Light-Front Holographic QCD, Color Confinement, and Supersymmetric Features of QCD

Stan Brodsky

The Standard Theory and Beyond Albufeira, Portugal October 24-3I, 2015

QCD Lagrangian

$$
\mathcal{L}_{Q C D}=-\frac{1}{4} \operatorname{Tr}\left(G^{\mu \nu} G_{\mu \nu}\right)+\sum_{f=1}^{n_{f}} i \bar{\Psi}_{f} D_{\mu} \gamma^{\mu} \Psi_{f}+\sum_{f=1}^{n_{f}} \bar{\Psi}_{f} \Psi_{f}
$$

$$
i D^{\mu}=i \partial^{\mu}-g A^{\mu} \quad G^{\mu \nu}=\partial^{\mu} A^{\mu}-\partial^{\nu} A^{\mu}-g\left[A^{\mu}, A^{\nu}\right]
$$

Classical Chiral Lagrangian is Conformally Invariant
Where does the QCD Mass Scale come from?

How does color confinement arise?

- de Alfaro, Fubini, Furlan:

Scale can appear in Hamiltonian and EQM without affecting conformal invariance of action!

Unique confinement potential!

$$
x=\frac{k^{+}}{P^{+}}=\frac{k^{0}+k^{3}}{P^{0}+P^{3}}
$$

Measurements ofhadron LF wavefunction are at fixed $L F$ time

Like aflash photograph

$$
x_{b j}=x=\frac{k^{+}}{P^{+}}
$$

Light-Front Wavefunctions: rigorous representation of composite systems in quantum field theory

Eigenstate of LF Hamiltonian

$$
\begin{aligned}
& x=\frac{k^{+}}{P^{+}}=\frac{k^{0}+k^{3}}{P^{0}+P^{3}} \\
& P_{n}\left(x_{i}, \vec{k}_{\perp}, \vec{P}_{\perp}\right. \\
& \left.\mid p, J_{i}\right) \quad \text { Fixed } \tau=t+z / c \\
& \\
& \\
& \\
& \text { Invariant under boosts! Independent of } P^{\mu} \\
& \sum_{i}^{n} \vec{k}_{\perp i}=\overrightarrow{0} .
\end{aligned}
$$

Causal, Frame-independent. Creation Operators on Simple Vacuum, Current Matrix Elements are Overlaps of LFWFS

Exact frame-independent formulation of nonperturbative QCD!

$$
\begin{gathered}
L^{Q C D} \rightarrow H_{L F}^{Q C D} \\
H_{L F}^{Q C D}=\sum_{i}\left[\frac{m^{2}+k_{\perp}^{2}}{x}\right]_{i}+H_{L F}^{i n t} \\
H_{L F}^{i n t}: \text { Matrix in Fock Space } \\
H_{L F}^{Q C D}\left|\Psi_{h}>=\mathcal{M}_{h}^{2}\right| \Psi_{h}> \\
\left|p, J_{z}>=\sum \psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)\right| n ; x_{i}, \vec{k}_{\perp i}, \lambda_{i}>
\end{gathered}
$$

Eigenvalues and Eigensolutions give Hadronic Spectrum and Light-Front wavefunctions

$H_{L F}^{i n t}$

Bound States in Relativistic Quantum Field Theory:
Light-Front Wavefunctions
Dirac's Front Form: Fixed $\tau=t+z / c$
Fixed $\tau=t+z / c$

$$
\psi\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)_{x=\frac{k^{+}}{P^{+}}=\frac{k^{0}+k^{3}}{P^{0}+P^{3}}}
$$

Invariant under boosts. Independent of $P^{\boldsymbol{\mu}}$

$$
\mathrm{H}_{L F}^{Q C D}\left|\psi>=M^{2}\right| \psi>
$$

Direct connection to QCD Lagrangian Off-shell in invariant mass

Remarkable new insights from AdS/CFT, the duality between conformal field theory and Antv-de Sitter Space

$$
\begin{aligned}
& \frac{F_{2}\left(q^{2}\right)}{2 M}=\sum_{a} \int[\mathrm{~d} x]\left[\mathrm{d}^{2} \mathbf{k}_{\perp}\right] \sum_{j} e_{j} \frac{1}{2} \times \\
& {\left[-\frac{1}{q^{L}} \psi_{a}^{\uparrow *}\left(x_{i}, \mathbf{k}_{\perp i}^{\prime}, \lambda_{i}\right) \psi_{a}^{\downarrow}\left(x_{i}, \mathbf{k}_{\perp i}, \lambda_{i}\right)+\frac{1}{q^{R}} \psi_{a}^{\downarrow *}\left(x_{i}, \mathbf{k}_{\perp i}^{\prime}, \lambda_{i}\right) \psi_{a}^{\dagger}\left(x_{i}, \mathbf{k}_{\perp i}, \lambda_{i}\right)\right]} \\
& \mathbf{k}_{\perp i}^{\prime}=\mathbf{k}_{\perp i}-x_{i} \mathbf{q}_{\perp}
\end{aligned}
$$

