Supernova Neutrinos at Future Large Scintillator Detectors

Yu-Feng LI Institute of High Energy Physics, Beijing

The Standard Theory and Beyond in the LHC Era, Albufeira 2015-10-26

Supernova Neutrinos: SN 1987A

Kamiokande-II (Japan): Water Cherenkov (2,140 ton)

Clock Uncertainty ± 1 min

Irvine-Michigan-Brookhaven (US):
 Water Cherenkov (6,800 ton)
 Clock Uncertainty ±50 ms

Baksan LST (Soviet Union):
Liquid Scintillator (200 ton)
Clock Uncertainty +2/-54 s

Mont Blanc: 5 events, 5 h earlier

Supernova Neutrinos: SN 1987A

Future Supernova Neutrino Detectors

- (1) Water Cherenkov Detector
- Hyper Kamiokande (also SuperK or SuperK-Gd):
- 1 Mt, mostly nu_e_bar, largest statistics
- (2) Liquid Scintillator Detector
- **JUNO** (also RENO50 or LENA):
- 20 kt, nu_e_bar dominates, different flavors, better energy resolution
- (3) Liquid Argon Detector
- DUNE: 10-40 kt, nu_e dominates
- (4) Ice Cherenkov Detector

4

Icecube: No event-by event observation, time profile

Neutrino-driven supernova explosion

Three phases of SN burst

Shock breakout

 $e^- + p \to n + \nu_e$

Shock stalls ~150 km Neutrinos powered by infalling matter

Cooling on neutrino diffusion time scale

The JUNO experiment

Jiangmen Underground Neutrino Observatory (JUNO), a multiplepurpose neutrino experiment, approved in Feb. 2013, ~ 300 M\$.

20 kton LS detector

3% energy resolution

700 m underground

Rich Physics Possibilities (1507.05613: Physics Case Study)

- Reactor Neutrinos for neutrino mass hierarchy & precision measurement
- Supernova Burst Neutrino
- Diffuse Supernova Neutrino Background
- Geoneutrinos
- Solar Neutrinos
- Atmospheric Neutrinos
- Proton Decays
- Exotic Searches

Experimental site

NPP	Daya Bay	Huizhou	Lufeng	Yangjiang	Taishan
Status	Operational	Planned	Planned	Under construction	Under construction
Power	17.4 GW	17.4 GW	17.4 GW	17.4 GW	18.4 GW

Principle for the MH measurement

How the interference happens? Fourier transform to L/E spectrum: L/E spectrum $\leftarrow \rightarrow \Delta m^2$ spectrum(oscillation frequency)

J. Learned *et. al.* hep-ex/0612022 L. Zhan *et. al.* 0807.3203

Multi-channels of neutrino detection at JUNO

Channel	Type	Events for different $\langle E_{\nu} \rangle$ values		
Unamer		$12 { m MeV}$	$14 { m MeV}$	$16 { m MeV}$
$\overline{\nu}_e + p \to e^+ + n$	$\mathbf{C}\mathbf{C}$	4.3×10^3	5.0×10^3	5.7×10^3
$\nu + p \rightarrow \nu + p$	NC	$6.0 imes 10^2$	1.2×10^3	2.0×10^3
$\nu + e \rightarrow \nu + e$	\mathbf{ES}	$3.6 imes 10^2$	$3.6 imes 10^2$	$3.6 imes 10^2$
$\nu + {}^{12}\mathrm{C} \rightarrow \nu + {}^{12}\mathrm{C}^*$	NC	$1.7 imes 10^2$	3.2×10^2	5.2×10^2
$\nu_e + {}^{12}\mathrm{C} \rightarrow e^- + {}^{12}\mathrm{N}$	$\mathbf{C}\mathbf{C}$	$4.7 imes 10^1$	$9.4 imes 10^1$	$1.6 imes 10^2$
$\overline{\nu}_e + {}^{12}\mathrm{C} \rightarrow e^+ + {}^{12}\mathrm{B}$	$\mathbf{C}\mathbf{C}$	$6.0 imes 10^1$	1.1×10^2	$1.6 imes 10^2$

Detect $\overline{\nu}_e, \nu_e, \nu_x$ from a galactic SN @ 10 kpc

- real-time measurement of three-phase v signals
- distinguish between different v flavors
- reconstruct v energies and luminosities
- almost background free due to time info.

