Scale hierarchies in particle physics and cosmology

I. Antoniadis

Albert Einstein Center, Bern University and LPTHE, UPMC/CNRS, Paris

The Standard Theory and Beyond in the LHC Era - 2015 Albufeira, Portugal 24-31 October 2015

A fundamental theory of Nature

• should describe both particle physics and cosmology

Problem of scales

- describe high energy SUSY extension of the Standard Model unification of all fundamental interactions
- incorporate Dark Energy

simplest case: infinitesimal (tuneable) +ve cosmological constant

- describe possible accelerated expanding phase of our universe models of inflation (approximate de Sitter)
 - \Rightarrow 3 very different scales besides M_{Planck} :

Problem of scales

possible connections

• M_I could be near the EW scale, such as in Higgs inflation

but large non minimal coupling to explain

• M_{Planck} could be emergent from the EW scale

in models of low-scale gravity and TeV strings

2 extra dims at submm \leftrightarrow meV: interesting coincidence with DE scale $M_I \sim TeV$ is also allowed by the data since cosmological observables are dimensionless in units of the effective gravity scale

2 they are independent [10]

LA -Patil '14 and '15

Effective scale of gravity: reduced by the number of species

N particle species \Rightarrow lower quantum gravity scale : $M_*^2 = M_p^2/N$

Dvali '07, Dvali, Redi, Brustein, Veneziano, Gomez, Lüst '07-'10 derivation from: black hole evaporation or quantum information storage Pixel of size L containing N species storing information:

localization energy $E \gtrsim N/L \rightarrow$ Schwarzschild radius $R_s = N/(LM_p^2)$

no collapse to a black hole : $L \gtrsim R_s \Rightarrow L \gtrsim \sqrt{N}/M_p = 1/M_*$

Power spectrum of temperature anisotropies

(adiabatic curvature perturbations \mathcal{R})

$$\mathcal{P}_{\mathcal{R}} = \frac{H^2}{8\pi^2 M_*^2 \epsilon} \simeq \mathcal{A} \times 10^{-10} \quad ; \quad \mathcal{A} \approx 22$$
$$-\dot{H}/H^2$$

Power spectrum of primordial tensor anisotropies $P_t = 2 \frac{H^2}{\pi^2 M^2}$

 \Rightarrow tensor to scalar ratio $r = \mathcal{P}_t / \mathcal{P}_{\mathcal{R}} = 16\epsilon$

measurement of \mathcal{A} and $r \Rightarrow$ fix the scale of inflation

H in terms of
$$M_*$$
 : $\frac{H}{M_*} = \left(\frac{\pi^2 \mathcal{A} r}{2 \times 10^{10}}\right)^{1/2} \equiv \Upsilon \approx 1.05 \sqrt{r} \times 10^{-4}$

Cosmological obs without assumption on scales

Power spectrum of temperature anisotropies

.

(adiabatic curvature perturbations \mathcal{R})

$$\mathcal{P}_{\mathcal{R}} = \frac{H^2}{8\pi^2 M_{*s}^2 \epsilon_{\mathsf{A}}} \simeq \mathcal{A} \times 10^{-10} \quad ; \quad \mathcal{A} \approx 22 \quad ; \quad M_{*s}^2 = M_p^2/N_s$$
$$-\dot{H}/H^2 \qquad \text{no of scalars coupled to } T_{\mu}^{\mu} \stackrel{\nearrow}{\xrightarrow{}}$$

Power spectrum of primordial tensor anisotropies

$$\mathcal{P}_T = 2 \frac{H^2}{\pi^2 M_{*T}^2}$$
; $M_{*T}^2 = M_{*s}^2 / N_T \leftarrow \text{no of tensor modes}$

 \Rightarrow tensor to scalar ratio $r = \mathcal{P}_T / \mathcal{P}_R = 16\epsilon N_T \Rightarrow$

• *H* in terms of
$$M_*$$
: $\frac{H}{M_{*T}} = \left(\frac{\pi^2 \mathcal{A} r}{2 \times 10^{10}}\right)^{1/2} \equiv \Upsilon \approx 1.05 \sqrt{r} \times 10^{-4}$