Must have $\Delta \ell_{z}= \pm 1$ to have nonzero $F_{2}\left(q^{2}\right)$
Nonzero Proton Anomalous Moment - -> Nonzero orbital quark angular momentum

$$
\Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)
$$

6
GTMD

Transverse density in momentum space

Momentum space

$$
\begin{gathered}
\vec{k}_{\perp} \leftrightarrow \vec{z}_{\perp} \\
\vec{\Delta}_{\perp} \leftrightarrow \vec{b}_{\perp}
\end{gathered}
$$

Transverse density in position space

Lore,
Pasquini
$\rightarrow \quad \int \mathrm{d}^{2} b_{\perp}$
$\rightarrow \quad \int \mathrm{d} x$
$\longrightarrow \quad \int \mathrm{d}^{2} k_{\perp}$

- Measurements are made at fixed τ
- Causality is automatic
- Structure Functions are squares of LFWFs

- Form Factors are overlap of LFWFs
- LFWFs are frame-independent: no boosts, no pancakes!
- Same structure function in ep collider and p rest frame
- No dependence on observer's frame
- LF Holography: Dual to AdS space
- LF Vacuum trivial -- no condensates!
- Profound implications for Cosmological Constant

$$
\begin{aligned}
& \text { Light-Front Holography } \\
& \text { and Supersymmetric Features of QCD }
\end{aligned}
$$

Stan Brodsky

Need a First Approximation to QCD
Comparable in simplicity to
Schrödinger Theory in Atomic Physics

Relativistic, Frame-Independent, Color-Confining
Origin of hadronic mass scale if $\mathbf{m}_{\mathbf{q}}=\mathbf{o}$

$H_{Q E D}$

QED atoms: positronium

 and muoniumCoupled Fock states

$$
\left(H_{0}+H_{i n t}\right)|\Psi>=E| \Psi>
$$

$$
\left[-\frac{\Delta^{2}}{2 m_{\mathrm{red}}}+V_{\mathrm{eff}}(\vec{S}, \vec{r})\right] \psi(\vec{r})=E \psi(\vec{r})
$$

Effective two-particle equation

Includes Lamb Shift, quantum corrections

$$
\begin{gathered}
{\left[-\frac{1}{2 m_{\mathrm{red}}} \frac{d^{2}}{d r^{2}}+\frac{1}{2 m_{\mathrm{red}}} \frac{\ell(\ell+1)}{r^{2}}+V_{\mathrm{eff}}(r, S, \ell)\right] \psi(r)=E \psi(r)} \\
V_{e f f} \rightarrow V_{C}(r)=-\frac{\alpha}{r} \\
\text { Semiclassical fúrst approximationto QED }
\end{gathered}
$$

SphericalBasis $\quad r, \theta, \phi$ Coulomb potential

Bohr Spectrum

Schrödinger Eq.

Light-Front QCD

Fixed $\tau=t+z / c$

$$
U(\zeta)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(L+S-1)
$$

Semiclassical first approximation to QCD

Azimuthat Basis

$$
\begin{gathered}
\zeta, \phi \\
m_{q}=0
\end{gathered}
$$

Confining AdS/QCD potential!
Sums an infinite \# diagrams

Effective QCD LF Bound-State Equation

- Factor out the longitudinal $X(x)$ and orbital kinematical dependence from LFWF ψ

$$
\psi(x, \zeta, \varphi)=e^{i L \varphi} X(x) \frac{\phi(\zeta)}{\sqrt{2 \pi \zeta}}
$$

- Ultra relativistic limit $m_{q} \rightarrow 0$ longitudinal modes $X(x)$ decouple and LF Hamiltonian equation $P_{\mu} P^{\mu}|\psi\rangle=M^{2}|\psi\rangle$ is a LF wave equation for ϕ

$$
\left(-\frac{d^{2}}{d \zeta^{2}}-\frac{1-4 L^{2}}{4 \zeta^{2}}+U(\zeta)\right) \phi(\zeta)=M^{2} \phi(\zeta)
$$

- Invariant transverse variable in impact space

$$
\zeta^{2}=x(1-x) \mathbf{b}_{\perp}^{2}
$$

conjugate to invariant mass $\mathcal{M}^{2}=\mathbf{k}_{\perp}^{2} / x(1-x)$

- Critical value $L=0$ corresponds to lowest possible stable solution: ground state of the LF Hamiltonian
- Relativistic and frame-independent LF Schrödinger equation: U is instantaneous in LF time and comprises all interactions, including those with higher Fock states.

Fixed $\tau=t+z / c$

ζ^{2} conjugate to $\frac{k_{\perp}^{2}}{x(1-x)}=\left(p_{q}+p_{\bar{q}}\right)^{2}=\mathcal{M}_{q+\bar{q}}^{2}$

$$
\int d k^{-} \Psi_{B S}(P, k) \rightarrow \psi_{L F}\left(x, \vec{k}_{\perp}\right)
$$

Light-Front Schrödinger Equation

G. de Teramond, sjb

Relativistic LF single-variable radial equation for $Q C D$ \& QED

Frame Independent!
$\left[-\frac{d^{2}}{d \zeta^{2}}+\frac{m^{2}}{x(1-x)}+\frac{-1+4 L^{2}}{\zeta^{2}}+U(\zeta, S, L)\right] \psi_{L F}(\zeta)=M^{2} \psi_{L F}(\zeta)$
$m_{q} \sim 0$
$\zeta^{2}=x(1-x) \mathbf{b}_{\perp}^{2}$.

