Baryon number as the fourth color

Bartosz Fornal

University of California, Irvine

The Standard Theory and Beyond in the LHC Era Albufeira, October 30th, 2015

In collaboration with Arvind Rajaraman and Tim M.P. Tait

Eve of a particle physics revolution?

No indisputable direct signal of physics beyond the Standard Model.

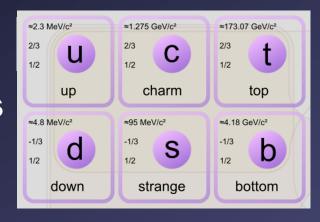
Some indirect hints of new physics:

- > dark matter
- baryon asymmetry

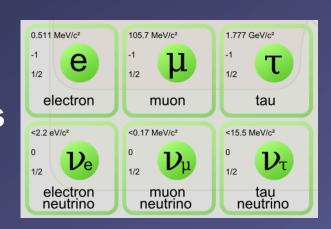
Is a discovery just around the corner?

Standard Model

Gauge symmetry


$$SU(3)_c \times SU(2)_L \times U(1)_Y$$

Glashow (1961), Weinberg (1967), Salam (1968), Fritzsch and Gell-Mann (1972)


Accidental global symmetry

$$U(1)_B \times U(1)_L$$

quarks

leptons

Simple Standard Model gauge extensions

Gauged baryon and lepton number

$$SU(3)_c \times SU(2)_L \times U(1)_Y \times U(1)_B \times U(1)_L$$

Pais (1973); Rajpoot (1988); Foot, Joshi, Lew (1989); Carone, Murayama (1995); Georgi, Glashow (1996); Duerr, Fileviez-Perez, Wise (2013); Arnold, Fileviez-Perez, BF, Spinner (2013)

Unification of color and baryon number

$$SU(4) \times SU(2)_L \times U(1)_X$$

Baryon number as the fourth color

BF, Arvind Rajaraman, Tim M.P. Tait, Phys. Rev. D 92, 055022 (2015)

Baryon number as the fourth color

$$SU(4) \times SU(2)_L \times U(1)_X$$

SU(4) quadruplets:

$$\hat{Q}_{iL} \equiv \begin{pmatrix} Q_i^r \\ Q_i^b \\ Q_i^g \\ \tilde{Q}_i^g \end{pmatrix}_L, \quad \hat{u}_R \equiv \begin{pmatrix} u^r \\ u^b \\ u^g \\ \tilde{u} \end{pmatrix}_R, \quad \hat{d}_R \equiv \begin{pmatrix} d^r \\ d^b \\ d^g \\ \tilde{d} \end{pmatrix}_R$$

SU(4) singlets:

$$Q'_{iR} , u'_{L} , d'_{L} , l_{iL} , e_{R}$$

Particle content

field	SU(4)	$SU(2)_L$	$U(1)_X$
\hat{Q}_L	4	2	0
\hat{u}_R	4	1	1/2
\hat{d}_R	4	1	-1/2
Q_R'	1	2	-1/2
u_L'	1	1	0
d_L'	1	1	-1
l_L	1	2	-1/2
e_R	1	1	-1
H	1	2	1/2
$\hat{\Phi}$	4	1	1/2

Symmetry breaking

$$SU(4) \times SU(2)_L \times U(1)_X \xrightarrow{\langle \hat{\Phi} \rangle} SU(3)_C \times SU(2)_L \times U(1)_Y$$

SU(4) Higgs VEV:
$$\langle \hat{\Phi} \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ 0 \\ 0 \\ V \end{pmatrix}$$

Relation between X and hypercharge:

$$Y = X + \frac{1}{6} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -3 \end{pmatrix}$$

Lagrangian

$$\mathcal{L}_{\text{gauge}} = -\frac{1}{4}G_{\mu\nu}^{A}G^{A\,\mu\nu} - \frac{1}{4}W_{\mu\nu}^{a}W^{a\,\mu\nu} - \frac{1}{4}X_{\mu\nu}X^{\mu\nu}$$

$$\mathcal{L}_{\text{kin}} = \hat{Q}_{L}\,i\not{\!D}\,\hat{Q}_{L} + \hat{\bar{u}}_{R}\,i\not{\!D}\,\hat{u}_{R} + \hat{\bar{d}}_{R}\,i\not{\!D}\,\hat{d}_{R} + \bar{l}_{L}\,i\not{\!D}\,l_{L} + \bar{e}_{R}\,i\not{\!D}\,e_{R} + \bar{Q}_{R}'\,i\not{\!D}\,Q_{R}' + \bar{u}_{L}'\,i\not{\!D}\,u_{L}' + \bar{d}_{L}'\,i\not{\!D}\,d_{L}'$$

