Flavour symmetries

in $S O(10)$ Yukawa couplings

Luís Lavoura
CFTP, Inst. Sup. Técnico, Univ. Lisboa

In collaboration with P.M. Ferreira, W. Grimus \& D. Jurčiukonis (arXiv:1510.02641), and I.P. Ivanov (not yet finished)

Hapimag resort (Albufeira), the $30^{\text {th }}$ October 2015

We work in the context of a supersymmetric (so that all three gauge couplings unify) renormalizable $S O(10)$ (so that all the fermion mass matrices are inter-related) GUT.

The minimal theory has only one 10 and one $\overline{\mathbf{1 2 6}}$ of scalars with (renormalizable) Yukawa couplings.

That theory is able to fit all the fermion masses and mixings, but it is self-contradictory: the scale of the neutrino masses, i.e. $\Delta m_{\text {atmospheric }}^{2} \approx 0.0025 \mathrm{eV}^{2}$, implies that the VEV of the $S U(2)_{R}$ triplet is in the middle of the GUT desert: $w_{R} \sim 10^{13} \mathrm{GeV}$.

Way out: to add more scalar representations
(10, $\overline{\mathbf{1 2 6}}$, or 120) with Yukawa couplings.

Problem: that will add many degrees of freedom to the Yukawa couplings, which then lack predictive power. Our solution: to introduce some flavour symmetry which restricts the Yukawa matrices.

First paper: one $\mathbf{1 0}$, one $\overline{\mathbf{1 2 6}}$, and one 120, with an Abelian symmetry. Second paper: which symmetries is it possible in general to have?

FIRST PAPER

One $\overline{\mathbf{1 2 6}}$ which couples with (symmetric) matrix F, one 120 which couples with (anti-symmetric) matrix G, and one 10 which couples with (symmetric) matrix H.

$$
\begin{aligned}
M_{d} & =k_{d} H+\kappa_{d} G+v_{d} F \\
M_{\ell} & =k_{d} H+\kappa_{\ell} G-3 v_{d} F \\
M_{u} & =k_{u} H+\kappa_{u} G+v_{u} F \\
M_{D} & =k_{u} H+\kappa_{D} G-3 v_{u} F
\end{aligned}
$$

Type-I and type-II seesaw mechanisms:

$$
\begin{aligned}
\mathcal{M}_{\nu} & =w_{L} F-\frac{1}{w_{R}} M_{D} F^{-1} M_{D}^{T} \\
& =\frac{v_{d}}{w_{R}}\left[\frac{w_{L} w_{R}}{v_{d}^{2}}\left(v_{d} F\right)-M_{D}\left(v_{d} F\right)^{-1} M_{D}^{T}\right]
\end{aligned}
$$

Our assumptions: $F \neq 0, G \neq 0, H \neq 0 ; \operatorname{det} F \neq 0$; No generation decouples.

Our question: which flavour symmetries are available to constrain F, G, and H ? Answer: 14 of them.

Because of the specific $H f^{T} \Gamma f$ form of the Yukawa couplings in an $S O(10)$ GUT,
a flavour symmetry reads

$$
\begin{aligned}
W^{T} F W & =e^{-i \gamma} F, \\
W^{T} G W & =e^{-i \beta} G, \\
W^{T} H W & =e^{-i \alpha} H .
\end{aligned}
$$