AdS/QCD:

$$
U(\zeta, S, L)=\kappa^{2} \zeta^{2}+\kappa^{2}(L+S-1 / 2)
$$

U is the exact $Q C D$ potential Conjecture: 'H'-diagrams generate \mathbf{U} ?

- Truncated AdS/CFT (Hard-Wall) model: cut-off at $z_{0}=1 / \Lambda_{\mathrm{QCD}}$ breaks conformal invariance and allows the introduction of the QCD scale (Hard-Wall Model) Polchinski and Strassler (2001).

Smooth cutoff: introduction of a background dilaton field $\varphi(z)$ - usual linear Regge dependence can be obtained (Soft-Wall Model) Karch, Katz, Son and Stephanov (2006).

Albufeira
Light-Front Holography and Supersymmetric Features of QCD

Stan Brodsky
S!

AdS/CFT

- Isomorphism of $S O(4,2)$ of conformal QCD with the group of isometries of AdS space

$$
d s^{2}=\frac{R^{2}}{z^{2}}\left(\eta_{\mu \nu} d x^{\mu} d x^{\nu}-d z^{2}\right), \quad \text { invariant measure }
$$

$x^{\mu} \rightarrow \lambda x^{\mu}, z \rightarrow \lambda z$, maps scale transformations into the holographic coordinate z.

- AdS mode in z is the extension of the hadron wf into the fifth dimension.
- Different values of z correspond to different scales at which the hadron is examined.

$$
x^{2} \rightarrow \lambda^{2} x^{2}, \quad z \rightarrow \lambda z .
$$

$x^{2}=x_{\mu} x^{\mu}$: invariant separation between quarks

- The AdS boundary at $z \rightarrow 0$ correspond to the $Q \rightarrow \infty$, UV zero separation limit.

Dülaton-Modified AdS/QCD

$$
d s^{2}=e^{\varphi(z)} \frac{R^{2}}{z^{2}}\left(\eta_{\mu \nu} x^{\mu} x^{\nu}-d z^{2}\right)
$$

- Soft-wall dilaton profile breaks conformal invariance $e^{\varphi(z)}=e^{+\kappa^{2} z^{2}}$
- Color Confinement
- Introduces confinement scale κ
- Uses AdS $_{5}$ as template for conformal theory

Light-Front Holography and Supersymmetric Features of QCD

Stan Brodsky

$$
e^{\varphi(z)}=e^{+\kappa^{2} z^{2}} \quad \text { Positive-sign dilaton }
$$

AdS Soft-Wall Schrödinger Equation for bound state of two scalar constituents:

$$
\begin{gathered}
{\left[-\frac{d^{2}}{d z^{2}}-\frac{1-4 L^{2}}{4 z^{2}}+U(z)\right] \Phi(z)=\mathcal{M}^{2} \Phi(z)} \\
U(z)=\kappa^{4} z^{2}+2 \kappa^{2}(L+S-1)
\end{gathered}
$$

Derived from variation of Action for Dilaton-Modified $A d S_{5}$

Identical to Light-Front Bound State Equation!

$$
z \longmapsto \zeta=\sqrt{x(1-x) \vec{b}_{\perp}^{2}}
$$

Light-Front Holographic Dictionary

$$
\psi\left(x, \vec{b}_{\perp}\right) \longleftrightarrow \phi(z)
$$

$$
\zeta=\sqrt{x(1-x) \vec{b}_{\perp}^{2}}
$$

$$
\begin{gathered}
\psi(x, \zeta)=\sqrt{x(1-x)} \zeta^{-1 / 2} \phi(\zeta) \\
(\mu R)^{2}=L^{2}-(J-2)^{2}
\end{gathered}
$$

Light-Front Holography: Unique mapping derived from equality of $L F$ and AdS formula for $E M$ and gravitational current matrix elements and identical equations of motion

$$
e^{\varphi(z)}=e^{+\kappa^{2} z^{2}}
$$

$$
\zeta^{2}=x(1-x) \mathbf{b}_{\perp}^{2} .
$$

$$
\left[-\frac{d^{2}}{d \zeta^{2}}+\frac{1-4 L^{2}}{4 \zeta^{2}}+U(\zeta)\right] \psi(\zeta)=\mathcal{M}^{2} \psi(\zeta)
$$

Unique

Confinement Potential!
Conformal symmetry of the action

Confinement scale:

- de Alfaro, Fubini, Furlan:
$\kappa \simeq 0.5 \mathrm{GeV}$
Scale can appear in Hamiltonian and EQM without affecting conformal invariance of action!
- Fubini, Rabinovici