$$\mathcal{L}_{\text{Higgs}} = |D_{\mu}H|^{2} + |D_{\mu}\hat{\Phi}|^{2} + \mu^{2}|H|^{2} - \frac{1}{2}\lambda|H|^{4} + \mu^{2}_{4}|\hat{\Phi}|^{2} - \frac{1}{2}\lambda_{4}|\hat{\Phi}|^{4} - \lambda_{2}|H|^{2}|\hat{\Phi}|^{2}$$

$$\mathcal{L}_{Y1} = y_{u}^{ab}\,\bar{Q}_{L}^{a}\,\tilde{H}\,\hat{u}_{R}^{b} + y_{d}^{ab}\,\bar{Q}_{L}^{a}\,H\,\hat{d}_{R}^{b} + y_{e}^{ab}\,\bar{l}_{L}^{a}\,H\,e_{R}^{b} + \text{h.c.}$$

$$\mathcal{L}_{Y2} = y_{u}^{'ab}\,\bar{Q}_{R}^{'a}\,\tilde{H}\,u_{L}^{'b} + y_{d}^{'ab}\,\bar{Q}_{R}^{'a}\,H\,d_{L}^{'b} + \text{h.c.}$$

$$\mathcal{L}_{Y3} = Y_{O}^{ab}\,\bar{Q}_{L}^{a}\,\hat{\Phi}\,Q_{R}^{'b} + Y_{u}^{ab}\,\bar{u}_{R}^{a}\,\hat{\Phi}\,u_{L}^{'b} + Y_{d}^{ab}\,\bar{d}_{R}^{a}\,\hat{\Phi}\,d_{L}^{'b} + \text{h.c.}$$

$$Y\langle\hat{\Phi}\rangle \gg y'\langle H\rangle$$

$$\mathcal{L}_{Y3} = Y_{O}^{ab}\,\bar{Q}_{L}^{a}\,\hat{\Phi}\,Q_{R}^{'b} + Y_{u}^{ab}\,\bar{u}_{R}^{a}\,\hat{\Phi}\,u_{L}^{'b} + Y_{d}^{ab}\,\bar{d}_{R}^{a}\,\hat{\Phi}\,d_{L}^{'b} + \text{h.c.}$$

Covariant derivative:

$$D_{\mu} = \partial_{\mu} + ig_4 G_{\mu}^A T^A + ig_2 W_{\mu}^a t^a + ig_X X_{\mu} X$$

Gauge bosons

$$SU(4) \times SU(2)_L \times U(1)_X \xrightarrow{\langle \hat{\Phi} \rangle} SU(3)_C \times SU(2)_L \times U(1)_Y$$

15 vector gauge bosons:

•
$$G_{\mu}^{1...8}$$
 \longrightarrow gluons

•
$$G_{\mu}^{9...14}$$
 \longrightarrow $G_{\mu}^{\prime\;\alpha}$ with mass $m_{G^\prime}=rac{1}{2}\,g_4\,V$

•
$$G_{\mu}^{15}$$
 and X_{μ} \longrightarrow B_{μ} and Z_{μ}'

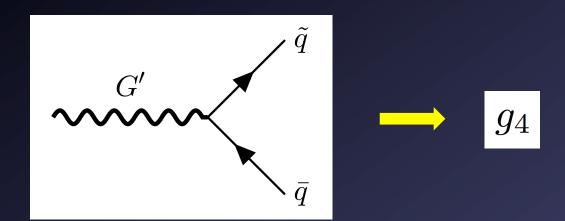
$$m_{Z'} = \frac{1}{2} \sqrt{g_X^2 + \frac{3}{2} g_4^2} \ V$$

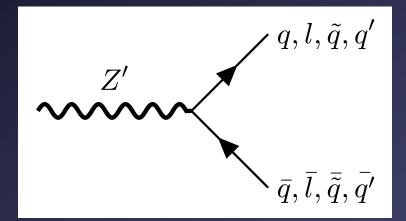
Gauge bosons

Relation between couplings:

$$g_Y = \frac{g_X g_4}{\sqrt{\frac{2}{3}g_X^2 + g_4^2}}$$

$$\approx 1/3$$

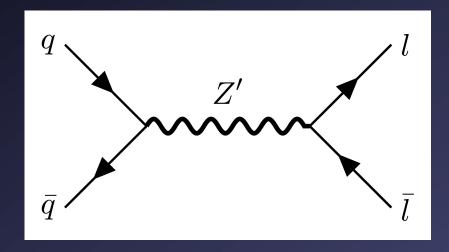

$$g_Y = \frac{g_X g_4}{\sqrt{\frac{2}{3}g_X^2 + g_4^2}} \qquad \sin \theta_4 \equiv \frac{g_X}{\sqrt{g_X^2 + \frac{3}{2}g_4^2}}$$