The flavour symmetry is necessarily Abelian, because there is only one of each type of scalar representation.
W may be diag $(+1,+1,-1)\left(Z_{2}\right.$ symmetry $)$.
Cases A, B, and C:
$F, H \sim\left(\begin{array}{ccc}\times & \times & 0 \\ \times & \times & 0 \\ 0 & 0 & \times\end{array}\right), \quad G \sim\left(\begin{array}{ccc}0 & 0 & \times \\ 0 & 0 & \times \\ \times & \times & 0\end{array}\right)$.
$F \sim\left(\begin{array}{ccc}\times & \times & 0 \\ \times & \times & 0 \\ 0 & 0 & \times\end{array}\right), \quad G, H \sim\left(\begin{array}{ccc}0 & 0 & \times \\ 0 & 0 & \times \\ \times & \times & 0\end{array}\right)$.
$F, G \sim\left(\begin{array}{ccc}\times & \times & 0 \\ \times & \times & 0 \\ 0 & 0 & \times\end{array}\right), \quad H \sim\left(\begin{array}{ccc}0 & 0 & \times \\ 0 & 0 & \times \\ \times & \times & 0\end{array}\right)$.
W may be $\operatorname{diag}\left(1, \omega, \omega^{2}\right)$ with $\omega \equiv \exp (2 i \pi / 3)$ $\left(Z_{3}\right.$ symmetry). Cases $\mathrm{D}_{1}, \mathrm{D}_{3}$, and D_{2} :
$F, G \sim\left(\begin{array}{ccc}\times & 0 & 0 \\ 0 & 0 & \times \\ 0 & \times & 0\end{array}\right), H \sim\left(\begin{array}{ccc}0 & 0 & \times \\ 0 & \times & 0 \\ \times & 0 & 0\end{array}\right)$.
$F \sim\left(\begin{array}{ccc}\times & 0 & 0 \\ 0 & 0 & \times \\ 0 & \times & 0\end{array}\right), G, H \sim\left(\begin{array}{ccc}0 & 0 & \times \\ 0 & \times & 0 \\ \times & 0 & 0\end{array}\right)$.
$F \sim\left(\begin{array}{ccc}\times & 0 & 0 \\ 0 & 0 & \times \\ 0 & \times & 0\end{array}\right), G \sim\left(\begin{array}{ccc}0 & 0 & \times \\ 0 & \times & 0 \\ \times & 0 & 0\end{array}\right), \quad H \sim\left(\begin{array}{ccc}0 & \times & 0 \\ \times & 0 & 0 \\ 0 & 0 & \times\end{array}\right)$.
W may be diag $(1,-1, i)\left(Z_{4}\right.$ symmetry). Case A_{1} :
$F \sim\left(\begin{array}{ccc}\times & 0 & 0 \\ 0 & 0 & \times \\ 0 & \times & 0\end{array}\right), G \sim\left(\begin{array}{ccc}0 & 0 & \times \\ 0 & 0 & 0 \\ \times & 0 & 0\end{array}\right), H \sim\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & \times & 0 \\ 0 & 0 & \times\end{array}\right)$.
W may be $\operatorname{diag}\left(e^{i \sigma}, e^{-i \sigma}, 1\right)$ with generic σ $\left(U(1)\right.$ symmetry). Case A_{2} :
$F, H \sim\left(\begin{array}{ccc}\times & 0 & 0 \\ 0 & 0 & \times \\ 0 & \times & 0\end{array}\right), G \sim\left(\begin{array}{ccc}0 & 0 & \times \\ 0 & 0 & 0 \\ \times & 0 & 0\end{array}\right)$.
Gives Fritzsch-type mass matrices, doesn't work.

There are further cases with $U(1)$ symmetry - A_{1}^{\prime}, $\mathrm{A}_{1}^{\prime \prime}$, and $\mathrm{D}_{1,2,3}^{\prime}$ - but their matrices make them subcases of the above.

A case with $Z_{2} \times Z_{2}$ symmetry is also possible.
It is simultaneously a sub-case of cases A, B, and C .
$W_{1}=\operatorname{diag}(+1,+1,-1), \quad W_{2}=\operatorname{diag}(+1,-1,+1)$
$F \sim\left(\begin{array}{ccc}\times & 0 & 0 \\ 0 & \times & 0 \\ 0 & 0 & \times\end{array}\right), G \sim\left(\begin{array}{ccc}0 & 0 & \times \\ 0 & 0 & 0 \\ \times & 0 & 0\end{array}\right), H \sim\left(\begin{array}{ccc}0 & \times & 0 \\ \times & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$.

We must now try and fit each of the cases to the data: 9 charged-fermion masses, 3 angles in the CKM matrix, 1 neutrino mass ratio, and 3 angles in the PMNS matrix. Plus $\Delta m_{\text {atmospheric }}^{2}$, which fixes $\left|w_{R} / v_{d}\right|$.