Meson Spectrum in Soft Wall Model

Pion: Negative term for $J=0$ cancels positive terms from LFKE and potential

- Effective potential: $U\left(\zeta^{2}\right)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(J-1)$
- LF WE

$$
\left(-\frac{d^{2}}{d \zeta^{2}}-\frac{1-4 L^{2}}{4 \zeta^{2}}+\kappa^{4} \zeta^{2}+2 \kappa^{2}(J-1)\right) \phi_{J}(\zeta)=M^{2} \phi_{J}(\zeta)
$$

- Normalized eigenfunctions $\langle\phi \mid \phi\rangle=\int d \zeta \phi^{2}(z)^{2}=1$

$$
\phi_{n, L}(\zeta)=\kappa^{1+L} \sqrt{\frac{2 n!}{(n+L)!}} \zeta^{1 / 2+L} e^{-\kappa^{2} \zeta^{2} / 2} L_{n}^{L}\left(\kappa^{2} \zeta^{2}\right)
$$

- Eigenvalues

$$
\mathcal{M}_{n, J, L}^{2}=4 \kappa^{2}\left(n+\frac{J+L}{2}\right)
$$

G. de Teramond, H. G. Dosch, sjb

$$
m_{u}=m_{d}=0
$$

de Tèramond, Dosch, sjb

Light-Front Schrödinger Equation

G. de Teramond, sjb

Relativistic LF single-variable radial equation for $Q C D$ \& $Q E D$

Frame Independent!
$\left[-\frac{d^{2}}{d \zeta^{2}}+\frac{m^{2}}{x(1-x)}+\frac{-1+4 L^{2}}{4 \zeta^{2}}+U(\zeta, S, L)\right] \psi_{L F}(\zeta)=M^{2} \psi_{L F}(\zeta)$

$$
\zeta^{2}=x(1-x) \mathbf{b}_{\perp}^{2} .
$$

$$
\downarrow_{\vec{b}_{\perp}}(1-x)
$$

U is the confining $Q C D$ potential

Conjecture: 'H'-diagrams generate

$$
U(\zeta)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(L+S-1)
$$

Heavy Quark Potential is IR Divergent in QCD

$$
\begin{aligned}
V\left(Q^{2}\right)= & -\frac{(4 \pi)^{2} C_{F}}{Q^{2}} a\left(Q^{2}\right)\left[1+\left(c_{2,0}+c_{2,1} N_{f}\right) a\left(Q^{2}\right)+\left(c_{3,0}+c_{3,1} N_{f}+c_{3,2} N_{f}^{2}\right) a\left(Q^{2}\right)^{2}\right. \\
& \left.+\left(c_{4,0}+c_{4,1} N_{f}+c_{4,2} N_{f}^{2}+c_{4,3} N_{f}^{3}\right) a\left(Q^{2}\right)^{3}+8 \pi^{2} C_{A}^{3} \ln \frac{\mu_{I R}^{2}}{Q^{2}} a\left(Q^{2}\right)^{3}\right]
\end{aligned}
$$

$$
\log \kappa^{2} \zeta^{2}
$$

Summation of H graphs: confining potential?

Confinement eliminates IR divergences Self-consistent mass scale κ

$$
\begin{gathered}
G\left|\psi(\tau)>=i \frac{\partial}{\partial \tau}\right| \psi(\tau)> \\
G=u H+v D+w K \\
G=H_{\tau}=\frac{1}{2}\left(-\frac{d^{2}}{d x^{2}}+\frac{g}{x^{2}}+\frac{4 u w-v^{2}}{4} x^{2}\right)
\end{gathered}
$$

Retains conformal invariance of action despite mass scale!

$$
4 u w-v^{2}=\kappa^{4}=[M]^{4}
$$

Identical to LF Hamiltonian with unique potential and dilaton!

- Dosch, de Teramond, sjb

$$
\begin{gathered}
{\left[-\frac{d^{2}}{d \zeta^{2}}+\frac{1-4 L^{2}}{4 \zeta^{2}}+U(\zeta)\right] \psi(\zeta)=\mathcal{M}^{2} \psi(\zeta)} \\
U(\zeta)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(L+S-1)
\end{gathered}
$$

dAFF: New Time Variable
$\tau=\frac{2}{\sqrt{4 u w-v^{2}}} \arctan \left(\frac{2 t w+v}{\sqrt{4 u w-v^{2}}}\right)$,

- Identify with difference of LF time $\Delta \mathbf{x}^{+} / \mathbf{P}^{+}$ between constituents
- Finite range
- Measure in Double-Parton Processes

Light-Front Holography

and Supersymmetric Features of QCD

Stan Brodsky
NATIONAL ACCELERATOR LABORATORY

De Tèramond, Dosch, sib

$$
m_{u}=m_{d}=46 \mathrm{MeV}, \quad m_{s}=357 \mathrm{MeV}
$$

$$
M^{2}=M_{0}^{2}+\langle X| \frac{m_{q}^{2}}{x}|X\rangle+\langle X| \frac{m_{\bar{q}}^{2}}{1-x}|X\rangle
$$

