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We work in the context of a supersymmetric

(so that all three gauge couplings unify)

renormalizable SO(10) (so that all the fermion

mass matrices are inter-related) GUT.

The minimal theory has only one 10 and one 126

of scalars with (renormalizable) Yukawa couplings.

That theory is able to fit all the fermion masses

and mixings, but it is self-contradictory: the scale

of the neutrino masses, i.e. ∆m2
atmospheric ≈ 0.0025 eV2,

implies that the VEV of the SU(2)R triplet is

in the middle of the GUT desert: wR ∼ 1013 GeV.

Way out: to add more scalar representations

(10, 126, or 120) with Yukawa couplings.

Problem: that will add many degrees of freedom

to the Yukawa couplings, which then lack

predictive power. Our solution: to introduce some

flavour symmetry which restricts the Yukawa matrices.

First paper: one 10, one 126, and one 120, with

an Abelian symmetry. Second paper: which

symmetries is it possible in general to have?
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FIRST PAPER

One 126 which couples with (symmetric) matrix F ,

one 120 which couples with (anti-symmetric) matrix G,

and one 10 which couples with (symmetric) matrix H.

Md = kd H + κd G + vdF ,

Mℓ = kd H + κℓ G − 3vd F,

Mu = ku H + κu G + vu F,

MD = ku H + κD G − 3vu F,

Type-I and type-II seesaw mechanisms:

Mν = wL F − 1

wR

MD F−1MT
D

=
vd

wR

[

wLwR

v2
d

(vdF ) − MD (vdF )
−1

MT
D

]

.

Our assumptions: F 6= 0, G 6= 0, H 6= 0; det F 6= 0;

No generation decouples.

Our question: which flavour symmetries are available

to constrain F , G, and H? Answer: 14 of them.
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Because of the specific H fT Γf form

of the Yukawa couplings in an SO(10) GUT,

a flavour symmetry reads

WT FW = e−iγF,

WT GW = e−iβG,

WT HW = e−iαH.

The flavour symmetry is necessarily Abelian, because

there is only one of each type of scalar representation.

W may be diag (+1, +1, −1) (Z2 symmetry).

Cases A, B, and C:

F, H ∼

0

B

B

@

× × 0

× × 0

0 0 ×

1

C

C

A

, G ∼

0

B

B

@

0 0 ×

0 0 ×

× × 0

1

C

C

A

.

F ∼

0

B

B

@

× × 0

× × 0

0 0 ×

1

C

C

A

, G, H ∼

0

B

B

@

0 0 ×

0 0 ×

× × 0

1

C

C

A

.

F, G ∼

0

B

B

@

× × 0

× × 0

0 0 ×

1

C

C

A

, H ∼

0

B

B

@

0 0 ×

0 0 ×

× × 0

1

C

C

A

.
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W may be diag
(

1, ω, ω2
)

with ω ≡ exp (2iπ/3)

(Z3 symmetry). Cases D1, D3, and D2:

F, G ∼

0

B

B

@

× 0 0

0 0 ×

0 × 0

1

C

C

A

, H ∼

0

B

B

@

0 0 ×

0 × 0

× 0 0

1

C

C

A

.

F ∼

0

B

B

@

× 0 0

0 0 ×

0 × 0

1

C

C

A

, G, H ∼

0

B

B

@

0 0 ×

0 × 0

× 0 0

1

C

C

A

.

F ∼

0

B

B

@

× 0 0

0 0 ×

0 × 0

1

C

C

A

, G ∼

0

B

B

@

0 0 ×

0 × 0

× 0 0

1

C

C

A

, H ∼

0

B

B

@

0 × 0

× 0 0

0 0 ×

1

C

C

A

.

W may be diag (1, −1, i) (Z4 symmetry). Case A1:

F ∼

0

B

B

@

× 0 0

0 0 ×

0 × 0

1

C

C

A

, G ∼

0

B

B

@

0 0 ×

0 0 0

× 0 0

1

C

C

A

, H ∼

0

B

B

@

0 0 0

0 × 0

0 0 ×

1

C

C

A

.

W may be diag
(

eiσ, e−iσ, 1
)

with generic σ

(U(1) symmetry). Case A2:

F, H ∼

0

B

B

@

× 0 0

0 0 ×

0 × 0

1

C

C

A

, G ∼

0

B

B

@

0 0 ×

0 0 0

× 0 0

1

C

C

A

.

Gives Fritzsch-type mass matrices, doesn’t work.

There are further cases with U(1) symmetry — A′
1,

A′′
1 , and D′

1,2,3 — but their matrices

make them subcases of the above.

4



A case with Z2 × Z2 symmetry is also possible.

It is simultaneously a sub-case of cases A, B, and C.

W1 = diag (+1, +1, −1) , W2 = diag (+1, −1, +1)

F ∼

0

B

B

@

× 0 0

0 × 0

0 0 ×

1

C

C

A

, G ∼

0

B

B

@

0 0 ×

0 0 0

× 0 0

1

C

C

A

, H ∼

0

B

B

@

0 × 0

× 0 0

0 0 0

1

C

C

A

.

We must now try and fit each of the cases to the data:

9 charged-fermion masses, 3 angles in the CKM matrix,

1 neutrino mass ratio, and 3 angles in the PMNS matrix.

Plus ∆m2
atmospheric, which fixes |wR/vd|.

The numbers of parameters in MdM
†
d , MℓM

†
ℓ ,

and MuM†
u for each case are the following:

A: 13 moduli and 10 phases.

B: 11 moduli and 7 phases.

C: 10 moduli and 6 phases.

Cases D1,2,3 and A1: 9 moduli and 5 phases.