• deviation for the tensor spectral index : $n_T = 2\epsilon = -\frac{r}{8}\frac{1}{N_T}$

D = 4 + n extra dims of size average size $R \Rightarrow$

fundamental gravity scale $M_s^{2+n}R^n = M_{Pl}^2$

 N_T = all graviton KK states with mass less than $H \Rightarrow N_T \simeq (HR)^n$

$$M_{*T} = M_{Pl}/\sqrt{N_T} = M_s(M_sR)^{n/2}/(HR)^{n/2} = M_s(M_s/H)^{n/2}$$

$$H = M_{*T} \Upsilon = M_s (M_s/H)^{n/2} \Upsilon \quad \Rightarrow \quad H = M_s \Upsilon^{2/(n+2)}$$

 \Rightarrow $H\sim$ 1-3 orders of magnitude less than M_s for 0.001 \lesssim $r\lesssim$ 0.1 \$ as low as near the EW scale

5D brane-world realisation: empty bulk with two boundary dS branes

 \Rightarrow keeping H fixed one can make y_c large, so that $H^2 \gg 1/y_c^2$ [4]

ŀ

• SUSY breaking at $m_{SUSY} \sim \text{TeV}$

with an infinitesimal (tuneable) positive cosmological constant

Villadoro-Zwirner '05

I.A.-Knoops, I.A.-Ghilencea-Knoops '14, I.A.-Knoops '15

2 Inflation in supergravity at a scale different than m_{SUSY} [21]

Content (besides N = 1 SUGRA): one vector V and one chiral multiplet S with a shift symmetry $S \rightarrow S - ic\omega \leftarrow \text{transformation parameter}$ String theory: compactification modulus or universal dilaton $s = 1/g^2 + ia \leftarrow$ dual to antisymmetric tensor Kähler potential K: function of $S + \bar{S}$ string theory: $K = -p \ln(S + \bar{S})$ Superpotential: constant or single exponential if R-symmetry $W = ae^{bS}$ $\int d^2 \theta W$ invariant $b < 0 \Rightarrow$ non perturbative

$$\mathcal{V}_{F} = a^{2} e^{\frac{b}{l}} l^{p-2} \left\{ \frac{1}{p} (pl-b)^{2} - 3l^{2} \right\} \qquad l = 1/(s+\bar{s})$$
Planck units

no minimum for b < 0 with l > 0 ($p \le 3$)

but interesting metastable SUSY breaking vacuum

when R-symmetry is gauged by V allowing a Fayet-Iliopoulos (FI) term:

 $\mathcal{V}_D = c^2 l(pl - b)^2$ for gauge kinetic function f(S) = S

• b > 0: $V = V_F + V_D$ SUSY local minimum in AdS space at l = b/p

- b = 0: SUSY breaking minimum in AdS (p < 3)
- b < 0: SUSY breaking minimum with tuneable cosmological constant Λ

In the limit $\Lambda \approx 0 \ (p = 2) \Rightarrow$

 $b/I = \alpha \approx -0.183268$

$$rac{a^2}{bc^2} = 2rac{e^{-lpha}}{lpha}rac{(2-lpha)^2}{2+4lpha-lpha^2} + \mathcal{O}(\Lambda) pprox -50.6602$$

physical spectrum:

massive dilaton, U(1) gauge field, Majorana fermion, gravitino

All masses of order $m_{3/2} \approx e^{\alpha/2} I a \leftarrow$ TeV scale

Properties and generalizations

- Metastability of the ground state: extremely long lived $I \simeq 0.02 \text{ (GUT value } \alpha_{GUT}/2) \ m_{3/2} \sim \mathcal{O}(\text{TeV}) \Rightarrow$ decay rate $\Gamma \sim e^{-B}$ with $B \approx 10^{300}$
- Add visible sector (MSSM) preserving the same vacuum matter fields φ neutral under R-symmetry

$$\mathcal{K}=-2\ln(S+ar{S})+\phi^{\dagger}\phi$$
 ; $\mathcal{W}=(a+\mathcal{W}_{MSSM})e^{bS}$

