample for definition to be useful 

And it is normalized 

10

P (xi) = pi

X

i

P (xi) = 1



PROBABILITY DENSITY FUNCTIONS

When dealing with continuous random variables, need to 
introduce the notion of a Probability Density Function  

Note,          is NOT a probability 

PDFs are always normalized to unity:
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PARAMETRIZED FAMILIES / MODELS

Often we are interested in a parametried family of pdfs 
‣ We will write these as:                said “f of x given α” 

" where α are the parameters of the “model” (written in greek characters) 
A discrete example: 
‣ The Poisson distribution is a probability mass function for n, the 

number of events one observes, when one expects μ events 

A continuous example 
‣ The Gaussian distribution is a probability density function for a 

continuous variable x characterized by a mean μ and standard 
deviation σ
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f(x|↵)

Pois(n|µ) = µn e�µ

n!

G(x|µ,�) = 1p
2⇡�

e

� (x�µ)2
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THE LIKELIHOOD FUNCTION

Consider the Poisson distribution describes a discrete event count n 
for a real-valued mean µ. 

The likelihood of µ given n is the same 
equation evaluated as a function of µ 
‣ Now it’s a continuous function 
‣ But it is not a pdf! 

Common to plot the -ln L  (or  -2 ln L) 
‣ helps avoid thinking of it as a PDF 
‣ connection to χ2 distribution
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Likelihood-Ratio Interval example

68% C.L. likelihood-ratio interval 

for Poisson process with n=3 

observed:

L (µ) = µ3 exp(-µ)/3!

Maximum at µ = 3.

Bob Cousins, CMS, 2008 35

∆2lnL = 12 for approximate ±1 

Gaussian standard deviation  

yields interval [1.58, 5.08]

Figure from R. Cousins,             

Am. J. Phys. 63 398 (1995)

L(µ) = Pois(n|µ)

Pois(n|µ) = µn e�µ

n!



REPEATED OBSERVATIONS

In particle physics we are usually able to perform repeated 
observations of x that are independent & identically distributed 
‣ These repeated observations are written {xi} 
‣ and the likelihood in that case is 

‣ and the log-likelihood is 
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L(↵) =
Y

i

f(xi|↵)

logL(↵) =

X

i

log f(xi|↵)
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ESTIMATORS

Given some model             and a set of observations {xi} often one 
wants to estimate the true value of α (assuming the model is true). 

An estimator is function of the data written  
‣ Since the data are random, so is the resulting estimate 
‣ often it is just written    , where the x-dependence is implicit 
‣ one can compute expectation of the estimator 

Properties of estimators: 
‣ bias                              (unbiased means bias=0) 
‣ variance 
‣ asymptotic bias limit of bias with infinite observations
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f(x|↵)

↵̂(x1, . . . xn)

↵̂

E[↵̂(x)|↵]� ↵

E[(↵̂(x)� ↵)2|↵] =
Z

(↵̂(x)� ↵)2f(x|↵)dx

E[↵̂(x)|↵] =
Z

↵̂(x)f(x|↵)dx
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MAXIMUM LIKELIHOOD ESTIMATORS

There are many different possible estimators, but the most well-
known and well-studied is the maximum likelihood estimator (MLE) 
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Likelihood-Ratio Interval example

68% C.L. likelihood-ratio interval 

for Poisson process with n=3 

observed:

L (µ) = µ3 exp(-µ)/3!

Maximum at µ = 3.

Bob Cousins, CMS, 2008 35

∆2lnL = 12 for approximate ±1 

Gaussian standard deviation  

yields interval [1.58, 5.08]

Figure from R. Cousins,             

Am. J. Phys. 63 398 (1995)

↵̂(x) = argmax↵L(↵) = argmax↵f(x|↵)

This is just the value of α that maximizes the likelihood

Example: the Poisson distribution  

Maximizing L(μ) is the same as minimizing -ln L(μ)

Pois(n|µ) = µn e�µ

n!

) µ̂ = n

� d

dµ
lnL(µ)

��
µ̂
= 0 =

d

dµ

0

@µ� n lnµ+ lnn!|{z}
const

1

A = 1� n

µ

In this case, the MLE is unbiased b/c E[n]=μ



A SECOND EXAMPLE

Consider a set of observations {xi} and we want to estimate the mean 
of a Gaussian with known σ

which gives 

                          

However, the MLE                            is biased 

It can be shown that                                    is unbiased 

Thus, the MLE is asymptotially unbiased .
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N
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�̂
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1

N

X

i

(xi � µ)2

�̂

2 =
1

N � 1

X

i

(xi � µ)2

(an unbiased estimator) .

Note: if σ̂² is an unbiased estimate of σ², then √{σ̂²} is a biased estimate of σ.



“GREEDY BUMP BIAS”
MLE of cross-section when the mass is also allowed to float is also 
biased.  
‣ fit preferentially adjusts mass to find upward fluctuations 
‣ For fixed s/b, the bias goes away asymptotically. 

See “Greedy bump bias” by Tommaso Dorigo  
http://www.science20.com/quantum_diaries_survivor/bump_hunting_ii_greedy_bump_bias
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http://www.science20.com/quantum_diaries_survivor/bump_hunting_ii_greedy_bump_bias


COVARIANCE AND CORRELATION
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Define covariance cov[x,y] (also use matrix notation Vxy) as  

Correlation coefficient (dimensionless) defined as

If x, y, independent, i.e., ,   then

→ x and  y, ‘uncorrelated’

N.B. converse not always true.
[G. Cowan]



CORRELATION (CONT.) 
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[G. Cowan]



CORRELATION (CONT.) 
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http://en.wikipedia.org/wiki/Correlation_and_dependence

http://en.wikipedia.org/wiki/Correlation_and_dependence


MUTUAL INFORMATION

Mutual Information is a more general notion of ‘correlation’  

‣ it is symmetric:  I(X;Y) = I(Y;X) 
‣ if and only if X,Y totally independent:   I(X;Y)=0 
‣ possible for X,Y to be uncorrelated, but not independent

23
X

Y Mutual Information doesn’t seem 
to be used much within HEP, but 
it seems quite useful



CRAMÉR-RAO BOUND

The minimum variance bound on an estimator is given by the 
Cramér-Rao inequality: 
‣ simple univariate case: 

‣ For an unbiased estimator the Cramér-Rao bound states 

‣ where I(θ) is the Fisher information 

‣ General form for multiple parameters: 

Maximum Likelihood Estimators asymptotically reach this bound

24

var(�̂) = E[(� � �̂)2]

var(�̂) � 1
I(�)

cov[

ˆ✓|✓]ij � I�1
ij (✓)
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BAYES’ THEOREM

Bayes’ theorem relates the conditional and 
marginal probabilities of events A & B 

▪ P(A) is the prior probability. It is "prior" in the sense that    
it does not take into account any information about B.

▪ P(A |B) is the conditional probability of A, given B. It is   
also called the posterior probability because it is 
derived from or depends upon the specified value of B.

▪ P(B |A) is the conditional probability of B given A.  
▪ P(B) is the prior or marginal probability of B, and acts   

as a normalizing constant.

26

P (A|B) =
P (B|A)P (A)

P (B)

⇡(✓|x) = f(x|✓)⇡(✓)
N / L(✓)⇡(✓)

http://en.wikipedia.org/wiki/Prior_probability
http://en.wikipedia.org/wiki/Conditional_probability
http://en.wikipedia.org/wiki/Posterior_probability
http://en.wikipedia.org/wiki/Normalizing_constant


... IN PICTURES (FROM BOB COUSINS)

27

P, Conditional P, and Derivation of Bayes’ Theorem       

in Pictures

A B

Whole space

P(A) = P(B)  = 

P(A B) = 

P(B|A) = P(A|B) = 

P(B) × P(A|B) = × =

P(A ∩ B) = 

P(A) × P(B|A) = × = =   P(A ∩ B) 

=   P(A ∩ B) 

! P(B|A)  = P(A|B) × P(B) / P(A) Bob Cousins, CMS, 2008 7

Don’t forget about “Whole space”    .  I will drop it from the 
notation typically, but occasionally it is important. 

�



LOUIS’S EXAMPLE
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16

P (Data;Theory)         P (Theory;Data)!

Theory  = male or female

Data =   pregnant or not pregnant

P (pregnant ; female) ~ 3%

but

P (female ; pregnant) >>>3%



AXIOMS OF PROBABILITY

These Axioms are a mathematical starting point 
for probability and statistics  

1. probability for every element, E, is non-
negative 

2. probability for the entire space of 
possibilities is 1 

3. if elements Ei are disjoint, probability is 
additive 

Consequences:

29

Kolmogorov 

axioms (1933)



DIFFERENT DEFINITIONS OF PROBABILITY
Frequentist 
‣ defined as limit of long term frequency 
‣ probability of rolling a 3 := limit of (# rolls with 3 / # trials) 

" you don’t need an infinite sample for definition to be useful 
"  sometimes ensemble doesn’t exist 
• eg. P(Higgs mass = 125 GeV), P(it will snow tomorrow) 

‣ Intuitive if you are familiar with Monte Carlo methods 
‣ compatible with orthodox interpretation of probability in Quantum Mechanics.  

Probability to measure spin projected on x-axis if spin of beam is polarized 
along +z 

Subjective Bayesian 
‣ Probability is a degree of belief (personal, subjective) 

" can be made quantitative based on betting odds 
" most people’s subjective probabilities are not coherent and do not obey 

laws of probability

30

http://plato.stanford.edu/archives/sum2003/entries/probability-interpret/#3.1

|⇤� | ⇥⌅|2 =
1
2

http://plato.stanford.edu/archives/sum2003/entries/probability-interpret/#3.1
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CHANGE OF VARIABLES

What happens with x→ cos(x)

32



CHANGE OF VARIABLES

If f(x) is the pdf for x and y(x) is a change of variables, then the pdf 
g(y) must satisfy  

We can rewrite the integral on the right 

therefore, the two pdfs are related by a Jacobian factor 

33

Z
y(xb)

y(xa)
g(y)dy =

Z
xb

xa

g(y(x))

����
dy

dx

���� dx

f(x) = g(y)

����
dy

dx

����

P (x
a

< x < x

b

) ⌘
Z

xb

xa

f(x)dx =

Z
y(xb)

y(xa)
g(y)dy ⌘ P (y(x

a

) < y < y(x
b

))



AN EXAMPLE
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f(x) = g(y)

����
dy

dx

����

y(x) = cos(x)

f(x) =
1

2⇡
g(y) =

1

2⇡

2

| sin(x)| =
1

⇡

1p
1� y

2



SUMMARY
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Change of variable x, change of parameter θ

• For pdf p(x|θ) and change of variable from x to y(x): 

p(y(x)|θ) = p(x|θ) / |dy/dx|. 

Jacobian modifies probability density, guaranties that            

P( y(x1)< y < y(x2) )  =  P(x1 < x < x2 ), i.e., that

Probabilities are invariant under change of variable x.

– Mode of probability density is not invariant (so, e.g., – Mode of probability density is not invariant (so, e.g., 

criterion of maximum probability density is ill-defined).

– Likelihood ratio is invariant under change of variable x. 

(Jacobian in denominator cancels that in numerator).

• For likelihood L(θ) and reparametrization from θ to u(θ):

L(θ)  =  L(u(θ))   (!).