Prediction from AdS/QCD: Meson LFWF

$$
e^{\varphi(z)}=e^{+\kappa^{2} z}
$$

x

Note coupling

$$
k_{\perp}^{2}, x
$$

de Teramond, Cao, sjb
"Soft Wall" model
massless quarks

$$
\psi_{M}\left(x, k_{\perp}\right)=\frac{4 \pi}{\kappa \sqrt{x(1-x)}} e^{-\frac{k_{\perp}^{2}}{2 \kappa^{2} x(1-x)}} \quad \phi_{\pi}(x)=\frac{4}{\sqrt{3} \pi} f_{\pi} \sqrt{x(1-x)}
$$

Same as DSE!
Provides Connection of Confinement to Hadron Structure

AdS/QCD Holographic Wave Function for the ρ Meson and Diffractive ρ Meson Electroproduction

J. R. Forshaw*
Consortium for Fundamental Physics, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
R. Sandapen ${ }^{\dagger}$

Département de Physique et d'Astronomie, Université de Moncton, Moncton, New Brunswick E1A3E9, Canada
(Received 5 April 2012; published 20 August 2012)
We show that anti-de Sitter/quantum chromodynamics generates predictions for the rate of diffractive ρ-meson electroproduction that are in agreement with data collected at the Hadron Electron Ring Accelerator electron-proton collider.

$$
\psi_{M}\left(x, k_{\perp}\right)=\frac{4 \pi}{\kappa \sqrt{x(1-x)}} e^{-\frac{k_{\perp}^{2}}{2 \kappa^{2} x(1-x)}}
$$

See also Ferreira and Dosch

$$
e^{\varphi(z)}=e^{+\kappa^{2} z^{2}}
$$

AdS/QCD Holographic Wave Function for the ρ Meson

 and Diffractive ρ Meson Electroproduction
(a) H
J. R. Forshaw,
R. Sandapen
$\gamma^{*} p \rightarrow \rho^{0} p^{\prime}$

(b) ZEUS

$$
\tilde{\phi}(x, k) \propto \frac{1}{\sqrt{x(1-x)}} \exp \left(-\frac{M_{q \bar{q}}^{2}}{2 \kappa^{2}},\right.
$$

See also Ferreira and Dosch

Fubini and Rabinovici

Superconformal Algebra

de Teramond Dosch and SJB

$$
\left.\begin{array}{cc}
1+1 & \left\{\psi, \psi^{+}\right\}=1
\end{array} \begin{array}{c}
\begin{array}{c}
\text { two anti-commuting } \\
\text { fermionic operators }
\end{array} \\
\psi=\frac{1}{2}\left(\sigma_{1}-i \sigma_{2}\right), \quad \psi^{+}=\frac{1}{2}\left(\sigma_{1}+i \sigma_{2}\right) \\
\begin{array}{l}
\text { Realization as Pauli Matrices }
\end{array} \\
Q=\psi^{+}\left[-\partial_{x}+W(x)\right], \quad Q^{+}=\psi\left[\partial_{x}+W(x)\right], \quad \begin{array}{c}
W(x)=\frac{f}{x} \\
\text { (Conformal) }
\end{array} \\
S=\psi^{+} x, \quad S^{+}=\psi x
\end{array} \begin{array}{l}
\text { Introduce new spinor operators }
\end{array}\right\} \begin{aligned}
& Q \simeq \sqrt{H}, \quad S \simeq \sqrt{K} \\
& \left\{Q, Q^{+}\right\}=2 H, \quad\left\{S, S^{+}\right\}=2 K \\
& \{Q, Q\}=\left\{Q^{+}, Q^{+}\right\}=0, \quad[Q, H]=\left[Q^{+}, H\right]=0
\end{aligned}
$$

Superconformal Algebra

$$
\begin{gathered}
\left\{\psi, \psi^{+}\right\}=1 \quad B=\frac{1}{2}\left[\psi^{+}, \psi\right]=\frac{1}{2} \sigma_{3} \\
\psi=\frac{1}{2}\left(\sigma_{1}-i \sigma_{2}\right), \quad \psi^{+}=\frac{1}{2}\left(\sigma_{1}+i \sigma_{2}\right)
\end{gathered}
$$

$$
\begin{gathered}
Q=\psi^{+}\left[-\partial_{x}+\frac{f}{x}\right], \quad Q^{+}=\psi\left[\partial_{x}+\frac{f}{x}\right], \quad S=\psi^{+} x, \quad S^{+}=\psi x \\
\left\{Q, Q^{+}\right\}=2 H, \quad\left\{S, S^{+}\right\}=2 K
\end{gathered}
$$

$$
\left\{Q, S^{+}\right\}=f-B+2 i D, \quad\left\{Q^{+}, S\right\}=f-B-2 i D
$$

generates the conformal algebra

$$
[\mathrm{H}, \mathrm{D}]=\mathrm{i} \mathrm{H}, \quad[\mathrm{H}, \mathrm{~K}]=2 \text { i } \mathrm{D}, \quad[\mathrm{~K}, \mathrm{D}]=-\mathrm{i} \mathrm{~K}
$$

