Higher and partial angular moments $B \rightarrow K^* ll$

CP³ Origins Cosmology & Particle Physics

> Roman Zwicky Edinburgh University

worked based on J. Gratrex, M. Hopfer and RZ , arXiv:1506.03970 "Generalised helicity formalism, higher moments in $B \to K_{J_K}(\to K\pi)\bar{\ell}_1\ell_2$ "

25 Oct - 1 Nov Albufeira

structure

- 1. introduction
- 2. sketch computation with $H_{eff} = \dim 6$ operators "lepton factorisation approximation (LFA)"

methods: - "Dirac trace technology" - "Wigner-Jacob-Wick" using SO(3)-reps

- 3. method of (partial) moments (diagnosing "anomalies") beyond LFA higher moments qualitative discussion QED corrections diagnosing QED corrections using higher moments
- 4. conclusions & summary

The decay topology B-> V(->SS)I1 I2

Kπ-pair coming from K* is in p-wave (L=1) at amplitude level

what about lepton pair?

• principle no restriction - specifying approximation crucial

Lepton factorisation approximation (LFA)

Heff of dim=6 with 10 operators

$$H^{\text{eff}} = -\frac{4G_F}{\sqrt{2}} \frac{\alpha}{4\pi} V_{\text{ts}} V_{\text{tb}}^* \sum_{i=V,A,S,P,\mathcal{T}} (C_i O_i + C'_i O'_i) .$$

skandard in likerakure (clearly dominance)

$$O_{S(P)} = \bar{s}_L b \ \bar{\ell}(\gamma_5) \ell , \qquad O_{V(A)} = \bar{s}_L \gamma^{\mu} b \ \bar{\ell} \gamma_{\mu}(\gamma_5) \ell$$

$$O_{\mathcal{T}} = \bar{s}_L \sigma^{\mu\nu} b \ \bar{\ell} \sigma_{\mu\nu} \ell , \quad O' = O|_{s_L \to s_R}$$
SM: C_V=C₉ + long-distance; C_A=C₁₀ are relevant

lepton pair restricted to S- and P-wave at amplitude level in LFA

since decay rate square amplitude \Rightarrow sin($\theta_{K,I}$)² cos($\theta_{K,I}$)² - maximum-powers

Differential decay rate

$$\begin{aligned} \frac{32\pi}{3} \frac{d^4\Gamma}{dq^2 \, d\cos\theta_\ell \, d\cos\theta_K \, d\phi} &= \operatorname{Re} \Big[G_0^{0,0}(q^2)\Omega_0^{0,0} + G_0^{0,1}(q^2)\Omega_0^{0,1} + G_0^{0,2}(q^2)\Omega_0^{0,2} + \\ & G_0^{2,0}(q^2)\Omega_0^{2,0} + G_0^{2,1}(q^2)\Omega_0^{2,1} + G_1^{2,1}(q^2)\Omega_1^{2,1} + \\ & G_0^{2,2}(q^2)\Omega_0^{2,2} + G_1^{2,2}(q^2)\Omega_1^{2,2} + G_2^{2,2}(q^2)\Omega_2^{2,2} \Big] \end{aligned}$$

,

$$G_{2}^{2,2} \sim \left(H_{+}^{V \bar{H}_{-}^{V}} + H_{+}^{A} \bar{H}_{-}^{A} - 2 \left(H_{+}^{T} \bar{H}_{-}^{T} + 2 H_{+}^{T_{t}} \bar{H}_{-}^{T_{t}} \right) \right)$$

Hadronic helicity amplitudes e.g. $H_{\lambda}^{V[A]} = \langle \bar{K}^*(\lambda) | \bar{s} \gamma^{\mu} [\gamma_5] b | \bar{B} \rangle \epsilon^*(\lambda)_{\mu}$