Impact of neutrino flavor conversions

1507.05613

w/ oscillation or with largest transition between $v_e(\bar{v}_e)$ and v_x

Energy spectra

Detection of SN Nu_e_bar at JUNO

Mostly Inverse beta decay (IBD) $\overline{\nu}_e + p \rightarrow n + e^+$

Spectra
$$F^0_{\alpha}(E) = \frac{1}{4\pi D^2} \frac{E^{\text{tot}}_{\alpha}}{\langle E_{\alpha} \rangle} \frac{(1+\gamma_{\alpha})^{1+\gamma_{\alpha}}}{\Gamma(1+\gamma_{\alpha})} \left(\frac{E}{\langle E_{\alpha} \rangle}\right)^{\gamma_{\alpha}} \exp\left[-(1+\gamma_{\alpha})\frac{E}{\langle E_{\alpha} \rangle}\right]$$

(1) **5000** IBD events, golden channel for SN neutrino observations

(2) Coincidence of prompt and delayed signals: least background

(3) good reconstruction of the neutrino energy Ev

Lu, YFL, Zhou, in preparation

Detection of SN Nu_x at JUNO

nu-p scattering (pES) events: quenched proton
 nu-¹²C NC events: 15.11 MeV γ
 nu-electron scattering (eES) events: recoiled electron

- > 2000 pES events
- Low threshold (0.2 MeV)
- reconstruction of neutrino energy spectrum: highenergy tail

Lu, YFL, Zhou, in preparation

Detection of SN Nu_e at JUNO

(1) nu-electron scattering (eES) events: recoiled electron
 (2) nu-¹²C CC events: coincidence with decayed ¹²N
 (3) nu-¹²C NC events: 15.11 MeV γ

300 eES events

> 300 ¹²C CC events

IBD inefficiency affects

e v.s. p discrimination

Lu, YFL, Zhou, in preparation

Neutrino mass scale with SN neutrinos

SN1987A limits of neutrino mass scale: 5.8 eV@ 95C.L.

Beta decay experiments: Current: 2.1 eV@ 95C.L., KATRIN: 0.2 @ 95C.L.

Cosmology probes:

Total mass smaller than 0.23 @ 95C.L.

Double beta decay:

Depending on matrix elements and Majorana phases

It is desirable to have a sub-eV test with future SN neutrinos

Principle: time of flight measurements

Figure: Example of time delay of SN neutrinos for a 10 kpc away SN. Left: $m_{\nu} = 0$. Right: $m_{\nu} = 2$ eV.

Method:

$$\mathcal{L} = e^{-\int_0^T R(t) \mathrm{d}t} \prod_{i=1}^N \int_{E_{\mathrm{th}}}^\infty R(t'_i, E_e) G(E_e + m_e, E_i; \delta E_i) \mathrm{d}E_e$$

Statistical and Systematic uncertainties

Using a parametrized model from SN1987A observation. (parametrized model from 0810.0466) (1) In one trial, to study the model parameter effects.

(2) With 3000 simulations, to show the fluctuation.

SN neutrino flux model effects

The numerical models are all from http://asphwww.ph.noda.tus.ac.jp/snn/

SN v Detection: present and future experiments

Let us hope for the next Galactic SN burst!

Thanks for your attention!

Backup

Physics Potential

Nominal assumption: 20 kton Liquid Scintillator (LS) detector 3%/sqrt(E) energy resolution 52-53 km baselines 36 GW and 6 years

MH sensitivity for JUNO:

 3σ ($\Delta \chi^2 > 10$) with the spectral measurement 4σ if including an external Δm^2 (*atm*) measurement

reactor core spreads; reactor flux uncertainty; energy scale uncertainty

Diffuse Supernova Neutrino Background

- DSNB: Past core-collapse events
 - ➡ Cosmic star-formation rate
 - ⇒ Core-collapse neutrino spectrum
 - ➡ Rate of failed SNe

Item		Rate (no PSD)	PSD efficiency	Rate (PSD)
Signal	$\langle E_{\bar{\nu}_e} \rangle = 12 \mathrm{MeV}$	12.2	$\varepsilon_{\nu} = 50 \%$	6.1
	$\langle E_{\bar{\nu}_e} \rangle = 15 \mathrm{MeV}$	25.4		12.7
	$\langle E_{\bar{\nu}_e} \rangle = 18 \mathrm{MeV}$	42.4		21.2
	$\langle E_{\bar{\nu}_e} \rangle = 21 \mathrm{MeV}$	61.2		30.8
Background	reactor $\bar{\nu}_e$	1.6	$\varepsilon_{\nu} = 50 \%$	0.8
	atm. CC	1.5	$\varepsilon_{\nu} = 50 \%$	0.8
	atm. NC	716	$\varepsilon_{\rm NC} = 1.1 \%$	7.5
	fast neutrons	12	$arepsilon_{ m FN}=1.3\%$	0.15
	Σ			9.2

10 Years' sensitivity

Syst. uncertainty BG		5%		20%	
$\langle \mathrm{E}_{\bar{\nu}_{\mathrm{e}}} \rangle$		rate only	spectral fit	rate only	spectral fit
	$12\mathrm{MeV}$	1.7σ	1.9σ	1.5σ	1.7σ
	$15{ m MeV}$	3.3σ	3.5σ	3.0σ	3.2σ
	$18{ m MeV}$	5.1σ	5.4σ	4.6σ	4.7σ
	$21{ m MeV}$	6.9σ	7.3σ	6.2σ	6.4σ