 ≈ 0.28

Gauge boson mixing:

$$\begin{pmatrix} Z'_{\mu} \\ B_{\mu} \end{pmatrix} = \begin{pmatrix} \cos \theta_4 & -\sin \theta_4 \\ \sin \theta_4 & \cos \theta_4 \end{pmatrix} \begin{pmatrix} G_{\mu}^{15} \\ X_{\mu} \end{pmatrix}$$

Gauge boson couplings



$$\frac{g_Y}{\sin\theta_4\cos\theta_4} \left(-\sqrt{\frac{2}{3}} T^{15} + Y\sin^2\theta_4 \right)$$

LHC constraints

Z' production:

LHC bound:

$$m_{Z'} \gtrsim 2.0 \text{ TeV}$$

$$m_{Z'} \gtrsim 2.0 \text{ TeV}$$
 \longrightarrow $V \gtrsim 3.1 \text{ TeV}$

Quark partners

Yukawa interactions:

$$\mathcal{L}_{Y1} = y_u^{ab} \, \hat{Q}_L^a \, \tilde{H} \, \hat{u}_R^b + y_d^{ab} \, \hat{Q}_L^a \, H \, \hat{d}_R^b + y_e^{ab} \, \bar{l}_L^a \, H \, e_R^b + \text{h.c.}$$

$$\mathcal{L}_{Y2} = y_u'^{ab} \bar{Q}_R'^a \tilde{H} u_L'^b + y_d'^{ab} \bar{Q}_R'^a H d_L'^b + \text{h.c.}$$

$$\mathcal{L}_{Y3} = Y_Q^{ab} \, \bar{\hat{Q}}_L^a \, \hat{\Phi} \, Q_R'^b + Y_u^{ab} \, \bar{\hat{u}}_R^a \, \hat{\Phi} \, u_L'^b + Y_d^{ab} \, \bar{\hat{d}}_R^a \, \hat{\Phi} \, d_L'^b + \text{h.c.}$$

Notation:
$$ilde{Q} = \begin{pmatrix} ilde{U} \\ ilde{D} \end{pmatrix}$$

Quark partners

After SU(4) breaking:

$$\frac{1}{\sqrt{2}} \left(\overline{\tilde{U}}_{L} \ \overline{u}'_{L} \right) \left(\begin{array}{cc} Y_{Q}V & y_{u}v \\ (y'_{u}v)^{\dagger} & (Y_{u}V)^{\dagger} \end{array} \right) \left(\begin{array}{cc} U'_{R} \\ \tilde{u}_{R} \end{array} \right) \\
+ \frac{1}{\sqrt{2}} \left(\overline{\tilde{D}}_{L} \ \overline{d}'_{L} \right) \left(\begin{array}{cc} Y_{Q}V & y_{d}v \\ (y'_{d}v)^{\dagger} & (Y_{d}V)^{\dagger} \end{array} \right) \left(\begin{array}{cc} D'_{R} \\ \tilde{d}_{R} \end{array} \right) + \text{h.c.}$$

- 6 electrically neutral combinations of $\widetilde{m{u}}$ and $\widetilde{m{U}}$
- 6 electrically charged combinations of \tilde{d} and \tilde{D}

Dark matter

Lightest combination of \tilde{u} and \tilde{U} :

$$\tilde{u}'_L = u'_L + \epsilon \, \tilde{U}_L$$
$$\tilde{u}'_R = \tilde{u}_R + \epsilon \, U'_R$$

Stabilized by a residual *U*(1) symmetry:

$$\tilde{Q}_L \to e^{i\theta} \tilde{Q}_L$$
, $\tilde{u}_R \to e^{i\theta} \tilde{u}_R$, $\tilde{d}_R \to e^{i\theta} \tilde{d}_R$
 $Q'_R \to e^{i\theta} Q'_R$, $u'_L \to e^{i\theta} u'_L$, $d'_L \to e^{i\theta} d'_L$

Dark matter mass:

$$m_{\tilde{u}'} pprox \frac{1}{\sqrt{2}} (Y_u)_{ii} V$$

Baryogenesis

No asymmetry between baryons and antibaryons from SU(4) dynamics.

Dimension six operators:

$$\frac{1}{\Lambda_6^2} \epsilon_{abcd} \left[c_4 \, \hat{u}_R^a \hat{u}_R^b \hat{d}_R^c \hat{d}_R^d + c_5 (\hat{Q}_L^a \epsilon \, \hat{Q}_L^b) (\hat{Q}_L^c \epsilon \, \hat{Q}_L^d) \right]$$

$$\Lambda_6 \gtrsim 5 \times 10^{10} \text{ GeV}$$

Asymmetric dark matter!