– Likelihood L (θ) is invariant under reparametrization of 

parameter θ (reinforcing fact that L is not a pdf in θ).
Bob Cousins, CMS, 2008 15



PROBABILITY INTEGRAL TRANSFORM

Consider a specific change of variables related to the cumulative for 
some arbitrary f(x) 

Using our general change of variables formula: 

We find for this case the Jacobian factor is  

Thus  

36

y(x) =

Z
x

�1
f(x0)dx0

f(x) = g(y)

����
dy

dx

����

����
dy

dx

���� = f(x)

g(y) = 1



SUMMARY
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Probability Integral Transform

“…seems likely to be one of the most fruitful conceptions 

introduced into statistical theory in the last few years”   

− Egon Pearson (1938) 

Given continuous x ∈ (a,b), and its pdf p(x), let

y(x) = !a
x 

p(x′) dx′ .

Then y ∈ (0,1) and p(y) = 1 (uniform) for all y. (!)

So there always exists a metric in which the pdf is uniform.  So there always exists a metric in which the pdf is uniform.  

Many issues become more clear (or trivial) after this 

transformation*. (If x is discrete, some complications.)

The specification of a Bayesian prior pdf p(µ) for parameter 

µ is equivalent to the choice of the metric f(µ) in which 

the pdf is uniform.  This is a deep issue, not always 

recognized as such by users of flat prior pdf’s in HEP!

*And the inverse transformation provides for efficient M.C. generation of p(x) starting from RAN().
Bob Cousins, CMS, 2008 16



Modeling: 
The Scientific Narrative



BUILDING A MODEL OF THE DATA

Before one can discuss statistical tests, one must have a “model” for 
the data.   
‣ by “model”, I mean the full structure of P(data | parameters) 

" holding parameters fixed gives a PDF for data 
" provides ability to generate pseudo-data (via Monte Carlo) 
" holding data fixed gives a likelihood function for parameters 
• note, likelihood function is not as general as the full model because it doesn’t 

allow you to generate pseudo-data 

Both Bayesian and Frequentist methods start with the model 
‣ it’s the objective part that everyone can agree on 
‣ it’s the place where our physics knowledge, understanding, and 

intuiting comes in 
‣ building a better model is the best way to improve your statistical 

procedure

39



THE SCIENTIFIC NARRATIVE

The model can be seen as a quantitative summary of the analysis 
‣ If you were asked to justify your modeling, you would tell a story 

about why you know what you know 
" based on previous results and studies performed along the way 

‣ the quality of the result is largely tied to how convincing this story 
is and how tightly it is connected to model 

I will describe a few “narrative styles” 
‣ The “Monte Carlo Simulation” narrative 
‣ The “Data Driven” narrative 
‣ The “Effective Modeling” narrative 

Real-life analyses often use a mixture of these

40



THE SIMULATION NARRATIVE
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P =
|�f |i⇥|2

�f |f⇥�i|i⇥
P ! L�

d� � |M|2d⌦

The language of the Standard Model is Quantum Field Theory 
Phase space Ω defines initial measure, sampled via Monte Carlo1)

LSM =
1

4
Wµν · W

µν
−

1

4
BµνB

µν
−

1

4
Ga

µνG
µν
a

︸ ︷︷ ︸

kinetic energies and self-interactions of the gauge bosons

+ L̄γµ(i∂µ −
1

2
gτ · Wµ −

1

2
g′Y Bµ)L + R̄γµ(i∂µ −

1

2
g′Y Bµ)R

︸ ︷︷ ︸

kinetic energies and electroweak interactions of fermions

+
1

2

∣
∣(i∂µ −

1

2
gτ · Wµ −

1

2
g′Y Bµ) φ

∣
∣
2
− V (φ)

︸ ︷︷ ︸

W±,Z,γ,and Higgs masses and couplings

+ g′′(q̄γµTaq) Ga
µ

︸ ︷︷ ︸

interactions between quarks and gluons
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Generation of an e+e−

→ tt̄ → bb̄W +W − event

• hard scattering

• (QED) initial/final
state radiation

• partonic decays, e.g.
t → bW

• parton shower
evolution

• nonperturbative
gluon splitting

• colour singlets

• colourless clusters

• cluster fission

• cluster → hadrons

• hadronic decays

a) Perturbation theory used to systematically approximate the theory.   
b) splitting functions, Sudokov form factors, and hadronization models 
c) all sampled via accept/reject Monte Carlo P(particles | partons)

2)
THE SIMULATION NARRATIVE
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Next, the interaction of outgoing particles with the detector is simulated.  
Detailed simulations of particle interactions with matter.   
Accept/reject style Monte Carlo integration of very complicated function 
P(detector readout | initial particles)

3)
THE SIMULATION NARRATIVE
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From the simulated response of the detector, we run reconstruction algorithms 
on the simulated data as if it were from real data.  This allows us to look at distribution 
of any observable that we can measure in data.
P( observable | detector readout)

4)

10 ATLAS collaboration: Search for the Standard Model Higgs Boson

Table 5. Numbers of events estimated as background, observed in data and expected from signal in the H → ZZ → ℓℓqq search
for low mass (mH < 360 GeV) and high mass (mH ≥ 360 GeV) selections. The signal, quoted at two mass points, includes small
contributions from ℓℓℓℓ and ℓℓνν decays. Electron and muon channels are combined. The uncertainties shown are the statistical
and systematic uncertainties, respectively.

Source low mass selection high mass selection
Z+jets 214± 4± 27 9.1± 0.9± 1.4
W+jets 0.33 ± 0.16 ± 0.17 −

tt̄ 0.94 ± 0.09 ± 0.25 0.08 ± 0.02± 0.03
Multi-jet 3.81 ± 0.65 ± 1.91 0.11 ± 0.11± 0.06

ZZ 3.80 ± 0.10 ± 0.73 0.30 ± 0.03± 0.06
WZ 2.83 ± 0.05 ± 0.88 0.29 ± 0.02± 0.10

Total background 226± 4± 28 9.9± 0.9± 1.5
H → ZZ → ℓℓqq 0.60 ± 0.01 ± 0.12 (mH = 200 GeV) 0.24± (< 0.001) ± 0.05 (mH = 400 GeV)

Observed 216 11

data. The multi-jet background in the electron channel is
derived from a sample where the electron identification
requirements are relaxed. In the muon channel, the multi-
jet background is estimated from a simulated sample of
semi-leptonically decaying b- and c-quarks and found to be
negligible after the application of the mℓℓ selection. This
was verified in data using leptons with identical charges.

6.3.2 Results for the H → ZZ → ℓℓνν search

The H → ZZ → ℓℓνν analysis is performed for Higgs
boson masses between 200 GeV and 600 GeV in steps of
20 GeV. Table 6 summarises the numbers of events ob-
served in the data, the estimated numbers of background
events and the expected numbers of signal events for two
selectedmH values. For the low mass selections, five events
are observed in data compared to an expected number of
events from background sources only of 5.8±0.5±1.3. The
corresponding results for the high mass selections are five
events observed in data compared to an expected yield of
3.5±0.4±0.8 events from background sources only. In ad-
dition to the H → ZZ → ℓℓνν decays, several other Higgs
boson channels give a non-negligible contribution to the
total expected signal yield. In particular, H → WW (∗) →
ℓνℓν decays can lead to final states that are very similar
to H → ZZ → ℓℓνν decays. They are found to contribute
significantly to the signal yield at low mH values. The
expected number of events from H → WW (∗) → ℓνℓν de-
cays relative to that from H → ZZ → ℓℓνν decays is 76%
for mH = 200 GeV and 9% for mH = 300 GeV. The kine-
matic selections prevent individual candidates from being
accepted by both searches. The Emiss

T distribution before
vetoing events with low Emiss

T is shown in Fig. 7.

7 Combination method

The limit-setting procedure uses the power-constrained
profile likelihood method known as the Power Constrained
Limit, PCL [13, 14, 64]. This method is preferred to the
more familiar CLs [15] technique because the constraint
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Fig. 7. Distribution of missing transverse energy in the H →
ZZ → ℓℓνν search in the electron channel before vetoing events
with low Emiss

T . The expected yield for a Higgs boson with
mH = 400 GeV is also shown.

is more transparently defined and it has reduced overcov-
erage resulting in a more precise meaning of the quoted
confidence level. The resulting PCL median limits have
been found to be around 20% tighter than those obtained
with the CLs method in several Higgs searches. The ap-
plication of the PCL method to each of the individual
Higgs boson search channels is described in Refs. [7–11].
A similar procedure is used here. The individual analyses
are combined by maximising the product of the likelihood
functions for each channel and computing a likelihood ra-
tio. A single signal normalisation parameter µ is used for
all analyses, where µ is the ratio of the hypothesised cross
section to the expected Standard Model cross section.

Each channel has sources of systematic uncertainty,
some of which are common with other channels. Table 7
lists the common sources of systematic uncertainties, which
are taken to be 100% correlated with other channels. Let
the search channels be labelled by l (l = H → γγ, H →
WW , . . . ), the background contribution, j, to channel l

e+
e-

mu-

mu+

THE SIMULATION NARRATIVE
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In contrast, one can describe a distribution with some parametric function 
‣ “we fit background to a polynomial”, exponential, ... 
‣ While this is convenient and the fit may be good, the narrative is weak
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renormalization and factorization scales to 2!0 instead of
!0 reduces the cross section prediction by 5%–10%, and
setting Rsep ¼ 2 increases the cross section by& 10%. The
PDF uncertainties estimated from 40 CTEQ6.1 error PDFs
and the ratio of the predictions using MRST2004 [37] and
CTEQ6.1 are shown in Fig. 1(b). The PDF uncertainty is
the dominant theoretical uncertainty for most of the mjj

range. The NLO pQCD predictions for jets clustered from
partons need to be corrected for nonperturbative under-
lying event and hadronization effects. The multiplicative
parton-to-hadron-level correction (Cp!h) is determined on
a bin-by-bin basis from a ratio of two dijet mass spectra.
The numerator is the nominal hadron-level dijet mass
spectrum from the PYTHIA Tune A samples, and the de-
nominator is the dijet mass spectrum obtained from jets
formed from partons before hadronization in a sample
simulated with an underlying event turned off. We assign
the difference between the corrections obtained using
HERWIG and PYTHIA Tune A as the uncertainty on the
Cp!h correction. The Cp!h correction is 1:16" 0:08 at
low mjj and 1:02" 0:02 at high mjj. Figure 1 shows the
ratio of the measured spectrum to the NLO pQCD predic-
tions corrected for the nonperturbative effects. The data
and theoretical predictions are found to be in good agree-
ment. To quantify the agreement, we performed a "2 test
which is the same as the one used in the inclusive jet cross
section measurements [15,17]. The test treats the system-
atic uncertainties from different sources and uncertainties
on Cp!h as independent but fully correlated over all mjj

bins and yields "2=no: d:o:f: ¼ 21=21.

VI. SEARCH FOR DIJET MASS RESONANCES

We search for narrow mass resonances in the measured
dijet mass spectrum by fitting the measured spectrum to a
smooth functional form and by looking for data points that
show significant excess from the fit. We fit the measured
dijet mass spectrum before the bin-by-bin unfolding cor-
rection is applied. We use the following functional form:

d#

dmjj
¼ p0ð1$ xÞp1=xp2þp3'lnðxÞ; x ¼ mjj=

ffiffiffi
s

p
; (2)

where p0, p1, p2, and p3 are free parameters. This form fits
well the dijet mass spectra from PYTHIA, HERWIG, and NLO
pQCD predictions. The result of the fit to the measured
dijet mass spectrum is shown in Fig. 2. Equation (2) fits the
measured dijet mass spectrum well with "2=no: d:o:f: ¼
16=17. We find no evidence for the existence of a resonant
structure, and in the next section we use the data to set
limits on new particle production.