The numbers of parameters in $M_{d} M_{d}^{\dagger}, M_{\ell} M_{\ell}^{\dagger}$, and $M_{u} M_{u}^{\dagger}$ for each case are the following:
A: 13 moduli and 10 phases.
B: 11 moduli and 7 phases.
C: 10 moduli and 6 phases.
Cases $\mathrm{D}_{1,2,3}$ and $\mathrm{A}_{1}: 9$ moduli and 5 phases.
There are 3 moduli and 2 phases more in $\mathcal{M}_{\nu} \mathcal{M}_{\nu}^{\dagger}$: $\left|w_{R} / v_{d}\right|, w_{L} w_{R} / v_{d}^{2}$, and κ_{D}.

The result of the fit is simple: Only cases A and B work. But they work perfectly! No predictions seem possible.

Remarkably, $\left|w_{R} / v_{d}\right|$ turns out $\sim 5 \times 10^{14}$: excellent.

SECOND PAPER

Yukawa couplings in the $S O(10)$ GUT
are of the form $H_{a} f^{T} \Gamma_{a} f$, where the Γ_{a}
are either symmetric (for H_{a} in the $\mathbf{1 0}$ or in the $\overline{\mathbf{1 2 6}}$) or anti-symmetric (for H_{a} in the 120) 3×3 matrices.

Symmetries take the form $U^{T} \Gamma_{a} U=\sum_{b} V_{a b} \Gamma_{b}$, where U acts on the three fermion families and V acts on the H_{a} pertaining to the same $S O(10)$ irrep.

There is a trivial symmetry $f \rightarrow e^{i \delta} f, H_{a} \rightarrow e^{-2 i \delta} H_{a}$. We search for possible additional (flavour) symmetries.

We firstly search for Abelian symmetries, where $U=\operatorname{diag}\left(e^{i \alpha_{1}}, e^{i \alpha_{2}}, e^{i \alpha_{3}}\right)$ and $V_{a b}=e^{-i \psi_{a}} \delta_{a b}$.

For each nonzero (i, j) entry of any Yukawa-coupling matrix Γ_{a}, labelled by an index k, we write the equation

$$
\sum_{l} D_{k l} \alpha_{l}=\alpha_{i}+\alpha_{j}+\psi_{a}=2 \pi n_{k},
$$

where the phases ψ_{a} were re-labelled as α_{l} for $l>3$.
By finding the Smith normal form (SNF) of D, we may reduce it to an almost diagonal form.

The SNF is obtained by successively applying steps like
(1) changing the order of rows or columns of D,
(2) flipping the signs of rows or columns,
(3) adding one row/column to another row/column.

These manipulations are useful because they preserve the form of the system $\sum_{l} D_{k l} \alpha_{l}=2 \pi n_{k}$.

We arrive at the result that any single matrix Γ can only have the following five rephasing symmetries:
$U(1) \times U(1), U(1) \times \mathbb{Z}_{2}, U(1), \mathbb{Z}_{2} \times \mathbb{Z}_{2}, \mathbb{Z}_{2}$
(or else it may have no symmetry at all).
If we allow for several matrices Γ instead of a single one, then two additional Abelian symmetries may exist: $\mathbb{Z}_{3}, \mathbb{Z}_{4}$.

Because we must factor out the possibility of a general rephasing $f \rightarrow e^{i \delta} f$,
there is an additional possible Abelian symmetry:
$\mathbb{Z}_{3} \times \mathbb{Z}_{3}=\Delta(27) / \mathbb{Z}_{3}^{\text {center }}$, where $\mathbb{Z}_{3}^{\text {center }}$ is the center of $S U(3)$ and of its subgroup $\Delta(27)$.

Any non-Abelian symmetries can contain as subgroups only the above Abelian ones, viz.
$U(1) \times U(1), U(1) \times \mathbb{Z}_{2}, U(1)$ (continuous),
$\mathbb{Z}_{2} \times \mathbb{Z}_{2}, \mathbb{Z}_{2}, \mathbb{Z}_{3} \times \mathbb{Z}_{3}, \mathbb{Z}_{3}, \mathbb{Z}_{4}$ (discrete).
Complicated mathematical reasonings lead us to the conclusion that the possible non-Abelian symmetries are $O(2), O(2) \times U(1),[U(1) \times U(1)] \rtimes S_{3}$, $S U(2), S U(2) \times U(1), S O(3), S U(3)$ (continuous), $S_{3}, D_{4}, Q_{4}, A_{4}, S_{4}, \Delta(54) / \mathbb{Z}_{3}^{\text {center }}, \Sigma(36)$ (discrete).