There are 3 moduli and 2 phases more in MνM†
ν :

|wR/vd|, wLwR/v2
d, and κD.

The result of the fit is simple: Only cases A and B work.

But they work perfectly! No predictions seem possible.

Remarkably, |wR/vd| turns out ∼ 5 × 1014: excellent.
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SECOND PAPER

Yukawa couplings in the SO(10) GUT

are of the form HafT Γaf , where the Γa

are either symmetric (for Ha in the 10 or in the 126)

or anti-symmetric (for Ha in the 120) 3 × 3 matrices.

Symmetries take the form UT ΓaU =
∑

b VabΓb,

where U acts on the three fermion families and V

acts on the Ha pertaining to the same SO(10) irrep.

There is a trivial symmetry f → eiδf , Ha → e−2iδHa.

We search for possible additional (flavour) symmetries.

We firstly search for Abelian symmetries, where

U = diag
(

eiα1 , eiα2 , eiα3
)

and Vab = e−iψaδab.

For each nonzero (i, j) entry of any Yukawa-coupling

matrix Γa, labelled by an index k, we write the equation
∑

l

Dkl αl = αi + αj + ψa = 2πnk,

where the phases ψa were re-labelled as αl for l > 3.

By finding the Smith normal form (SNF) of D, we may

reduce it to an almost diagonal form.
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The SNF is obtained by successively applying steps like

(1) changing the order of rows or columns of D,

(2) flipping the signs of rows or columns,

(3) adding one row/column to another row/column.

These manipulations are useful because they

preserve the form of the system
∑

l Dkl αl = 2πnk.

We arrive at the result that any single matrix Γ

can only have the following five rephasing symmetries:

U(1) × U(1), U(1) × Z2, U(1), Z2 × Z2, Z2

(or else it may have no symmetry at all).

If we allow for several matrices Γ instead of a single one,

then two additional Abelian symmetries may exist:

Z3, Z4.

Because we must factor out the possibility of

a general rephasing f → eiδf ,

there is an additional possible Abelian symmetry:

Z3 × Z3 = ∆(27) / Z
center
3 , where Z

center
3 is

the center of SU(3) and of its subgroup ∆(27).
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Any non-Abelian symmetries can contain as subgroups

only the above Abelian ones, viz.

U(1) × U(1), U(1) × Z2, U(1) (continuous),

Z2 × Z2, Z2, Z3 × Z3, Z3, Z4 (discrete).

Complicated mathematical reasonings lead us to

the conclusion that the possible non-Abelian

symmetries are O(2), O(2) × U(1), [U(1) × U(1)] ⋊ S3,

SU(2), SU(2) × U(1), SO(3), SU(3) (continuous),

S3, D4, Q4, A4, S4, ∆(54) / Z
center
3 , Σ(36) (discrete).

It remains to construct explicit models

with these symmetries. Not all the above symmetries

can be realized in practice, though—sometimes

accidental symmetries cannot be avoided

(v.g. Q4 → Q4 × U(1)).

O(2):

0

B

B

@

f 0 0

0 0 g

0 g 0

1

C

C

A

and

0

B

B

@

0 h 0

h 0 0

0 0 0

1

C

C

A

,

0

B

B

@

0 0 h

0 0 0

h 0 0

1

C

C

A

.

D4: same matrices as O(2), plus

0

B

B

@

0 0 0

0 t 0

0 0 t

1

C

C

A

S3 = D3:

0

B

B

@

f 0 0

0 0 g

0 g 0

1

C

C

A

and

0

B

B

@

0 h 0

h 0 0

0 0 t

1

C

C

A

,

0

B

B

@

0 0 h

0 t 0

h 0 0

1

C

C

A

.
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S4:

0

B

B

@

f 0 0

0 f 0

0 0 f

1

C

C

A

and

0

B

B

@

0 g 0

g 0 0

0 0 0

1

C

C

A

,

0

B

B

@

0 0 g

0 0 0

g 0 0

1

C

C

A

,

0

B

B

@

0 0 0

0 0 g

0 g 0

1

C

C

A

.

A4:

0

B

B

@

f 0 0

0 ωf 0

0 0 ω2f

1

C

C

A

and

0

B

B

@

g 0 0

0 ω2g 0

0 0 ωg

1

C

C

A

and

0

B

B

@

0 h 0

h 0 0

0 0 0

1

C

C

A

,

0

B

B

@

0 0 h

0 0 0

h 0 0

1

C

C

A

,

0

B

B

@

0 0 0

0 0 h

0 h 0

1

C

C

A

.

∆(54) / Z
center
3 :

0

B

B

@

f 0 0

0 0 g

0 g 0

1

C

C

A

,

0

B

B

@

0 0 g

0 f 0

g 0 0

1

C

C

A

,

0

B

B

@

0 g 0

g 0 0

0 0 f

1

C

C

A

and

0

B

B

@

h 0 0

0 0 t

0 t 0

1

C

C

A

,

0

B

B

@

0 0 t

0 h 0

t 0 0

1

C

C

A

,

0

B

B

@

0 t 0

t 0 0

0 0 h

1

C

C

A

.

Σ(36): same as ∆(54) / Z
center
3 but with, additionally,

[

g/f =
(

−1 +
√

3
)/

2 or g/f =
(

−1 −
√

3
)/

2
]

and
[

t/h =
(

−1 +
√

3
)/

2 or t/h =
(

−1 −
√

3
)/

2
]

.

It remains to be seen whether any of the models

with a non-Abelian symmetry may have

any practical usefulness and is able to fit the data

and, maybe, even have some predictive power.
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