VII. LIMITS ON NEW PARTICLE PRODUCTION

Several theoretical models which predict the existence
of new particles that produce narrow dijet resonances are
considered in this search. For the excited quark q( which

decays to qg, we set its couplings to the SM SUð2Þ, Uð1Þ,
and SUð3Þ gauge groups to be f ¼ f0 ¼ fs ¼ 1 [1], re-
spectively, and the compositeness scale to the mass of q(.
For the RS graviton G( that decays into q !q or gg, we use
the model parameter k= !MPl ¼ 0:1 which determines the
couplings of the graviton to the SM particles. The produc-
tion cross section increases with increasing k= !MPl; how-
ever, values of k= !MPl ) 0:1 are disfavored theoretically
[38]. For W 0 and Z0, which decay to q !q0 and q !q respec-
tively, we use the SM couplings. The leading-order pro-
duction cross sections of the RS graviton, W 0, and Z0 are
multiplied by a factor of 1.3 to account for higher-order
effects in the strong coupling constant $s [39]. All these
models are simulated with PYTHIATune A. Signal events of
these models from PYTHIA are then passed through the
CDF detector simulation. For all the models considered
in this search, new particle decays into the modes contain-
ing the top quark are neither included in the #sig predic-
tions nor in the signal dijet mass distribution modeling,
since such decays generally do not lead to the dijet
topology.
The dijet mass distributions from q( simulations with

masses 300, 500, 700, 900, and 1100 GeV=c2 are shown in
Fig. 2. The dijet mass distributions for the q(, RS graviton,
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FIG. 2 (color online). (a) The measured dijet mass spectrum
(points) fitted to Eq. (2) (dashed curve). The bin-by-bin unfold-
ing corrections is not applied. Also shown are the predictions
from the excited quark, q(, simulations for masses of 300, 500,
700, 900, and 1100 GeV=c2, respectively (solid curves). (b) The
fractional difference between the measured dijet mass distribu-
tion and the fit (points) compared to the predictions for q( signals
divided by the fit to the measured dijet mass spectrum (curves).
The inset shows the expanded view in which the vertical scale is
restricted to "0:04.
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renormalization and factorization scales to 2!0 instead of
!0 reduces the cross section prediction by 5%–10%, and
setting Rsep ¼ 2 increases the cross section by& 10%. The
PDF uncertainties estimated from 40 CTEQ6.1 error PDFs
and the ratio of the predictions using MRST2004 [37] and
CTEQ6.1 are shown in Fig. 1(b). The PDF uncertainty is
the dominant theoretical uncertainty for most of the mjj

range. The NLO pQCD predictions for jets clustered from
partons need to be corrected for nonperturbative under-
lying event and hadronization effects. The multiplicative
parton-to-hadron-level correction (Cp!h) is determined on
a bin-by-bin basis from a ratio of two dijet mass spectra.
The numerator is the nominal hadron-level dijet mass
spectrum from the PYTHIA Tune A samples, and the de-
nominator is the dijet mass spectrum obtained from jets
formed from partons before hadronization in a sample
simulated with an underlying event turned off. We assign
the difference between the corrections obtained using
HERWIG and PYTHIA Tune A as the uncertainty on the
Cp!h correction. The Cp!h correction is 1:16" 0:08 at
low mjj and 1:02" 0:02 at high mjj. Figure 1 shows the
ratio of the measured spectrum to the NLO pQCD predic-
tions corrected for the nonperturbative effects. The data
and theoretical predictions are found to be in good agree-
ment. To quantify the agreement, we performed a "2 test
which is the same as the one used in the inclusive jet cross
section measurements [15,17]. The test treats the system-
atic uncertainties from different sources and uncertainties
on Cp!h as independent but fully correlated over all mjj

bins and yields "2=no: d:o:f: ¼ 21=21.

VI. SEARCH FOR DIJET MASS RESONANCES

We search for narrow mass resonances in the measured
dijet mass spectrum by fitting the measured spectrum to a
smooth functional form and by looking for data points that
show significant excess from the fit. We fit the measured
dijet mass spectrum before the bin-by-bin unfolding cor-
rection is applied. We use the following functional form:

d#

dmjj
¼ p0ð1$ xÞp1=xp2þp3'lnðxÞ; x ¼ mjj=

ffiffiffi
s

p
; (2)

where p0, p1, p2, and p3 are free parameters. This form fits
well the dijet mass spectra from PYTHIA, HERWIG, and NLO
pQCD predictions. The result of the fit to the measured
dijet mass spectrum is shown in Fig. 2. Equation (2) fits the
measured dijet mass spectrum well with "2=no: d:o:f: ¼
16=17. We find no evidence for the existence of a resonant
structure, and in the next section we use the data to set
limits on new particle production.

VII. LIMITS ON NEW PARTICLE PRODUCTION

Several theoretical models which predict the existence
of new particles that produce narrow dijet resonances are
considered in this search. For the excited quark q( which

decays to qg, we set its couplings to the SM SUð2Þ, Uð1Þ,
and SUð3Þ gauge groups to be f ¼ f0 ¼ fs ¼ 1 [1], re-
spectively, and the compositeness scale to the mass of q(.
For the RS graviton G( that decays into q !q or gg, we use
the model parameter k= !MPl ¼ 0:1 which determines the
couplings of the graviton to the SM particles. The produc-
tion cross section increases with increasing k= !MPl; how-
ever, values of k= !MPl ) 0:1 are disfavored theoretically
[38]. For W 0 and Z0, which decay to q !q0 and q !q respec-
tively, we use the SM couplings. The leading-order pro-
duction cross sections of the RS graviton, W 0, and Z0 are
multiplied by a factor of 1.3 to account for higher-order
effects in the strong coupling constant $s [39]. All these
models are simulated with PYTHIATune A. Signal events of
these models from PYTHIA are then passed through the
CDF detector simulation. For all the models considered
in this search, new particle decays into the modes contain-
ing the top quark are neither included in the #sig predic-
tions nor in the signal dijet mass distribution modeling,
since such decays generally do not lead to the dijet
topology.
The dijet mass distributions from q( simulations with

masses 300, 500, 700, 900, and 1100 GeV=c2 are shown in
Fig. 2. The dijet mass distributions for the q(, RS graviton,
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FIG. 2 (color online). (a) The measured dijet mass spectrum
(points) fitted to Eq. (2) (dashed curve). The bin-by-bin unfold-
ing corrections is not applied. Also shown are the predictions
from the excited quark, q(, simulations for masses of 300, 500,
700, 900, and 1100 GeV=c2, respectively (solid curves). (b) The
fractional difference between the measured dijet mass distribu-
tion and the fit (points) compared to the predictions for q( signals
divided by the fit to the measured dijet mass spectrum (curves).
The inset shows the expanded view in which the vertical scale is
restricted to "0:04.
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excited-quark masses of 500, 800, and 1200 GeV are over-
laid, and the bin-by-bin significance of the data-background
difference is shown.

each ν, the backgrounds in the bins bνi were evaluated
from a simultaneous five-parameter fit of the signal and
background distributions to ensure that the background
determination would not be biased by the presence of
any signal. The four background parameters were those
in Eqn. 1; the fifth parameter consisted of the normaliza-
tion of the predicted νth q∗ signal template. To avoid ac-
ceptance bias, the lowest q∗ test mass used was 300 GeV.
For every q∗ mass, Eqn. 2 was computed for a range of
possible signal yields, s, and the resulting likelihood func-
tion was multiplied by a flat prior in s to give a posterior
probability density in s. The 95% probability region was
then determined by integration of the posterior proba-
bility distribution. This Bayesian technique was found
to yield credibility intervals that corresponded well with
frequentist confidence intervals. This was verified by per-
forming a series of pseudo-experiments to determine, by
way of a standard frequentist calculation, the coverage,
or the fraction of times that the 95% Bayesian credibility
interval contained the true number of signal events.
The dominant sources of systematic uncertainty, in de-

creasing order of importance, were the absolute jet en-
ergy scale (JES), the background fit parameters, the in-
tegrated luminosity, and the jet energy resolution (JER).
The JES uncertainty was quantified as a function of pT
and ηjet, with values in the range 6 ∼ 9% [20, 33, 34].
The jet calibration relied on the MC simulation of the
response of the ATLAS detector; its uncertainty was con-
strained by varying the ATLAS simulation and from in

situ information. The systematic uncertainty on the de-
termination of the background was taken from the uncer-
tainty on the parameters resulting from the fit of Eqn. 1
to the data sample. The uncertainty on σ · A due to
integrated luminosity was estimated to be ±11% [35].
The JER uncertainty was treated as uniform in pT and
ηjet with a value of ±14% on the fractional pT resolu-
tion of each jet [36]. The effects of JES, background
fit, integrated luminosity, and JER were incorporated
as nuisance parameters into the likelihood function in
Eqn. 2 and then marginalized by numerically integrating
the product of this modified likelihood, the prior in s,
and the priors corresponding to the nuisance parameters
to arrive at a modified posterior probability distribution.
In the course of applying this convolution technique, the
JER was found to make a negligible contribution to the
overall systematic uncertainty.
Figure 2 depicts the resulting 95% CL upper limits on

σ ·A as a function of the q∗ resonance mass after incorpo-
ration of systematic uncertainties. Linear interpolations
between test masses were used to determine where the
experimental bound intersected with a theoretical pre-
diction to yield a lower limit on allowed mass. The cor-
responding observed 95% CL excited-quark mass exclu-
sion region was found to be 0.30 < mq∗ < 1.26 TeV us-
ing MRST2007 PDFs in the ATLAS default MC09 tune.
Table I shows the results obtained using CTEQ6L1 [37]
and CTEQ5L [38] PDF sets. The variations in the ob-
served limit associated with the error eigenvectors of
a CTEQ PDF set were found to be smaller than the
spread displayed in Table I. The excluded regions were
∼30 GeV greater when only statistical uncertainties were
taken into account. The expected limits corresponding to
the data sample were computed using an analogous ap-
proach, but replacing the actual data with pseudo-data
generated by random fluctuations around the smooth
function described by fitting the data with Eqn. 1; these
are shown in Fig. 2, with a resulting expected q∗ mass
exclusion region of 0.30 < mq∗ < 1.06 TeV using
MRST2007 PDFs. As indicated in Table I, the two other
PDF sets yielded similar results, with expected exclusion
regions extending to near 1 TeV. An indication of the de-
pendence of the mq∗ limits on the theoretical prediction
for the q∗ signal was obtained by simultaneously vary-
ing both the renormalization and factorization scales by
factors of 0.5 and 2, which was tantamount to modifying
the predicted cross section by approximately ±20%; this
changed the observed MRST2007 limit of 1.26 TeV to
1.32 TeV and 1.22 TeV, respectively.
In conclusion, a model-independent search for new

heavy particles manifested as mass resonances in dijet
final states was conducted using a 315 nb−1 sample of
7 TeV proton-proton collisions produced by the LHC and
recorded by the ATLAS detector. No evidence of a res-
onance structure was found and upper limits at the 95%
CL were set on the products of cross section and signal
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In contrast, one can describe a distribution with some parametric function 
‣ “we fit background to a polynomial”, exponential, ... 
‣ while this is convenient and the fit may be good, the narrative is weak 
‣ often effective, parametric model is “validated” with simulation
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6 Systematic uncertainties

Most of the systematic uncertainties of this analysis are discussed in Ref. [6] and [13]. These will be

only briefly described and updated here, while new systematic uncertainties arising from the introduction

of additional categories will be adressed in more detail. All uncertainties are treated as fully correlated

between 7 and 8 TeV data except that on the luminosity. The uncertainties can affect the signal yield, the

signal resolution, the migration of events between categories and the mass measurement.

6.1 Uncertainties on the signal yield

The systematic uncertainties affecting the signal yield are the following:

• The uncertainty on the integrated luminosity is ±3.6% for the 8 TeV data. It is obtained, following
the same methodology as that detailed in Ref. [67], from a preliminary calibration of the luminos-

ity scale derived from beam-separation scans performed in April 2012. For the 7 TeV data this

uncertainty has been updated to 1.8%.