Superconformal Algebra

Baryon Equation

Consider $R_{w}=Q+w S$;
w : dimensions of mass squared

$$
G=\left\{R_{w}, R_{w}^{+}\right\}=2 H+2 w^{2} K+2 w f I-2 w B \quad 2 B=\sigma_{3}
$$

New Extended Hamiltonian G is diagonal:

$$
\begin{aligned}
& G_{11}=\left(-\partial_{x}^{2}+w^{2} x^{2}+2 w f-w+\frac{4\left(f+\frac{1}{2}\right)^{2}-1}{4 x^{2}}\right) \\
& G_{22}=\left(-\partial_{x}^{2}+w^{2} x^{2}+2 w f+w+\frac{4\left(f-\frac{1}{2}\right)^{2}-1}{4 x^{2}}\right) \\
& \text { Identify } f-\frac{1}{2}=L_{B}, w=\kappa^{2}
\end{aligned} \text { Eigenvalue of } G: M^{2}(n, L)=4 \kappa^{2}\left(n+L_{B}+1\right) \quad, ~ \$
$$

LF Holography

Superconformal Algebra

$$
\begin{gathered}
\left(-\partial_{\zeta}^{2}+\kappa^{4} \zeta^{2}+2 \kappa^{2}\left(L_{B}+1\right)+\frac{4 L_{B}^{2}-1}{4 \zeta^{2}}\right) \psi_{J}^{+}=M^{2} \psi_{J}^{+} \\
\left(-\partial_{\zeta}^{2}+\kappa^{4} \zeta^{2}+2 \kappa^{2} L_{B}+\frac{4\left(L_{B}+1\right)^{2}-1}{4 \zeta^{2}}\right) \psi_{J}^{-}=M^{2} \psi_{J}^{-} \\
M^{2}\left(n, L_{B}\right)=4 \kappa^{2}\left(n+L_{B}+1\right) \quad \mathbf{s}=\mathrm{I} / 2, \mathrm{P}=+
\end{gathered}
$$

Meson Equation

both chiralities

$$
\left(-\partial_{\zeta}^{2}+\kappa^{4} \zeta^{2}+2 \kappa^{2}(J-1)+\frac{4 L_{M}^{2}-1}{4 \zeta^{2}}\right) \phi_{J}=M^{2} \phi_{J}
$$

$$
M^{2}\left(n, L_{M}\right)=4 \kappa^{2}\left(n+L_{M}\right) \quad \text { Same } \kappa!
$$

$S=0$, $I=\mid$ Meson is superpartner of $S=I / 2$, $I=\mid$ Baryon Meson-Baryon Degeneracy for $L_{M}=L_{B}+1$

Nucleon Spectrum

- In 2×2 block-matrix form

$$
H_{L F}=\left(\begin{array}{cc}
-\frac{d^{2}}{d \zeta^{2}}-\frac{1-4 \nu^{2}}{4 \zeta^{2}}+\lambda^{2} \zeta^{2}+2 \lambda(\nu+1) & 0 \\
0 & -\frac{d^{2}}{d \zeta^{2}}-\frac{1-4(\nu+1)^{2}}{4 \zeta^{2}}+\lambda^{2} \zeta^{2}+2 \lambda \nu
\end{array}\right)
$$

- Eigenfunctions

$$
\begin{aligned}
& \psi_{+}(\zeta) \sim \zeta^{\frac{1}{2}+\nu} e^{-\lambda \zeta^{2} / 2} L_{n}^{\nu}\left(\lambda \zeta^{2}\right) \\
& \psi_{-}(\zeta) \sim \zeta^{\frac{3}{2}+\nu} e^{-\lambda \zeta^{2} / 2} L_{n}^{\nu+1}\left(\lambda \zeta^{2}\right)
\end{aligned}
$$

- Eigenvalues

$$
M^{2}=4 \lambda(n+\nu+1)
$$

- Lowest possible state $n=0$ and $\nu=0$
- Orbital excitations $\nu=0,1,2 \cdots=L$
- L is the relative LF angular momentum between the active quark and spectator cluster

Superconformal Algebra

Superconformal Algebra
de Tèramond, Dosch, sjb

Same slope

$$
\frac{M^{2}}{4 \kappa^{2}}
$$

$M^{2}\left(n, L_{B}\right)=4 \kappa^{2}\left(n+L_{B}+1\right) N_{-}^{7^{-}}$

$$
\frac{M_{\text {meson }}^{2}}{M_{\text {nucleon }}^{2}}=\frac{n+L_{M}}{n+L_{B}+1}
$$

Meson-Baryon Mass Degeneracy for $L_{M}=L_{B}+1$

Superconformal AdS Light-Front Holographic QCD (LFHQCD):
Identical meson and baryon spectra!

Dosch, de Teramond, sjb

The leading Regge trajectory: Δ resonances with maximal J in a given mass range.
Also shown is the Regge trajectory for mesons with J = L+S.

Superconformal AdS Light-Front Holographic QCD (LFHQCD): Identical meson and baryon spectra!