Asymmetric dark matter

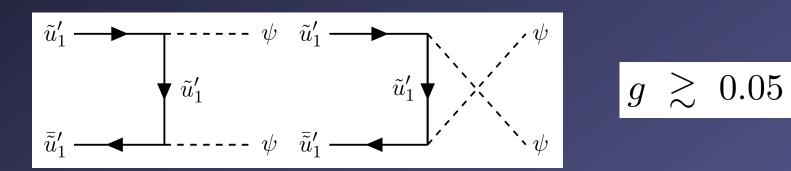
Baryon and dark matter asymmetry:

$$\Delta B_i = -\Delta \chi$$

Final baryon asymmetry:

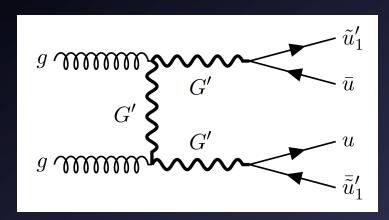
$$\Delta B_f = -\frac{28}{79} \,\Delta \chi$$

Dark matter mass:

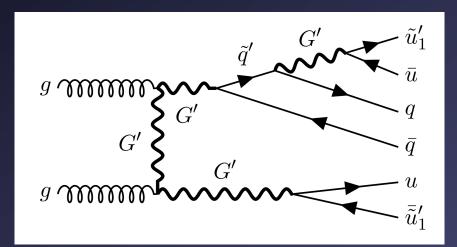

$$m_{\tilde{u}'_1} = \left| \frac{\Delta B_f}{\Delta \chi} \right| \frac{\Omega_{\rm DM}}{\Omega_B} m_{\rm proton} \simeq 1.75 \text{ GeV}$$

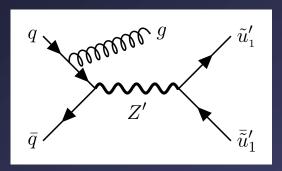
Asymmetric dark matter

DM candidate $ilde{u}_1'$ with mass $m_{ ilde{u}_1'} pprox 1.75~{
m GeV}$

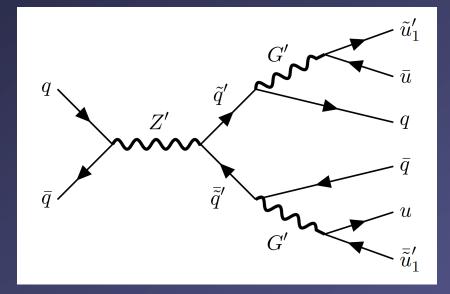

- direct detection: no current constraints
- relic density:
 - SU(4) Higgs mass < 1.75 GeV</p>
 - ${m au}$ additional gauge multiplet ${m {\cal L}_\psi} = g\,\psi\,ar{ ilde u}_1' ilde u_1'$

$$\mathcal{L}_{\psi} = g \, \psi \, \bar{\tilde{u}}_1' \, \tilde{u}_1'$$



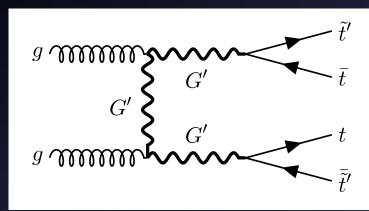

LHC signatures – 1st generation DM

BF, Edison Weik, Daniel Whiteson (in progress)

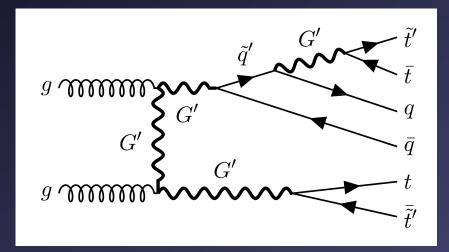


2 jets + MET

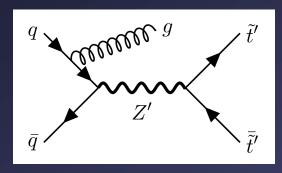
1 jet + MET

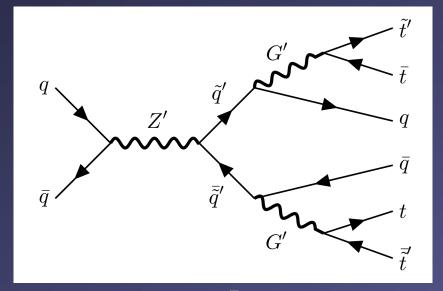


4 jets + MET


4 jets + MET

LHC signatures – 3rd generation DM


BF, Tim M.P. Tait (in preparation); BF, Edison Weik, Daniel Whiteson (in progress)


 $t\bar{t}$ + MET

2 jets + $t\bar{t}$ + MET

1 jet + MET

2 jets + $t\bar{t}$ + MET

Conclusions

- Standard Model with gauged baryon and lepton number is a relatively unexplored territory with possible hidden treasures.
- ➤ Unifying color and baryon number into an *SU(4)* gauge symmetry has a number of nice features.
- Analyzing other simple Standard Model gauge extensions seems like a worthwhile effort.