 \Rightarrow soft scalar masses non-tachyonic of order $m_{3/2}$ (gravity mediation)

- R-charged fields can be added in the hidden sector needed for anomaly cancellation (important constraint)
- Toy model classically equivalent to

 $K = -p \ln(S + \overline{S}) + b(S + \overline{S})$; W = a with V ordinary U(1)

Properties and generalizations

- Consider a simple (anomaly free) variation of the model with the above K and W, gauge kinetic function f = 1 and p = 1
 ⇒ tuning still possible but scalar masses of neutral matter tachyonic possible solution: add a new field Z in the 'hidden' SUSY sector
 ⇒ one extra parameter
- alternatively: add an S-dependent factor in Matter kinetic terms $K = -\ln(S + \bar{S}) + (S + \bar{S})^{-\nu} \sum \Phi \bar{\Phi} \quad \text{for } \nu \gtrsim 2.5$ $\Rightarrow \text{ similar phenomenology}$
- distinct features from other models of SUSY breaking and mediation
- gaugino masses at the quantum level

 \Rightarrow suppressed compared to scalar masses and A-terms

A realistic model

$$egin{aligned} \mathcal{K} &= -\ln(S+ar{S}) + b(S+ar{S}) + Zar{Z} + \sum \Phiar{\Phi} \ & \mathcal{W} &= a\left(1+\gamma Z\right) + \mathcal{W}_{MSSM}(\Phi) \ & f &= 1 \quad , \quad f_A &= 1/g_A^2 \end{aligned}$$

Existence of tunable dS vacuum + non-tachyonic soft scalar masses $\Rightarrow 0.5 \leq \gamma \lesssim 1.7$

- main properties remain with $\operatorname{Re} z, F_z \neq 0$
- soft scalar masses: $m_0 pprox B_0 \sim \mathcal{O}(m_{3/2})$
- trilinear scalar couplings: $A_0 = B_0 + m_{3/2}$

gaugino masses appear to vanish since f_A are constants however in the gauged R-symmetry representation they don't

Kähler transformation and gaugino masses

$$K = -\ln(S + \bar{S}) + Z\bar{Z} + \sum \Phi\bar{\Phi}$$
$$W = [a(1 + \gamma Z) + W_{MSSM}(\Phi)] e^{bS}$$
$$f_A = 1/g_A^2 + \beta_A S \quad ; \quad \beta_A = \frac{b}{8\pi^2}(T_{R_A} - T_{G_A})$$

S-dependent contribution: needed to cancel the $U(1)_R$ anomalies \Rightarrow generate non-vanishing gaugino masses!

resolution of the puzzle: 'anomaly' mediation contribution due to super-Weyl-Kähler and sigma-model anomalies

$$m_{1/2} = -\frac{g^2}{16\pi^2} [(3T_G - T_R)m_{3/2} + (T_G - T_R)K_{\alpha}F^{\alpha} + 2\frac{T_R}{d_R}(\log \det K|_R'')_{,\alpha}F^{\alpha}]$$

$$\lim_{\substack{II\\0}}$$

Typical spectrum

The masses of sbottom squark (yellow), stop (black), gluino (red), lightest chargino (green) and lightest neutralino (blue) as a function of the gravitino mass. The mass of the lightest neutralino varies between \sim 40 and 150 GeV

Identify the dilaton shift with a global SM symmetry I.A.-Knoops to appear

A combination of Baryon and Lepton number

```
containing the matter parity (-)^{B-L}
```

- B L: anomaly free in the presence of 3 R-handed neutrinos
- 3B L: forbids all dim-4 and dim-5 operators violating B or L anomalies cancel by a Green-Schwarz mechanism

S-dependant gauge kinetic functions

• one extra parameter: the unit of charge for SM fields

or equivalently the U(1) gauge coupling

• similar phenomenology with lighter stop quark $\gtrsim 1.5$ GeV $_{[10]}$ $_{[26]}$