$S=0, I=\mid$ Meson is superpartner of $S=|/ 2, I=|$ Baryon

Dosch, de Teramond, sjb

Solidline: $\kappa=0.53 \mathrm{GeV}$

Superconformal meson-nucleon partners

Supersymmetry across the light and heavy-light spectrum

- Introduction of quark masses breaks conformal symmetry without violating supersymmetry

Supersymmetry across the light and heavy-light spectrum

Supersymmetric relations for mesons and baryons with b quarks

Chiral Features of Soft-Wall AdS/QCD Model

- Boost Invariant
- Trivial LF vacuum! No condensate, but consistent with GMOR
- Massless Pion
- Hadron Eigenstates (even the pion) have LF Fock components of different $\mathbf{L}^{\mathbf{z}}$
- Proton: equal probability $S^{z}=+1 / 2, L^{z}=0 ; S^{z}=-1 / 2, L^{z}=+1$

$$
J^{z}=+1 / 2:<L^{z}>=1 / 2,<S_{q}^{z}>=0
$$

- Self-Dual Massive Eigenstates: Proton is its own chiral partner.
- Label State by minimum L as in Atomic Physics
- Minimum L dominates at short distances
- AdS/QCD Dictionary: Match to Interpolating Operator Twist at z=o. No mass-degenerate parity partners!

Universal Hadronic Features

- Universal quark light-front kinetic energy

Equals

Virial • Universal quark light-front potential energy

$$
\Delta \mathcal{M}_{L F K E}^{2}=\kappa^{2}(1+2 n+L)
$$

$$
\Delta \mathcal{M}_{L F P E}^{2}=\kappa^{2}(1+2 n+L)
$$

- Universal Constant Term

$$
\mathcal{M}_{\text {spin }}^{2}=2 \kappa^{2}\left(S+L-1+2 n_{\text {diquark }}\right)
$$

$$
M^{2}=\Delta \mathcal{M}_{L F K E}^{2}+\Delta \mathcal{M}_{L F P E}^{2}+\Delta \mathcal{M}_{\text {spin }}^{2}
$$

Some Features of $A d S / Q C D$

- Regge spectroscopy-same slope in n,Lfor mesons,
- Chiral featuresfor $m_{q}=0: m_{\pi}=0$, chiral-invariant proton
- Hadronic LFWFs
- Counting Rules
- Connection between hadron masses and $\Lambda_{\overline{M S}}$

Superconformal AdS Light-Front Holographic QCD (LFHOCD)
Meson-Baryon Mass Degeneracy for $L_{M}=L_{B}+1$

Light-Front Holography and Supersymmetric Features of QCD

Stan Brodsky

Remarkable Features of Light-Front Schrödinger Equation

\bullet Relativistic, frame-independent

Dynamics + Spectroscopy!

- QCD scale appears - unique LF potential
- Reproduces spectroscopy and dynamics of light-quark hadrons with one parameter
- Zero-mass pion for zero mass quarks!
- Regge slope same for n and L-- not usual HO
- Splitting in L persists to high mass -- contradicts conventional wisdom based on breakdown of chiral symmetry
\bullet Phenomenology: LFWFs, Form factors, electroproduction
- Extension to heavy quarks

$$
U(\zeta)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(L+S-1)
$$

> Light-Front Holography and Supersymmetric Features of QCD

Stan Brodsky

Using $S U(6)$ flavor symmetry and normalization to static quantities

Spacelike Pauli Form Factor

From overlap of $L=1$ and $L=0$ LFWFs

Predict hadron spectroscopy and dynamics

Excited Baryons in Holographic QCD
 G. de Teramond \& sjb

Nucleon Transition Form Factors

- Compute spin non-flip EM transition $N(940) \rightarrow N^{*}(1440): \quad \Psi_{+}^{n=0, L=0} \rightarrow \Psi_{+}^{n=1, L=0}$
- Transition form factor

$$
F_{1}^{p} p N^{*}\left(Q^{2}\right)=R^{4} \int \frac{d z}{z^{4}} \Psi_{+}^{n=1, L=0}(z) V(Q, z) \Psi_{+}^{n=0, L=0}(z)
$$

- Orthonormality of Laguerre functions $\quad\left(F_{1 \rightarrow N^{*}}^{p}(0)=0, \quad V(Q=0, z)=1\right)$

$$
R^{4} \int \frac{d z}{z^{4}} \Psi_{+}^{n^{\prime}, L}(z) \Psi_{+}^{n, L}(z)=\delta_{n, n^{\prime}}
$$

- Find

$$
F_{1}{ }_{N \rightarrow N^{*}}\left(Q^{2}\right)=\frac{2 \sqrt{2}}{3} \frac{\frac{Q^{2}}{M_{P}^{2}}}{\left(1+\frac{Q^{2}}{\mathcal{M}_{\rho}^{2}}\right)\left(1+\frac{Q^{2}}{\mathcal{M}_{\rho^{\prime}}^{2}}\right)\left(1+\frac{Q^{2}}{\mathcal{M}_{\rho^{\prime \prime}}}\right)}
$$

with $\mathcal{M}_{\rho_{n}}^{2} \rightarrow 4 \kappa^{2}(n+1 / 2)$
de Teramond, sjb
Consistent with counting rule, twist 3