• The uncertainty on the trigger efficiency is 0.5% per event;

• The uncertainty on the photon identification efficiency for the 8 TeV analysis has decreased with
respect to Ref. [6]. It is based on the comparison of the efficiency obtained using MC and the

combination of data-driven measurements: extrapolation from Z → ee events, a method using
an inclusive photon sample and relying on a sideband technique, and radiative photons Z→ ℓℓγ

10
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November 8, 2006 Daniel Whiteson/Penn

Calculation

For each event, calculate differential cross-section:

Matrix
 Element

Transfer 
Functions

Phase-space 
Integral

Only partial information available
Fix measured quantities
Integrate over unmeasured parton quantities

Prediction via Monte Carlo Simulation

The enormous detectors are still being constructed, but we have detailed
simulations of the detectors response.

L(x|H0) =
W

W

H
µ+

µ−

⊕

The advancements in theoretical predictions, detector simulation, tracking,
calorimetry, triggering, and computing set the bar high for equivalent
advances in our statistical treatment of the data.

September 13, 2005

PhyStat2005, Oxford
Statistical Challenges of the LHC (page 6) Kyle Cranmer

Brookhaven National Laboratory

November 8, 2006 Daniel Whiteson/Penn

Data
20 example events…

November 8, 2006 Daniel Whiteson/Penn

Measurement!

Mt = 164.5 ± 3.9 stat ± 3.9syst GeV/c2

L = 350 pb-1 

Phys. Rev. Lett             96, 152002 (2006)
Phys. Rev. D                 Accepted (2006)
Thesis, A. Kovalev     Penn (2005)

L= 1000 pb-1 

Thesis, B. Jayatilaka  Michigan, 2006
Phys. Rev. Lett,            In preparation

The Matrix-Element technique (aka MELA) is conceptually similar to the simulation 
narrative, but the detector response is parametrized. 
‣ one still does integration over the unobserved “true” 4-momentum, but does not 

need to do much larger integration over interactions inside detector



CHOICE: DATA DRIVEN VS. SIMULATION

In the case of the CDF bump, the Z+jets control sample provides a data-driven 
estimate, but limited statistics.  Using the simulation narrative over the data-
driven is a choice.  If you trust that narrative, it’s a good choice.
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FIG. 1: The dijet invariant mass distribution. The sum of electron and muon events is plotted. In the left plots we show the
fits for known processes only (a) and with the addition of a hypothetical Gaussian component (c). On the right plots we show,
by subtraction, only the resonant contribution to Mjj including WW and WZ production (b) and the hypothesized narrow
Gaussian contribution (d). In plot (b) and (d) data points di�er because the normalization of the background changes between
the two fits. The band in the subtracted plots represents the sum of all background shape systematic uncertainties described
in the text. The distributions are shown with a 8 GeV/c2 binning while the actual fit is performed using a 4 GeV/c2 bin size.

resonance with definite mass. The width of the Gaus-
sian is fixed to the expected dijet mass resolution by
scaling the width of the W peak in the same spectrum:

�resolution = �W

�
Mjj

MW
= 14.3 GeV/c2, where �W and

MW are the resolution and the average dijet invariant
mass for the hadronic W in the WW simulations respec-
tively, and Mjj is the dijet mass where the Gaussian tem-
plate is centered.

In the combined fit, the normalization of the Gaus-
sian is free to vary independently for the electron and

muon samples, while the mean is constrained to be the
same. The result of this alternative fit is shown in Figs. 1
(c) and (d). The inclusion of this additional component
brings the fit into good agreement with the data. The
fit ⇥2/ndf is 56.7/81 and the Kolmogorov-Smirnov test
returns a probability of 0.05, accounting only for statis-
tical uncertainties. The W+jets normalization returned
by the fit including the additional Gaussian component is
compatible with the preliminary estimation from the �ET

fit. The ⇥2/ndf in the region 120-160 GeV/c2 is 10.9/20.
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We compare the Mjj distribution of data Z+jets events to ALPGEN MC. Fig. 8.17

shows the two distributions for muons and electrons respectively. Also in this case,

within statistics, we do not observe significant disagreement.
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Figure 8.17: Mjj in Z+jets data and MC in the muon sample (a) and in in the

electron sample (b).

In addition, we compare several kinematic variables between Z+jets data and

ALPGEN MC (see Fig. 8.18) and find that the agreement is good.

8.2.3 �Rjj Modeling

In Fig. 8.4, we observed disagreement between data and our background model in

the �Rjj distribution of the electron sample.

The main di⇥erence between muons and electrons is the method used to model

the QCD contribution: high isolation candidates for muons and antielectrons for

electrons. However, if we compare the �R distribution of antieletrons and high

isolation electrons, Fig. 8.19, we observe a significant di⇥erence and, in particular,

high isolation electrons seems to behave such that they may cover the disagreement

we see in �R. Unfortunately, we cannot use high isolation electrons as a default

because they don’t model well other distribution such as the��ET and quantities re-

lated to the��ET . However, as already discussed in Sec. 8.2.1, high isolation electrons

will be used to assess systematics due to the QCD multijet component.

To further prove that ALPGEN is reproducing the �Rjj distribution, we have shown

in Fig. 8.18 that there is a good agreement between the Z+jets data and ALPGEN
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THE DATA-DRIVEN NARRATIVE

Regions in the data with negligible signal expected used as control samples 
‣ simulated events are used to estimate extrapolation coefficients 
‣ extrapolation coefficients may have theoretical and experimental 

uncertainties 

49

4 3 Control of background rates from data

In the case of the eµ final state it is worth to note that the optimization was performed against
tt and WW background only. As a consequence the results obtained are suboptimal since the
background contribution from W+jets is not small and it affects the final cut requirements.

In the NN analysis, additional variables have been used. They are:

• the separation angle ���� between the isolated leptons in �

• the transverse mass of each lepton-Emiss
T pair, which help reduce non-W background;

• the |�| of both leptons, as leptons from signal events are more central than the ones
from background events;

• the angle in the transverse plane between the Emiss
T and the closest lepton. This

variable discriminates against events with no real Emiss
T

• the di-lepton final states: ee, µµ or eµ, the background level and composition is quite
different depending on the type.

The mass of the di-lepton system and the the angle between the isolated leptons in the trans-
verse plane are shown in Figures 2, 3 and 4 for the Higgs boson signal (mH = 160 GeV) and for
the main backgrounds. In these distributions, only events that satisfy the lepton identification,
pre-selection cuts and the central jet veto criteria are considered.
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Figure 2: Invariant mass of the di-lepton system (left) and azimuthal angular separation be-
tween the two leptons (right) for the e±e� channel after the High Level Trigger, lepton identifi-
cation, pre-selection cuts and the central jet veto for a SM Higgs with mH = 160 GeV.

Figure 5 shows the neural network outputs for the mass hypotheses of mH = 130 GeV and
mH = 170 GeV. The distributions are representative of other mass regions. There is a clear
shape difference between signal and background events for both mass scenarios, although
there is no region completely free of background. Vertical lines indicate the cut values used.

3 Control of background rates from data
3.1 tt and WW normalization from data

C.R.S.R.

τ

⌫A = 1 · µ + ⌫MC
A + ⌘C⌘B⌫D (45)

⌫B = ✏Bµ + ⌫MC
B + ⌘B⌫D

⌫C = ✏Cµ + ⌫MC
C + ⌘C⌫D

⌫D = ✏Dµ + ⌫MC
D + 1 · ⌫D

ATLAS statistics forum

Draft 0.0, January 25, 2012

ABCD method in searches

1 Introduction

The ABCD method [1] allows the data-driven estimation of a background rate when events

are selected by a pair of cuts in a plane of two uncorrelated variables such that both of

the cuts enhance the signal to background ratio, as illustrated in Fig. 1. The basic idea is
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Figure 1: Illustration of di�erent regions in the ABCD method in the plane of two variables

x, y. The points are simulated events from a background distribution with no correlation in

the x�y plane and the color density illustrates a bivariate gaussian distribution of hypothet-

ical signal in the search region (A) with some leakage into the background sideband regions

B, C and D.

that there are su�cient background statistics in sideband (or control) regions B, C and D

to estimate the small background rate in the signal region A: µA = µBµC/µD. This formula

makes several assumptions:

1. There are enough events in regions B, C and D to propagate the statistical uncertainty

linearly to A (and for convenience the uncertainty on µA is propagated to a measurement

or search as if it is sampled from a Gaussian probability distribution).

2. There is no signal leakage to regions B, C, and D.
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Fig. 9: An example of ABCD (from Alex Read) in the x � y plane of two observables x and y (left). A more
complex example with several regions in the MW

T � Emiss
T plane [20].

4.3 Effective Model Narrative
In the simulation narrative the model of discriminating variable distributions f(x|↵) is derived from
discrete samples of simulated events {x

1

, . . . , xN}. We discussed above how one can use histograms or
kernel estimation to approximate the underlying distribution and interpolation strategies to incorporate
systematic effects. Another approach is to assume some parametric form for the distribution to serve as an
effective model. For example, in the H ! �� analysis shown in Fig. 8 a simple exponential distribution
was used to model the background. The state-of-the-art theoretical predictions for the continuum ��
background process do not predict exactly an exponentially falling distribution, and the analysis must
(and does) incorporate the systematic associated to the effective model. Similarly, it is common to use
a polynomial in some limited sideband region to estimate backgrounds under a peak. These effective
models can range from very ad hoc 20 to more motivated. For instance, one might use knowledge of
kinematics and phase space and/or detector resolution to construct an effective model that captures the
relevant physics. The advantage of a well motivated effective model is that few nuisance parameters
may describe well the relevant family of probability densities, which is the challenge for generic (and
relatively unsophisticated) interpolation strategies usually employed in the simulation narrative.

4.4 The Matrix Element Method
Ideally, one would not use a single discriminating variable to distinguish the process of interest from
the other background processes, but instead would use as much discriminating power as possible. This
implies forming a probability model over a multi-dimensional discriminating variable (ie. a multivariate
analysis technique). In principle, both the histogram-based and kernel-based approach generalize to
distributions of multi-dimensional discriminating variables; however, in practice, they are limited to only
a few dimensions. In the case of histograms this is particularly severe unless one employs clever binning

20For instance, the modeling of H ! ZZ(⇤) ! 4l described in [21] (see Eq. 2 of the corresponding section)
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Comments and Recommendations for Statistical Techniques

We review a collection of statistical tests used for a prototype problem, characterize their
generalizations, and provide comments on these generalizations. Where possible, concrete
recommendations are made to aid in future comparisons and combinations with ATLAS and
CMS results.

1 Preliminaries

A simple ‘prototype problem’ has been considered as useful simplification of a common HEP
situation and its coverage properties have been studied in Ref. [1] and generalized by Ref. [2].
The problem consists of a number counting analysis, where one observes non events and
expects s + b events, b is uncertain, and one either wishes to perform a significance test
against the null hypothesis s = 0 or create a confidence interval on s. Here s is considered the
parameter of interest and b is referred to as a nuisance parameter (and should be generalized
accordingly in what follows). In the setup, the background rate b is uncertain, but can
be constrained by an auxiliary or sideband measurement where one expects ⇥b events and
measures no� events. This simple situation (often referred to as the ‘on/o⇥’ problem) can be
expressed by the following probability density function:

P (non, no� |s, b) = Pois(non|s + b) Pois(no� |⇥b). (1)

Note that in this situation the sideband measurement is also modeled as a Poisson process
and the expected number of counts due to background events can be related to the main
measurement by a perfectly known ratio ⇥ . In many cases a more accurate relation between
the sideband measurement no� and the unknown background rate b may be a Gaussian with
either an absolute or relative uncertainty �b. These cases were also considered in Refs. [1, 2]
and are referred to as the ‘Gaussian mean problem’.