Starobinsky model of inflation

$$\mathcal{L} = \frac{1}{2}R + \alpha R^2$$

Lagrange multiplier $\phi \Rightarrow \mathcal{L} = \frac{1}{2}(1+2\phi)R - \frac{1}{4\alpha}\phi^2$

Weyl rescaling \Rightarrow equivalent to a scalar field with exponential potential:

$$\mathcal{L} = \frac{1}{2}R - \frac{1}{2}(\partial\phi)^2 - \frac{M^2}{12}\left(1 - e^{-\sqrt{\frac{2}{3}}\phi}\right)^2 \qquad M^2 = \frac{3}{4\alpha}$$

Note that the two metrics are not the same

supersymmetric extension:

add D-term $\mathcal{R}\bar{\mathcal{R}}$ because F-term \mathcal{R}^2 does not contain \mathcal{R}^2

 \Rightarrow brings two chiral multiplets

SUSY extension of Starobinsky model

$$K = -3\ln(T + \bar{T} - C\bar{C})$$
 ; $W = MC(T - \frac{1}{2})$

- T contains the inflaton: Re $T = e^{\sqrt{\frac{2}{3}}\phi}$
- SUSY is broken during inflation with C the goldstino superfield
 - \rightarrow model independent treatment in the decoupling sgoldstino limit
 - $C \equiv X_{NL}$ constrained superfield satisfying $X_{NL}^2 = 0 \Rightarrow$

$$X_{NL}(y) = \frac{\chi^2}{2F} + \sqrt{2}\theta\chi + \theta^2 F \qquad y^{\mu} = x^{\mu} + i\theta\sigma^{\mu}\bar{\theta}$$

Rocek-Tseytlin '78, Lindstrom-Rocek '79, Komargodski-Seiberg '09

Non-linear SUSY in supergravity

I.A.-Dudas-Ferrara-Sagnotti '14, I.A.-Markou '15

$$K = -3\log(1 - X\bar{X}) \equiv 3X\bar{X}$$
; $W = fX + W_0$ $X \equiv X_{NL}$

$$\Rightarrow$$
 $V = \frac{1}{3}|f|^2 - 3|W_0|^2$; $m_{3/2}^2 = |W_0|^2$

- V can have any sign contrary to global NL SUSY
- NL SUSY in flat space $\Rightarrow f = 3 m_{3/2} M_p$

• Dual gravitational formulation: $(\mathcal{R} - 6W_0)^2 = 0$ chiral curvature superfield

• Minimal SUSY extension of R^2 gravity

Non-linear Starobinsky supergravity

I.A.-Dudas-Ferrara-Sagnotti '14

$$K = -3\ln(T + \overline{T} - X_{NL}\overline{X}_{NL}) \quad ; \quad W = M X_{NL}T + f X_{NL} + W_0 \qquad \Rightarrow$$

$$\mathcal{L} = \frac{1}{2}R - \frac{1}{2}(\partial\phi)^2 - \frac{M^2}{12}\left(1 - e^{-\sqrt{\frac{2}{3}}\phi}\right)^2 - \frac{1}{2}e^{-2\sqrt{\frac{2}{3}}\phi}(\partial a)^2 - \frac{M^2}{18}e^{-2\sqrt{\frac{2}{3}}\phi}a^2$$

• axion a much heavier than ϕ during inflation, decouples:

$$m_{\phi} = \frac{M}{3}e^{-\sqrt{\frac{2}{3}}\phi_0} << m_a = \frac{M}{3}$$

• inflation scale M independent from NL-SUSY breaking scale f

 \Rightarrow compatible with low energy SUSY

Consistent framework for particle phenomenology and cosmology at least 3 very different scales (besides M_{Planck}) electroweak, dark energy, inflation their origins may be connected or independent

• SUSY with infinitesimal (tuneable) +ve cosmological constant interesting framework for model building incorporating dark energy

 Inflation models at a hierarchically different third scale sgoldstino-less supergravity models of inflation