Nucleon Transition Form Factors

$$
F_{1 N \rightarrow N^{*}}^{p}\left(Q^{2}\right)=\frac{\sqrt{2}}{3} \frac{\frac{Q^{2}}{\mathcal{M}_{\rho}^{2}}}{\left(1+\frac{Q^{2}}{\mathcal{M}_{\rho}^{2}}\right)\left(1+\frac{Q^{2}}{\mathcal{M}_{\rho^{\prime}}^{2}}\right)\left(1+\frac{Q^{2}}{\mathcal{M}_{\rho^{\prime \prime}}}\right)} .
$$

Proton transition form factor to the first radial excited state. Data from JLab

Dressed soft-wall current brings in higher Fock states and more vector meson poles

Timelike Pion Form Factor from AdS/QCD and Light-Front Holography

Pion Form Factor from AdS/QCD and Light-Front Holography

Bjorken sum rule defines effective charge $\alpha_{g 1}\left(Q^{2}\right)$

$$
\int_{0}^{1} d x\left[g_{1}^{e p}\left(x, Q^{2}\right)-g_{1}^{e n}\left(x, Q^{2}\right)\right] \equiv \frac{g_{a}}{6}\left[1-\frac{\alpha_{g 1}\left(Q^{2}\right)}{\pi}\right]
$$

- Can be used as standard QCD coupling
- Well measured
- Asymptotic freedom at large $\mathbf{Q}^{\mathbf{2}}$
- Computable at large $\mathbf{Q}^{\mathbf{2}}$ in any pQCD scheme
- Universal $\boldsymbol{\beta}_{0}, \boldsymbol{\beta}_{\text {I }}$

Running Coupling from Modífied AdS/QCD

Deur, de Teramond, sjb

- Consider five-dim gauge fields propagating in AdS_{5} space in dilaton background $\varphi(z)=\kappa^{2} z^{2}$

$$
S=-\frac{1}{4} \int d^{4} x d z \sqrt{g} e^{\varphi(z)} \frac{1}{g_{5}^{2}} G^{2}
$$

- Flow equation

$$
\frac{1}{g_{5}^{2}(z)}=e^{\varphi(z)} \frac{1}{g_{5}^{2}(0)} \quad \text { or } \quad g_{5}^{2}(z)=e^{-\kappa^{2} z^{2}} g_{5}^{2}(0)
$$

where the coupling $g_{5}(z)$ incorporates the non-conformal dynamics of confinement

- YM coupling $\alpha_{s}(\zeta)=g_{Y M}^{2}(\zeta) / 4 \pi$ is the five dim coupling up to a factor: $g_{5}(z) \rightarrow g_{Y M}(\zeta)$
- Coupling measured at momentum scale Q

$$
\alpha_{s}^{A d S}(Q) \sim \int_{0}^{\infty} \zeta d \zeta J_{0}(\zeta Q) \alpha_{s}^{A d S}(\zeta)
$$

- Solution

$$
\alpha_{s}^{A d S}\left(Q^{2}\right)=\alpha_{s}^{A d S}(0) e^{-Q^{2} / 4 \kappa^{2}}
$$

where the coupling $\alpha_{s}^{A d S}$ incorporates the non-conformal dynamics of confinement

Analytic, defined at all scales, IR Fixed Point

AdS/QCD dilaton captures the higher twist corrections to effective charges for $\mathbf{Q}<\mathbf{I} \mathbf{G e V}$

$$
e^{\varphi}=e^{+\kappa^{2} z^{2}}
$$

Deur, de Teramond, sjb

$$
m_{\rho}=\sqrt{2} \kappa
$$

All-Scale QCD Coupling

Tony Zee

"Quantum Field Theory in a Nutshell"

Dreams of Exact Solvability

"In other words, if you manage to calculate m_{P} it better come out proportional to $\Lambda_{Q C D}$ since $\Lambda_{Q C D}$ is the only quantity with dimension of mass around.

Light-Front Holography:

Similarly for m_{ρ}.

$$
m_{p} \simeq 3.21 \Lambda_{\overline{M S}}
$$

$$
\left.m_{\rho} \simeq 2.2 \Lambda_{\overline{M S}}\right]
$$

Put in precise terms, if you publish a paper with a formula giving m_{ρ} / m_{P} in terms of pure numbers such as 2 and π, the field theory community will hail you as a conquering hero who has solved QCD exactly."

$$
\begin{aligned}
\left(m_{q}\right. & =0) \\
m_{\pi} & =0
\end{aligned}
$$

$$
\frac{m_{\rho}}{m_{P}}=\frac{1}{\sqrt{2}}
$$

$$
\frac{\Lambda_{\overline{M S}}}{m_{\rho}}=0.455 \pm 0.031
$$

Light-Front Holographic QCD, Color Confinement, and Supersymmetric Features of QCD

Stan Brodsky

The Standard Theory and Beyond Albufeira, Portugal October 24-3I, 2015