While the prototype problem is a simplification, it has been an instructive example. The
first, and perhaps, most important lesson is that the uncertainty on the background rate b
has been cast as a well-defined statistical uncertainty instead of a vaguely-defined systematic
uncertainty. To make this point more clearly, consider that it is common practice in HEP to
describe the problem as

P (non|s) =
�

db Pois(non|s + b)�(b), (2)

where �(b) is a distribution (usually Gaussian) for the uncertain parameter b, which is
then marginalized (ie. ‘smeared’, ‘randomized’, or ‘integrated out’ when creating pseudo-
experiments). But what is the nature of �(b)? The important fact which often evades serious
consideration is that �(b) is a Bayesian prior, which may or may-not be well-justified. It
often is justified by some previous measurements either based on Monte Carlo, sidebands, or
control samples. However, even in those cases one does not escape an underlying Bayesian
prior for b. The point here is not about the use of Bayesian inference, but about the clear ac-
counting of our knowledge and facilitating the ability to perform alternative statistical tests.

1

WHAT DO WE MEAN BY UNCERTAINTY?
Let’s consider a simplified problem that has been studied quite a bit to 
gain some insight into our more realistic and difficult problems 
‣ number counting with background uncertainty 

" in our main measurement we observe non with s+b expected 

‣ and the background has some uncertainty 
" but what is “background uncertainty”?  Where did it come from? 
" maybe we would say background is known to 10% or that it has some pdf π(b) 
• then we often do a smearing of the background:  

" Where does π(b) come from? 
• did you realize that this is a Bayesian procedure that depends on some prior 

assumption about what b is?

50
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Now let’s say that the background was estimated from some control 
region or sideband measurement.   
‣ We can treat these two measurements simultaneously: 

" main measurement: observe non with s+b expected 
" sideband measurement: observe noff with      expected 

" In this approach “background uncertainty” is a statistical error 
" justification and accounting of background uncertainty is much more clear 

How does this relate to the smearing approach? 

‣ while        is based on data, it still depends on some original prior 
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Comments and Recommendations for Statistical Techniques

We review a collection of statistical tests used for a prototype problem, characterize their
generalizations, and provide comments on these generalizations. Where possible, concrete
recommendations are made to aid in future comparisons and combinations with ATLAS and
CMS results.

1 Preliminaries

A simple ‘prototype problem’ has been considered as useful simplification of a common HEP
situation and its coverage properties have been studied in Ref. [1] and generalized by Ref. [2].
The problem consists of a number counting analysis, where one observes non events and
expects s + b events, b is uncertain, and one either wishes to perform a significance test
against the null hypothesis s = 0 or create a confidence interval on s. Here s is considered the
parameter of interest and b is referred to as a nuisance parameter (and should be generalized
accordingly in what follows). In the setup, the background rate b is uncertain, but can
be constrained by an auxiliary or sideband measurement where one expects ⇥b events and
measures no� events. This simple situation (often referred to as the ‘on/o⇥’ problem) can be
expressed by the following probability density function:

P (non, no� |s, b) = Pois(non|s + b) Pois(no� |⇥b). (1)

Note that in this situation the sideband measurement is also modeled as a Poisson process
and the expected number of counts due to background events can be related to the main
measurement by a perfectly known ratio ⇥ . In many cases a more accurate relation between
the sideband measurement no� and the unknown background rate b may be a Gaussian with
either an absolute or relative uncertainty �b. These cases were also considered in Refs. [1, 2]
and are referred to as the ‘Gaussian mean problem’.

While the prototype problem is a simplification, it has been an instructive example. The
first, and perhaps, most important lesson is that the uncertainty on the background rate b
has been cast as a well-defined statistical uncertainty instead of a vaguely-defined systematic
uncertainty. To make this point more clearly, consider that it is common practice in HEP to
describe the problem as

P (non|s) =
�

db Pois(non|s + b)�(b), (2)

where �(b) is a distribution (usually Gaussian) for the uncertain parameter b, which is
then marginalized (ie. ‘smeared’, ‘randomized’, or ‘integrated out’ when creating pseudo-
experiments). But what is the nature of �(b)? The important fact which often evades serious
consideration is that �(b) is a Bayesian prior, which may or may-not be well-justified. It
often is justified by some previous measurements either based on Monte Carlo, sidebands, or
control samples. However, even in those cases one does not escape an underlying Bayesian
prior for b. The point here is not about the use of Bayesian inference, but about the clear ac-
counting of our knowledge and facilitating the ability to perform alternative statistical tests.

1

THE “ON/OFF” PROBLEM

51

⌧b

ATLAS Statistics Forum
DRAFT
25 May, 2010

Comments and Recommendations for Statistical Techniques

We review a collection of statistical tests used for a prototype problem, characterize their
generalizations, and provide comments on these generalizations. Where possible, concrete
recommendations are made to aid in future comparisons and combinations with ATLAS and
CMS results. These comments are quite general, and each experiment is expected to have
well-developed techniques that are (hopefully) consistent with what is presented here.

1 Preliminaries

A simple ‘prototype problem’ has been considered as useful simplification of a common HEP
situation and its coverage properties have been studied in Ref. [1] and generalized by Ref. [2].
The problem consists of a number counting analysis, where one observes non events and
expects s + b events, b is uncertain, and one either wishes to perform a significance test
against the null hypothesis s = 0 or create a confidence interval on s. Here s is considered the
parameter of interest and b is referred to as a nuisance parameter (and should be generalized
accordingly in what follows). In the setup, the background rate b is uncertain, but can
be constrained by an auxiliary or sideband measurement where one expects ⇥b events and
measures no� events. This simple situation (often referred to as the ‘on/o⇥’ problem) can be
expressed by the following probability density function:

P (non, no� |s, b)⌅ ⇤⇥ ⇧
jointmodel

= Pois(non|s+ b)
⌅ ⇤⇥ ⇧
mainmeasurement

Pois(no� |⇥b)⌅ ⇤⇥ ⇧
sideband

. (1)

Note that in this situation the sideband measurement is also modeled as a Poisson process
and the expected number of counts due to background events can be related to the main
measurement by a perfectly known ratio ⇥ . In many cases a more accurate relation between
the sideband measurement no� and the unknown background rate b may be a Gaussian with
either an absolute or relative uncertainty �b. These cases were also considered in Refs. [1, 2]
and are referred to as the ‘Gaussian mean problem’.

Here we rely heavily on the correspondence between hypothesis tests and confidence
intervals [3], and mainly frame the discussion in terms of confidence intervals.

While the prototype problem is a simplification, it has been an instructive example. The
first, and perhaps, most important lesson is that the uncertainty on the background rate b
has been cast as a well-defined statistical uncertainty instead of a vaguely-defined systematic
uncertainty. To make this point more clearly, consider that it is common practice in HEP to
describe the problem as

P (non|s) =
�

dbPois(non|s+ b)�(b), (2)

where �(b) is a distribution (usually Gaussian) for the uncertain parameter b, which is
then marginalized (ie. ‘smeared’, ‘randomized’, or ‘integrated out’ when creating pseudo-
experiments). But what is the nature of �(b)? The important fact which often evades serious
consideration is that �(b) is a Bayesian prior, which may or may-not be well-justified. It

1

If we were actually in a case described by the ‘on/o�’ problem, then it would be better to
think of ⇤(b) as the posterior resulting from the sideband measurement

⇤(b) = P (b|no�) =
P (no� |b)⇥(b)�
dbP (no� |b)⇥(b)

. (3)

By doing this it is clear that the term P (no� |b) is an objective probability density that can
be used in a frequentist context and that ⇥(b) is the original Bayesian prior assigned to b.

Recommendation: Where possible, one should express uncertainty on a parameter as
statistical (eg. random) process (ie. Pois(no� |⌅b) in Eq. 1).

Recommendation: When using Bayesian techniques, one should explicitly express and
separate the prior from the objective part of the probability density function (as in Eq. 3).

Now let us consider some specific methods for addressing the on/o� problem and their
generalizations.

2 The frequentist solution: ZBi

The goal for a frequentist solution to this problem is based on the notion of coverage (or
Type I error). One considers there to be some unknown true values for the parameters s, b
and attempts to construct a statistical test that will not incorrectly reject the true values
above some specified rate �.

A frequentist solution to the on/o� problem, referred to as ZBi in Refs. [1, 2], is based on
re-writing Eq. 1 into a di�erent form and using the standard frequentist binomial parameter
test, which dates back to the first construction of confidence intervals for a binomial parameter
by Clopper and Pearson in 1934 [3]. This does not lead to an obvious generalization for more
complex problems.

The general solution to this problem, which provides coverage “by construction” is the
Neyman Construction. However, the Neyman Construction is not uniquely determined; one
must also specify:

• the test statistic T (non, no� ; s, b), which depends on data and parameters

• a well-defined ensemble that defines the sampling distribution of T

• the limits of integration for the sampling distribution of T

• parameter points to scan (including the values of any nuisance parameters)

• how the final confidence intervals in the parameter of interest are established

The Feldman-Cousins technique is a well-specified Neyman Construction when there are
no nuisance parameters [6]: the test statistic is the likelihood ratio T (non; s) = L(s)/L(sbest),
the limits of integration are one-sided, there is no special conditioning done to the ensemble,
and there are no nuisance parameters to complicate the scanning of the parameter points or
the construction of the final intervals.

The original Feldman-Cousins paper did not specify a technique for dealing with nuisance
parameters, but several generalization have been proposed. The bulk of the variations come
from the choice of the test statistic to use.

2

�(b) ⌘(b)
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A GENERAL PURPOSE STATISTICAL MODEL

52



I will represent PDFs graphically as below (directed acyclic graph) 
‣ eg. a Gaussian                  is parametrized by                     
‣ every node is a real-valued function of the nodes below 

VISUALIZING PROBABILITY MODELS

53
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ROOFIT: A DATA MODELING TOOLKIT

54
Wouter Verkerke, UCSB 

Building realistic models

– Composition (‘plug & play’)

– Convolution

g(x;m,s)m(y;a0,a1)

=

⊗ =

g(x,y;a0,a1,s)
Possible in any PDF

No explicit support in PDF code needed

Wouter Verkerke, UCSB 

Building realistic models

• Complex PDFs be can be trivially composed using operator classes

– Addition

– Multiplication

+ =

* =

Wouter Verkerke, UCSB 

Parameters of composite PDF objects

RooAddPdf

sum

RooGaussian

gauss1
RooGaussian

gauss2
RooArgusBG

argus
RooRealVar

g1frac
RooRealVar

g2frac

RooRealVar

x
RooRealVar

sigma
RooRealVar

mean1

RooRealVar

mean2
RooRealVar

argpar
RooRealVar

cutoff

RooArgSet *paramList = sum.getParameters(data) ;

paramList->Print("v") ;

RooArgSet::parameters:

1) RooRealVar::argpar : -1.00000 C

2) RooRealVar::cutoff :  9.0000 C

3) RooRealVar::g1frac :  0.50000 C

4) RooRealVar::g2frac :  0.10000 C

5) RooRealVar::mean1  :  2.0000 C

6) RooRealVar::mean2  :  3.0000 C

7) RooRealVar::sigma  :  1.0000 C

The parameters of sum
are the combined 
parameters
of its components

RooFit is a major tool developed at BaBar for data modeling. 
RooStats provides higher-level statistical tools based on these PDFs.