It remains to construct explicit models with these symmetries. Not all the above symmetries can be realized in practice, though-sometimes accidental symmetries cannot be avoided
(v.g. $\left.Q_{4} \rightarrow Q_{4} \times U(1)\right)$.
$O(2):\left(\begin{array}{lll}f & 0 & 0 \\ 0 & 0 & g \\ 0 & g & 0\end{array}\right)$ and $\left(\begin{array}{lll}0 & h & 0 \\ h & 0 & 0 \\ 0 & 0 & 0\end{array}\right),\left(\begin{array}{lll}0 & 0 & h \\ 0 & 0 & 0 \\ h & 0 & 0\end{array}\right)$.
D_{4} : same matrices as $O(2)$, plus $\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & t & 0 \\ 0 & 0 & t\end{array}\right)$
$S_{3}=D_{3}:\left(\begin{array}{lll}f & 0 & 0 \\ 0 & 0 & g \\ 0 & g & 0\end{array}\right)$ and $\left(\begin{array}{lll}0 & h & 0 \\ h & 0 & 0 \\ 0 & 0 & t\end{array}\right),\left(\begin{array}{lll}0 & 0 & h \\ 0 & t & 0 \\ h & 0 & 0\end{array}\right)$.
$S_{4}:\left(\begin{array}{ccc}f & 0 & 0 \\ 0 & f & 0 \\ 0 & 0 & f\end{array}\right)$ and
$\left(\begin{array}{lll}0 & g & 0 \\ g & 0 & 0 \\ 0 & 0 & 0\end{array}\right),\left(\begin{array}{lll}0 & 0 & g \\ 0 & 0 & 0 \\ g & 0 & 0\end{array}\right),\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & g \\ 0 & g & 0\end{array}\right)$.
$A_{4}:\left(\begin{array}{ccc}f & 0 & 0 \\ 0 & \omega f & 0 \\ 0 & 0 & \omega^{2} f\end{array}\right)$ and $\left(\begin{array}{ccc}g & 0 & 0 \\ 0 & \omega^{2} g & 0 \\ 0 & 0 & \omega g\end{array}\right)$ and
$\left(\begin{array}{lll}0 & h & 0 \\ h & 0 & 0 \\ 0 & 0 & 0\end{array}\right),\left(\begin{array}{lll}0 & 0 & h \\ 0 & 0 & 0 \\ h & 0 & 0\end{array}\right),\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & h \\ 0 & h & 0\end{array}\right)$.
$\Delta(54) / \mathbb{Z}_{3}$ center $:\left(\begin{array}{lll}f & 0 & 0 \\ 0 & 0 & g \\ 0 & g & 0\end{array}\right),\left(\begin{array}{lll}0 & 0 & g \\ 0 & f & 0 \\ g & 0 & 0\end{array}\right),\left(\begin{array}{lll}0 & g & 0 \\ g & 0 & 0 \\ 0 & 0 & f\end{array}\right)$
and $\left(\begin{array}{ccc}h & 0 & 0 \\ 0 & 0 & t \\ 0 & t & 0\end{array}\right),\left(\begin{array}{lll}0 & 0 & t \\ 0 & h & 0 \\ t & 0 & 0\end{array}\right),\left(\begin{array}{lll}0 & t & 0 \\ t & 0 & 0 \\ 0 & 0 & h\end{array}\right)$.
$\Sigma(36)$: same as $\Delta(54) / \mathbb{Z}_{3}^{\text {center }}$ but with, additionally, $[g / f=(-1+\sqrt{3}) / 2$ or $g / f=(-1-\sqrt{3}) / 2]$ and $[t / h=(-1+\sqrt{3}) / 2 \quad$ or $\quad t / h=(-1-\sqrt{3}) / 2]$.

It remains to be seen whether any of the models with a non-Abelian symmetry may have any practical usefulness and is able to fit the data and, maybe, even have some predictive power.