MARKED POISSON PROCESS

Channel: a subset of the data defined by some selection 
requirements.   
‣ eg. all events with 4 electrons with energy > 10 GeV 
‣ n: number of events observed in the channel 
‣ ν: number of events expected in the channel

Discriminating variable: a property of those events that can be 
measured and which helps discriminate the signal from background 
‣ eg. the invariant mass of two particles  
‣ f(x): the p.d.f. of the discriminating variable x

Marked Poisson Process / Extended Likelihood:
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f(D|⌫) = Pois(n|⌫)
nY

e=1

f(xe)

D = {x1, . . . , xn}



MIXTURE MODEL

Sample: a sample of simulated events corresponding to particular 
type interaction that populates the channel. 
‣ statisticians call this a mixture model
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Table 5. Numbers of events estimated as background, observed in data and expected from signal in the H → ZZ → ℓℓqq search
for low mass (mH < 360 GeV) and high mass (mH ≥ 360 GeV) selections. The signal, quoted at two mass points, includes small
contributions from ℓℓℓℓ and ℓℓνν decays. Electron and muon channels are combined. The uncertainties shown are the statistical
and systematic uncertainties, respectively.

Source low mass selection high mass selection
Z+jets 214± 4± 27 9.1± 0.9± 1.4
W+jets 0.33 ± 0.16 ± 0.17 −

tt̄ 0.94 ± 0.09 ± 0.25 0.08 ± 0.02± 0.03
Multi-jet 3.81 ± 0.65 ± 1.91 0.11 ± 0.11± 0.06

ZZ 3.80 ± 0.10 ± 0.73 0.30 ± 0.03± 0.06
WZ 2.83 ± 0.05 ± 0.88 0.29 ± 0.02± 0.10

Total background 226± 4± 28 9.9± 0.9± 1.5
H → ZZ → ℓℓqq 0.60 ± 0.01 ± 0.12 (mH = 200 GeV) 0.24± (< 0.001) ± 0.05 (mH = 400 GeV)

Observed 216 11

data. The multi-jet background in the electron channel is
derived from a sample where the electron identification
requirements are relaxed. In the muon channel, the multi-
jet background is estimated from a simulated sample of
semi-leptonically decaying b- and c-quarks and found to be
negligible after the application of the mℓℓ selection. This
was verified in data using leptons with identical charges.

6.3.2 Results for the H → ZZ → ℓℓνν search

The H → ZZ → ℓℓνν analysis is performed for Higgs
boson masses between 200 GeV and 600 GeV in steps of
20 GeV. Table 6 summarises the numbers of events ob-
served in the data, the estimated numbers of background
events and the expected numbers of signal events for two
selectedmH values. For the low mass selections, five events
are observed in data compared to an expected number of
events from background sources only of 5.8±0.5±1.3. The
corresponding results for the high mass selections are five
events observed in data compared to an expected yield of
3.5±0.4±0.8 events from background sources only. In ad-
dition to the H → ZZ → ℓℓνν decays, several other Higgs
boson channels give a non-negligible contribution to the
total expected signal yield. In particular, H → WW (∗) →
ℓνℓν decays can lead to final states that are very similar
to H → ZZ → ℓℓνν decays. They are found to contribute
significantly to the signal yield at low mH values. The
expected number of events from H → WW (∗) → ℓνℓν de-
cays relative to that from H → ZZ → ℓℓνν decays is 76%
for mH = 200 GeV and 9% for mH = 300 GeV. The kine-
matic selections prevent individual candidates from being
accepted by both searches. The Emiss

T distribution before
vetoing events with low Emiss

T is shown in Fig. 7.

7 Combination method

The limit-setting procedure uses the power-constrained
profile likelihood method known as the Power Constrained
Limit, PCL [13, 14, 64]. This method is preferred to the
more familiar CLs [15] technique because the constraint
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Fig. 7. Distribution of missing transverse energy in the H →
ZZ → ℓℓνν search in the electron channel before vetoing events
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T . The expected yield for a Higgs boson with
mH = 400 GeV is also shown.

is more transparently defined and it has reduced overcov-
erage resulting in a more precise meaning of the quoted
confidence level. The resulting PCL median limits have
been found to be around 20% tighter than those obtained
with the CLs method in several Higgs searches. The ap-
plication of the PCL method to each of the individual
Higgs boson search channels is described in Refs. [7–11].
A similar procedure is used here. The individual analyses
are combined by maximising the product of the likelihood
functions for each channel and computing a likelihood ra-
tio. A single signal normalisation parameter µ is used for
all analyses, where µ is the ratio of the hypothesised cross
section to the expected Standard Model cross section.

Each channel has sources of systematic uncertainty,
some of which are common with other channels. Table 7
lists the common sources of systematic uncertainties, which
are taken to be 100% correlated with other channels. Let
the search channels be labelled by l (l = H → γγ, H →
WW , . . . ), the background contribution, j, to channel l
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PARAMETRIZING THE MODEL

Parameters of interest (µ): parameters of the theory that modify the 
rates and shapes of the distributions, eg. 
‣ the mass of a hypothesized particle 

‣ the “signal strength” μ=0 no signal, μ=1 predicted signal rate 

Nuisance parameters (θ or αp): associated to uncertainty in: 
‣ response of the detector (calibration) 
‣ phenomenological model of interaction in non-perturbative regime 

Lead to a parametrized model:  
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⌫ ! ⌫(↵), f(x) ! f(x|↵)

↵ = (µ,✓)

f(D|↵) = Pois(n|⌫(↵))

nY

e=1

f(xe|↵)



INCORPORATING SYSTEMATIC EFFECTS

Z+jets top Diboson ...

syst 1

syst 2

...

Tabulate effect of individual variations of sources of systematic uncertainty 
‣ typically one at a time evaluated at nominal and “± 1 σ” 
‣ use some form of interpolation to parametrize pth variation in terms of 

nuisance parameter αp 

58

f(x
)

x

10 ATLAS collaboration: Search for the Standard Model Higgs Boson

Table 5. Numbers of events estimated as background, observed in data and expected from signal in the H → ZZ → ℓℓqq search
for low mass (mH < 360 GeV) and high mass (mH ≥ 360 GeV) selections. The signal, quoted at two mass points, includes small
contributions from ℓℓℓℓ and ℓℓνν decays. Electron and muon channels are combined. The uncertainties shown are the statistical
and systematic uncertainties, respectively.

Source low mass selection high mass selection
Z+jets 214± 4± 27 9.1± 0.9± 1.4
W+jets 0.33 ± 0.16 ± 0.17 −

tt̄ 0.94 ± 0.09 ± 0.25 0.08 ± 0.02± 0.03
Multi-jet 3.81 ± 0.65 ± 1.91 0.11 ± 0.11± 0.06

ZZ 3.80 ± 0.10 ± 0.73 0.30 ± 0.03± 0.06
WZ 2.83 ± 0.05 ± 0.88 0.29 ± 0.02± 0.10

Total background 226± 4± 28 9.9± 0.9± 1.5
H → ZZ → ℓℓqq 0.60 ± 0.01 ± 0.12 (mH = 200 GeV) 0.24± (< 0.001) ± 0.05 (mH = 400 GeV)

Observed 216 11

data. The multi-jet background in the electron channel is
derived from a sample where the electron identification
requirements are relaxed. In the muon channel, the multi-
jet background is estimated from a simulated sample of
semi-leptonically decaying b- and c-quarks and found to be
negligible after the application of the mℓℓ selection. This
was verified in data using leptons with identical charges.

6.3.2 Results for the H → ZZ → ℓℓνν search

The H → ZZ → ℓℓνν analysis is performed for Higgs
boson masses between 200 GeV and 600 GeV in steps of
20 GeV. Table 6 summarises the numbers of events ob-
served in the data, the estimated numbers of background
events and the expected numbers of signal events for two
selectedmH values. For the low mass selections, five events
are observed in data compared to an expected number of
events from background sources only of 5.8±0.5±1.3. The
corresponding results for the high mass selections are five
events observed in data compared to an expected yield of
3.5±0.4±0.8 events from background sources only. In ad-
dition to the H → ZZ → ℓℓνν decays, several other Higgs
boson channels give a non-negligible contribution to the
total expected signal yield. In particular, H → WW (∗) →
ℓνℓν decays can lead to final states that are very similar
to H → ZZ → ℓℓνν decays. They are found to contribute
significantly to the signal yield at low mH values. The
expected number of events from H → WW (∗) → ℓνℓν de-
cays relative to that from H → ZZ → ℓℓνν decays is 76%
for mH = 200 GeV and 9% for mH = 300 GeV. The kine-
matic selections prevent individual candidates from being
accepted by both searches. The Emiss

T distribution before
vetoing events with low Emiss

T is shown in Fig. 7.

7 Combination method

The limit-setting procedure uses the power-constrained
profile likelihood method known as the Power Constrained
Limit, PCL [13, 14, 64]. This method is preferred to the
more familiar CLs [15] technique because the constraint
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Fig. 7. Distribution of missing transverse energy in the H →
ZZ → ℓℓνν search in the electron channel before vetoing events
with low Emiss

T . The expected yield for a Higgs boson with
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is more transparently defined and it has reduced overcov-
erage resulting in a more precise meaning of the quoted
confidence level. The resulting PCL median limits have
been found to be around 20% tighter than those obtained
with the CLs method in several Higgs searches. The ap-
plication of the PCL method to each of the individual
Higgs boson search channels is described in Refs. [7–11].
A similar procedure is used here. The individual analyses
are combined by maximising the product of the likelihood
functions for each channel and computing a likelihood ra-
tio. A single signal normalisation parameter µ is used for
all analyses, where µ is the ratio of the hypothesised cross
section to the expected Standard Model cross section.

Each channel has sources of systematic uncertainty,
some of which are common with other channels. Table 7
lists the common sources of systematic uncertainties, which
are taken to be 100% correlated with other channels. Let
the search channels be labelled by l (l = H → γγ, H →
WW , . . . ), the background contribution, j, to channel l

f(D|↵) = Pois(n|⌫(↵))

nY

e=1

f(xe|↵)
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Table 5. Numbers of events estimated as background, observed in data and expected from signal in the H → ZZ → ℓℓqq search
for low mass (mH < 360 GeV) and high mass (mH ≥ 360 GeV) selections. The signal, quoted at two mass points, includes small
contributions from ℓℓℓℓ and ℓℓνν decays. Electron and muon channels are combined. The uncertainties shown are the statistical
and systematic uncertainties, respectively.

Source low mass selection high mass selection
Z+jets 214± 4± 27 9.1± 0.9± 1.4
W+jets 0.33 ± 0.16 ± 0.17 −

tt̄ 0.94 ± 0.09 ± 0.25 0.08 ± 0.02± 0.03
Multi-jet 3.81 ± 0.65 ± 1.91 0.11 ± 0.11± 0.06

ZZ 3.80 ± 0.10 ± 0.73 0.30 ± 0.03± 0.06
WZ 2.83 ± 0.05 ± 0.88 0.29 ± 0.02± 0.10

Total background 226± 4± 28 9.9± 0.9± 1.5
H → ZZ → ℓℓqq 0.60 ± 0.01 ± 0.12 (mH = 200 GeV) 0.24± (< 0.001) ± 0.05 (mH = 400 GeV)

Observed 216 11

data. The multi-jet background in the electron channel is
derived from a sample where the electron identification
requirements are relaxed. In the muon channel, the multi-
jet background is estimated from a simulated sample of
semi-leptonically decaying b- and c-quarks and found to be
negligible after the application of the mℓℓ selection. This
was verified in data using leptons with identical charges.

6.3.2 Results for the H → ZZ → ℓℓνν search

The H → ZZ → ℓℓνν analysis is performed for Higgs
boson masses between 200 GeV and 600 GeV in steps of
20 GeV. Table 6 summarises the numbers of events ob-
served in the data, the estimated numbers of background
events and the expected numbers of signal events for two
selectedmH values. For the low mass selections, five events
are observed in data compared to an expected number of
events from background sources only of 5.8±0.5±1.3. The
corresponding results for the high mass selections are five
events observed in data compared to an expected yield of
3.5±0.4±0.8 events from background sources only. In ad-
dition to the H → ZZ → ℓℓνν decays, several other Higgs
boson channels give a non-negligible contribution to the
total expected signal yield. In particular, H → WW (∗) →
ℓνℓν decays can lead to final states that are very similar
to H → ZZ → ℓℓνν decays. They are found to contribute
significantly to the signal yield at low mH values. The
expected number of events from H → WW (∗) → ℓνℓν de-
cays relative to that from H → ZZ → ℓℓνν decays is 76%
for mH = 200 GeV and 9% for mH = 300 GeV. The kine-
matic selections prevent individual candidates from being
accepted by both searches. The Emiss

T distribution before
vetoing events with low Emiss

T is shown in Fig. 7.

7 Combination method

The limit-setting procedure uses the power-constrained
profile likelihood method known as the Power Constrained
Limit, PCL [13, 14, 64]. This method is preferred to the
more familiar CLs [15] technique because the constraint
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Fig. 7. Distribution of missing transverse energy in the H →
ZZ → ℓℓνν search in the electron channel before vetoing events
with low Emiss

T . The expected yield for a Higgs boson with
mH = 400 GeV is also shown.

is more transparently defined and it has reduced overcov-
erage resulting in a more precise meaning of the quoted
confidence level. The resulting PCL median limits have
been found to be around 20% tighter than those obtained
with the CLs method in several Higgs searches. The ap-
plication of the PCL method to each of the individual
Higgs boson search channels is described in Refs. [7–11].
A similar procedure is used here. The individual analyses
are combined by maximising the product of the likelihood
functions for each channel and computing a likelihood ra-
tio. A single signal normalisation parameter µ is used for
all analyses, where µ is the ratio of the hypothesised cross
section to the expected Standard Model cross section.

Each channel has sources of systematic uncertainty,
some of which are common with other channels. Table 7
lists the common sources of systematic uncertainties, which
are taken to be 100% correlated with other channels. Let
the search channels be labelled by l (l = H → γγ, H →
WW , . . . ), the background contribution, j, to channel l
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10 ATLAS collaboration: Search for the Standard Model Higgs Boson

Table 5. Numbers of events estimated as background, observed in data and expected from signal in the H → ZZ → ℓℓqq search
for low mass (mH < 360 GeV) and high mass (mH ≥ 360 GeV) selections. The signal, quoted at two mass points, includes small
contributions from ℓℓℓℓ and ℓℓνν decays. Electron and muon channels are combined. The uncertainties shown are the statistical
and systematic uncertainties, respectively.

Source low mass selection high mass selection
Z+jets 214± 4± 27 9.1± 0.9± 1.4
W+jets 0.33 ± 0.16 ± 0.17 −

tt̄ 0.94 ± 0.09 ± 0.25 0.08 ± 0.02± 0.03
Multi-jet 3.81 ± 0.65 ± 1.91 0.11 ± 0.11± 0.06

ZZ 3.80 ± 0.10 ± 0.73 0.30 ± 0.03± 0.06
WZ 2.83 ± 0.05 ± 0.88 0.29 ± 0.02± 0.10

Total background 226± 4± 28 9.9± 0.9± 1.5
H → ZZ → ℓℓqq 0.60 ± 0.01 ± 0.12 (mH = 200 GeV) 0.24± (< 0.001) ± 0.05 (mH = 400 GeV)

Observed 216 11

data. The multi-jet background in the electron channel is
derived from a sample where the electron identification
requirements are relaxed. In the muon channel, the multi-
jet background is estimated from a simulated sample of
semi-leptonically decaying b- and c-quarks and found to be
negligible after the application of the mℓℓ selection. This
was verified in data using leptons with identical charges.

6.3.2 Results for the H → ZZ → ℓℓνν search

The H → ZZ → ℓℓνν analysis is performed for Higgs
boson masses between 200 GeV and 600 GeV in steps of
20 GeV. Table 6 summarises the numbers of events ob-
served in the data, the estimated numbers of background
events and the expected numbers of signal events for two
selectedmH values. For the low mass selections, five events
are observed in data compared to an expected number of
events from background sources only of 5.8±0.5±1.3. The
corresponding results for the high mass selections are five
events observed in data compared to an expected yield of
3.5±0.4±0.8 events from background sources only. In ad-
dition to the H → ZZ → ℓℓνν decays, several other Higgs
boson channels give a non-negligible contribution to the
total expected signal yield. In particular, H → WW (∗) →
ℓνℓν decays can lead to final states that are very similar
to H → ZZ → ℓℓνν decays. They are found to contribute
significantly to the signal yield at low mH values. The
expected number of events from H → WW (∗) → ℓνℓν de-
cays relative to that from H → ZZ → ℓℓνν decays is 76%
for mH = 200 GeV and 9% for mH = 300 GeV. The kine-
matic selections prevent individual candidates from being
accepted by both searches. The Emiss

T distribution before
vetoing events with low Emiss

T is shown in Fig. 7.

7 Combination method

The limit-setting procedure uses the power-constrained
profile likelihood method known as the Power Constrained
Limit, PCL [13, 14, 64]. This method is preferred to the
more familiar CLs [15] technique because the constraint
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Fig. 7. Distribution of missing transverse energy in the H →
ZZ → ℓℓνν search in the electron channel before vetoing events
with low Emiss

T . The expected yield for a Higgs boson with
mH = 400 GeV is also shown.

is more transparently defined and it has reduced overcov-
erage resulting in a more precise meaning of the quoted
confidence level. The resulting PCL median limits have
been found to be around 20% tighter than those obtained
with the CLs method in several Higgs searches. The ap-
plication of the PCL method to each of the individual
Higgs boson search channels is described in Refs. [7–11].
A similar procedure is used here. The individual analyses
are combined by maximising the product of the likelihood
functions for each channel and computing a likelihood ra-
tio. A single signal normalisation parameter µ is used for
all analyses, where µ is the ratio of the hypothesised cross
section to the expected Standard Model cross section.

Each channel has sources of systematic uncertainty,
some of which are common with other channels. Table 7
lists the common sources of systematic uncertainties, which
are taken to be 100% correlated with other channels. Let
the search channels be labelled by l (l = H → γγ, H →
WW , . . . ), the background contribution, j, to channel l

After parametrizing each 
component of the mixture model, 
the pdf for a single channel might 
look like this



SIMULTANEOUS MULTI-CHANNEL MODEL

Simultaneous Multi-Channel Model: Several disjoint regions of the 
data are modeled simultaneously.  Identification of common 
parameters across many channels requires coordination between 
groups such that meaning of the parameters are really the same. 

where 

Control Regions: Some channels are not populated by signal 
processes, but are used to constrain the nuisance parameters 
‣ attempt to describe systematics in a statistical language 
‣ Prototypical Example: “on/off” problem with unknown  
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Dsim = {D1, . . . ,Dc
max

}

fsim(Dsim|↵) =

Y

c2channels

"
Pois(nc|⌫c(↵))

ncY

e=1

fc(xce|↵)

#

⌫b

f(n,m|µ, ⌫b) = Pois(n|µ+ ⌫b)| {z }
signal region

·Pois(m|⌧⌫b)| {z }
control region



CONSTRAINT TERMS

Often detailed statistical model for auxiliary measurements that 
measure certain nuisance parameters are not available.  
‣ one typically has MLE for αp, denoted ap and standard error 

Constraint Terms: are idealized pdfs for the MLE. 

‣ common choices are Gaussian, Poisson, and log-normal  
‣ New: careful to write constraint term a frequentist way 
‣ Previously:                                            with uniform η 

Simultaneous Multi-Channel Model with constraints:  

where
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fp(ap|↵p) for p 2 S

for p 2 SDsim = {D1, . . . ,Dc
max

} G = {ap},

f
tot

(D
sim

,G|↵) =

Y

c2channels

"
Pois(nc|⌫c(↵))

ncY

e=1

fc(xce|↵)

#
·
Y

p2S
fp(ap|↵p)

⇡(↵p|ap) = fp(ap|↵p)⌘(↵p)



CONCEPTUAL BUILDING BLOCKS
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Probability models can be constructed to simultaneously describe several channels, that is several
disjoint regions of the data defined by the associated selection criteria. I will use e as the index over
events and c as the index over channels. Thus, the number of events in the cth channel is nc and the
value of the eth event in the cth channel is xce. In this context, the data is a collection of smaller datasets:
Dsim = {D

1

, . . . , Dc
max

} = {{xc=1,e=1

. . . xc=1,e=n
c

}, . . . {xc=c
max

,e=1

. . . xc=c
max

,e=n
c

max

}}. In RooFit
the index c is referred to as a RooCategory and it is used to inside the dataset to differentiate events as-
sociated to different channels or categories. The class RooSimultaneous associates the dataset Dc with
the corresponding marked Poisson model. The key point here is that there are now multiple Poisson
terms. Thus we can write the combined (or simultaneous) model

fsim(Dsim|↵) =

Y

c2channels

"
Pois(nc|⌫(↵))

n
cY

e=1

f(xce|↵)

#
, (2)

remembering that the symbol product over channels has implications for the structure of the dataset.

Experiment

Ensemble

Channel
c ∈ channels

fc (x | α)

Event
e ∈ events
{1…nc}

Observable(s)
xec

Sample
s ∈ samples

Distribution
fsc (x | α)

Expected Number of Events
νs 

Constraint Term
fp(ap | αp )

p ∈ parameters with constraints

global observable
a

Parameter
α, θ, μ

Shape Variation
fscp(x | αp = X )

A

B

C

Legend:
A "has many" Bs. 
B "has a" C.
Dashed is optional.

Fig. 1: A schematic diagram of the logical structure of a typical particle physics probability model and dataset
structures.

2.2 Auxiliary measurements
Auxiliary measurements or control regions can be used to estimate or reduce the effect of systematic
uncertainties. The signal region and control region are not fundamentally different. In the language that
we are using here, they are just two different channels.

A common example is a simple counting experiment with an uncertain background. In the fre-
quentist way of thinking, the true, unknown background in the signal region is a nuisance parameter,
which I will denote ⌫B .5 If we call the true, unknown signal rate ⌫S and the number of events in the
signal region n

SR

then we can write the model Pois(n
SR

|⌫S + ⌫B). As long as ⌫B is a free parameter,
5Note, you can think of a counting experiment in the context of Eq. 1 with f(x) = 1, thus it reduces to just the Poisson

term.

5

Constrained Unconstrained
Normalization Variation OverallSys (⌘cs) NormFactor (�p)
Coherent Shape Variation HistoSys �csb –
Bin-by-bin variation ShapeSys & StatError �cb ShapeFactor �csb

Table 1: Conceptual building blocks for constructing more complicated PDFs: parameters.

2 The Likelihood Template

2.1 Index Convention

In what follows we use the term channel as a region of the data defined by the corresponding
event selection, as opposed to a particular scattering process. The channels are required to
have disjoint event selection requirements. We use the term sample for a set of scattering
processes that can be added together incoherently; thus scattering processes that interfere
quantum mechanically must be considered in the same sample.

We will use the following mnemonic index conventions:

• e 2 events

• b 2 bins

• c 2 channels

• s 2 samples

• p 2 parameters

We define the following subsets of parameters N = {�p} the unconstrained normalization
factors (ie. NormFactor), S = {↵p} the parameters associated to systematic that have ex-
ternal constraints (ie. OverallSys and HistoSys), � = {�csb} (the bin-by-bin uncertainties
with constraints (statistical errors, ShapeSys but not those associated to an unconstrained
ShapeFactor). We also use greek symbols for parameters of the model and roman symbols
for observable quantities with a frequentist notion of probability.

2.2 The Template

The parametrized probability density function constructed by the HistFactory is of a con-
crete form, but su�ciently flexible to describe many analyses based on template histograms.
In general, the HistFactory produces probability density functions of the form

P(nc, xe, ap |�p,↵p, �b) =
Y

c2channels

"
Pois(nc|⌫c)

ncY

e=1

fc(xe|↵)

#
·G(L

0

|�,�L) ·
Y

p2S+�

fp(ap|↵p) (5)

where fp(ap|↵p) is a constraint term describing an auxiliary measurement ap that constrains
the nuisance parameter ↵p (see Section 4.2). Denote the bin containing xe as be. We have
the following expression for the expected (mean) number of events in a given bin

⌫cb(�p,↵p, �b) = �cs �cb �cs(↵) ⌘cs(↵) �csb(↵) , (6)

4



EXAMPLE OF DIGITAL PUBLISHING 
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RooFit’s Workspace now provides the 
ability to save in a ROOT file the full 
likelihood model, any priors you might 
want, and the minimal data necessary to 
reproduce likelihood function. 

Need this for combinations, as p-value is 
not sufficient information for a proper 
combination.



HISTFACTORY

32 page documentation of HistFactory tool + manual 
‣ currently a “living document”
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http://cds.cern.ch/record/1456844

http://cds.cern.ch/record/1456844


COMBINED ATLAS HIGGS SEARCH

State of the art: At the time of the discovery, the combined Higgs search included 
100 disjoint channels and >500 nuisance parameters 
‣ Models for individual channels come from about 11 sub-groups performing 

dedicated searches for specific Higgs decay modes 
‣ In addition low-level performance groups provide tools for evaluating systematic 

effects and corresponding constraint terms 
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Table 3: Summary of the individual channels contributing to the combination. The central number in the
three-part mass ranges indicates the transition from low-mH to high-mH optimised event selections.

Higgs Decay Subsequent Additional Sub-Channels mH L [fb−1]Decay Range
H → γγ – 9 sub-channels (pTt⊗ηγ ⊗ conversion) 110-150 4.9

H → ZZ
ℓℓℓ′ℓ′ {4e,2e2µ ,2µ2e,4µ} 110-600 4.8
ℓℓν  ν {ee,µµ} ⊗ {low pile-up, high pile-up} 200-280-600 4.7
ℓℓq  q {b-tagged, untagged} 200-300-600 4.7

H →WW ℓνℓν {ee,eµ ,µµ} ⊗ {0-jet, 1-jet, VBF} 110-300-600 4.7
ℓνqq′ {e,µ} ⊗ {0-jet, 1-jet} 300-600 4.7

H → τ+τ−

ℓℓ4ν {eµ}⊗{0-jet} ⊕ {1-jet, VBF,VH} 110-150 4.7

ℓτhad3ν {e,µ} ⊗ {0-jet} ⊗ {Emiss
T ≷ 20 GeV} 110-150 4.7⊕ {e,µ} ⊗ {1-jet, VBF}

τhadτhad2ν {1-jet} 110-150 4.7

VH → bb
Z→ νν Emiss

T ∈ {120−160,160−200,≥ 200 GeV} 110-130 4.6
W → ℓν pWT ∈ {< 50,50−100,100−200,≥ 200 GeV} 110-130 4.7
Z→ ℓℓ pZT ∈ {< 50,50−100,100−200,≥ 200 GeV} 110-130 4.7

• H → ZZ(∗) → ℓ+ℓ−ℓ+ℓ−: This analysis is unchanged with respect to the previous combined203

search [?]. The search is performed for mH hypotheses in the full 110 GeV to 600 GeV mass204

range using data corresponding to an integrated luminosity of 4.8 fb−1 [?]. The main irreducible205

ZZ(∗) background is estimated using Monte Carlo simulation. The reducible Z+jets background,206

which has an impact mostly for low four-lepton invariant masses, is estimated from control re-207

gions in the data. The top-quark (t  t) background normalisation is validated using a dedicated208

control sample. The events are categorised according to the lepton flavour combinations. The209

mass resolutions are approximately 1.5% in the four-muon channel and 2% in the four-electron210

channel for mH∼120 GeV. The four-lepton invariant mass is used as a discriminating variable.211

• H → ZZ→ ℓ+ℓ−νν update: The analysis described in [?,?] was based on an integrated luminos-212

ity of 2.05 fb−1 and was optimised for two search regions with mH hypotheses above and below213

280 GeV and two lepton flavour categories. To achieve the best sensitivity, the present search,214

which uses an integrated luminosity of 4.7 fb−1 [?], is additionally split between the first 2.3 fb−1
215

of “low pile-up” collision data, where the average number of interactions per bunch crossing was216

about 6, and the latter 2.4 fb−1 of “high pile-up” collisions, where the average number of interac-217

tions per bunch crossing was about 12. The selection is unaltered between the periods. The ℓ+ℓ−218

pair invariant mass is required to be within 15 GeV of the Z-boson mass. The reverse requirement219

is applied to same-flavour leptons in the H →WW (∗) → ℓ+νℓ−ν channel to avoid overlaps. The220

transverse mass of the dilepton and missing transverse energy system is used as a discriminating221

variable.222

• H → ZZ → ℓ+ℓ−qq update: This analysis is updated with respect to the previous combined223

search [?]. The previous analysis used a dataset corresponding to an integrated luminosity of224

2.05 fb−1 [?], while the current analysis is based on an integrated luminosity of 4.7 fb−1 [?]. It225

takes advantage of an improved b-tagging algorithm [?] and of the larger sample of data to better226

constrain systematic uncertainties on the background yield. The analysis is separated into search227

regions above and below mH=300 GeV, where the event selections are independently optimised.228

The dominant background arises from Z+jets production, which is normalised from data using229



VISUALIZING THE COMBINED MODEL

State of the art: At the time of the discovery, the combined Higgs search 
included 100 disjoint channels and >500 nuisance parameters 

RooFit / RooStats: is the modeling language (C++) which provides 
technologies for collaborative modeling 
‣ provides technology to publish likelihood functions digitally 
‣ and more, it’s the full model so we can also generate pseudo-data 
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EVOLUTION OF MODEL COMPLEXITY
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FIG. 1. Invariant or transverse mass distributions for the selected candidate events, the total background and the signal expected
in the following channels: (a) H → γγ, (b) H → ZZ(∗) → ℓ+ℓ−ℓ+ℓ− in the entire mass range, (c) H → ZZ(∗) → ℓ+ℓ−ℓ+ℓ− in
the low mass range, (d) H → ZZ → ℓ+ℓ−νν, (e) b-tagged selection and (f) untagged selection for H → ZZ → ℓ+ℓ−qq, (g) H →
WW (∗) → ℓ+νℓ−ν+0-jets, (h) H → WW (∗) → ℓ+νℓ−ν+1-jet, (i) H → WW (∗) → ℓ+νℓ−ν+2-jets, (j) H → WW → ℓνqq′+0-
jets, (k) H → WW → ℓνqq′+1-jet and (l) H → WW → ℓνqq′+2-jets. The H → WW (∗) → ℓ+νℓ−ν+2-jets distribution is
shown before the final selection requirements are applied.
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FIG. 2. Invariant or transverse mass distributions for the selected candidate events, the total background and the signal expected
in the following channels: (a) H → τlepτlep+0-jets, (b) H → τlepτlep 1-jet, (c) H → τlepτlep+2-jets, (d) H → τlepτhad+0-jets and
1-jet, (e) H → τlepτhad+2-jets, (f) H → τhadτhad. The bb invariant mass for (g) the ZH → ℓ+ℓ−bb̄, (h) the WH → ℓνbb̄ and (i)
the ZH → ννbb̄ channels. The vertical dashed lines illustrate the separation between the mass spectra of the subcategories in
pZT, p

W
T , and Emiss

T , respectively. The signal distributions are lightly shaded where they have been scaled by a factor of five or
ten for illustration purposes.
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HISTOGRAM INTERPOLATION

Several interpolation algorithms exist: eg. Alex Read’s “horizontal” 
histogram interpolation algorithm (RooIntegralMorph in RooFit) 
‣ take several PDFs, construct interpolated PDF with additional 

nuisance parameter α 

‣ Now in RooFit

70

Simple “vertical” 
interpolation bin-by-bin. 

Alternative “horizontal” 
interpolation algorithm by 
Max Baak called 
“RooMomentMorph” in 
RooFit  (faster and 
numerically more stable)



COMMON CONSTRAINTS TERMS

Many uncertainties have no clear statistical description or it is impractical to provide 
Traditionally, we use Gaussians, but for large uncertainties it is clearly a bad choice 

‣ quickly falling tail, bad behavior near physical boundary, optimistic p-values, ... 
For systematics constrained from control samples and dominated by statistical uncertainty, a 
Gamma distribution is a more natural choice [PDF is Poisson for the control sample] 
‣ longer tail, good behavior near boundary, natural choice if auxiliary is based on counting 

For “factor of 2” notions of uncertainty log-normal is a good choice 
‣ can have a very long tail for large uncertainties 

None of them are as good as an actual model for the auxiliary measurement, if available
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Truncated Gaussian 
Gamma 
Log-normal

PDF(y| β) Prior(β) Posterior(β|y)

Gaussian uniform Gaussian

Poisson uniform Gamma

Log-normal 1/β Log-Normal

To consistently switch between frequentist, 
Bayesian, and hybrid procedures, need to be 
clear about prior vs. likelihood function 
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PARAMETRIC VS. NON-PARAMETRIC PDFS

No parametric form, need to construct non-parametric PDFs
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From Monte Carlo samples, one has empirical PDF

femp =
1
N

N�
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�(x� xi)



PARAMETRIC VS. NON-PARAMETRIC PDFS
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Classic example of a non-parametric PDF is the histogram
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PARAMETRIC VS. NON-PARAMETRIC PDFS
Classic example of a non-parametric PDF is the histogram
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but they depend on bin width and starting position
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PARAMETRIC VS. NON-PARAMETRIC PDFS
Classic example of a non-parametric PDF is the histogram
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“Average Shifted Histogram” minimizes effect of binning
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“the data is the model” 

Adaptive Kernel estimation puts wider kernels in regions of low 
probability 

Used at LEP for describing pdfs from Monte Carlo (KEYS)

KERNEL DENSITY ESTIMATION
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Neural Network Output
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Kernel estimation is the generalization of Average Shifted 
Histograms

K.C., Comput.Phys.Commun. 136 (2001).  
[hep-ex/0011057]



MULTIVARIATE, NON-PARAMETRIC PDFS
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Max Baak 6

Correlations

! 2-d projection of  
pdf from previous 
slide.

! RooNDKeys pdf
automatically 
models (fine) 
correlations 
between 
observables ...

ttbar sample

higgs sample

Kernel Estimation has a nice generalizations to higher dimensions
‣ practical limit is about 5-d due to curse of dimensionality

Max Baak has coded N-dim 
KEYS pdf described in 
Comput.Phys.Commun. 136 (2001) in 
RooFit.

These pdfs have been used 
as the basis for a 
multivariate discrimination 
technique called “PDE”

D(⌅x) =
fs(⌅x)

fs(⌅x) + fb(⌅x)



78

GAUSSIAN PROCESSES

https://speakerdeck.com/dfm/pydata-time-series-analysis-gps-and-exoplanets



A N  E X O P L A N E T  E X A M P L E

79https://speakerdeck.com/dfm/pydata-time-series-analysis-gps-and-exoplanets



G A U S S I A N  P R O C E S S E S
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