For completeness: connection standard literature-notation

 standard notation goes back at least to Treiman & Pais '68 "pion phase shift information from Kl₄ decays"

$$\frac{8\pi}{3} \frac{d^4\Gamma}{dq^2 \, d\cos\theta_\ell \, d\cos\theta_K \, d\phi} = (g_{1s} + g_{2s} \cos 2\theta_\ell + g_{6s} \cos\theta_\ell) \sin^2\theta_K + (g_{1c} + g_{2c} \cos 2\theta_\ell + g_{6c} \cos\theta_\ell) \cos^2\theta_K + (g_3 \cos 2\phi + g_9 \sin 2\phi) \sin^2\theta_K \sin^2\theta_\ell + (g_4 \cos\phi + g_8 \sin\phi) \sin 2\theta_K \sin 2\theta_\ell + (g_5 \cos\phi + g_7 \sin\phi) \sin 2\theta_K \sin\theta_\ell$$

$$\begin{split} G_0^{0,0} &= \frac{4}{9} \left(3 \left(g_{1c} + 2g_{1s} \right) - \left(g_{2c} + 2g_{2s} \right) \right) , \quad G_0^{0,1} = \frac{4}{3} \left(g_{6c} + 2g_{6s} \right) , \quad G_0^{0,2} = \frac{16}{9} \left(g_{2c} + 2g_{2s} \right) , \\ G_0^{2,0} &= \frac{4}{9} \left(6 \left(g_{1c} - g_{1s} \right) - 2 \left(g_{2c} - g_{2s} \right) \right) , \quad G_0^{2,1} = \frac{8}{3} \left(g_{6c} - g_{6s} \right) , \quad G_0^{2,2} = \frac{32}{9} \left(g_{2c} - g_{2s} \right) , \\ G_1^{2,1} &= \frac{16}{\sqrt{3}} \underbrace{\left(g_5 + ig_7 \right)}_{=\mathcal{G}_5} , \qquad G_1^{2,2} = \frac{32}{3} \underbrace{\left(g_4 + ig_8 \right)}_{=\mathcal{G}_4} , \qquad G_2^{2,2} = \frac{32}{3} \underbrace{\left(g_3 + ig_9 \right)}_{=\mathcal{G}_3} \end{split}$$

N.B. usually use $g_x \rightarrow J_x$ (to emphasise different convention later)

Convenience & illustration of Gm^{lk,ll'}s

1. endpoint symmetries Hiller RZ'13

kinematic endpoint K* enhanced symmetry (threshold expansion in effective theory)

helicity amplitudes: $H_{+}^{V,A} = H_{-}^{V,A} = -H_{0}^{V,A}$ angular distribution two (one SM) parameters

 $\begin{array}{ccc} G_0^{0,0} \neq 0 \;, & G_0^{2,2} \rightarrow \mathrm{Re}[G_0^{2,2}] \;, & G_1^{2,2} \rightarrow -2\mathrm{Re}[G_0^{2,2}] \;, & G_2^{2,2} \rightarrow 2\mathrm{Re}[G_0^{2,2}] \end{array}$

2. examples of 12-angular observables in literature

$$\langle P_2 \rangle_{\text{bin}} = \frac{\left\langle 2G_0^{0,1} - G_0^{2,1} \right\rangle_{\text{bin}}}{3\mathcal{N}_{\text{bin}}} , \quad \langle P'_4 \rangle_{\text{bin}} = \frac{\left\langle \operatorname{Re}\left[G_1^{2,2}\right] \right\rangle_{\text{bin}}}{4\mathcal{N}'_{\text{bin}}} , \quad \langle P'_5 \rangle_{\text{bin}} = \frac{\left\langle \operatorname{Re}\left[G_1^{2,1}\right] \right\rangle_{\text{bin}}}{2\sqrt{3}\mathcal{N}'_{\text{bin}}} , \\ \langle P'_8 \rangle_{\text{bin}} = \frac{\left\langle \operatorname{Im}\left[G_1^{2,2}\right] \right\rangle_{\text{bin}}}{4\mathcal{N}'_{\text{bin}}} , \quad \langle P'_6 \rangle_{\text{bin}} = \frac{\left\langle \operatorname{Im}\left[G_1^{2,1}\right] \right\rangle_{\text{bin}}}{2\sqrt{3}\mathcal{N}'_{\text{bin}}} , \quad \langle A_{\text{FB}} \rangle_{\text{bin}} = \frac{1}{2} \frac{\left\langle G_0^{0,1} \right\rangle_{\text{bin}}}{\left\langle G_0^{0,0} \right\rangle_{\text{bin}}} ,$$

forward backward type observables $I_i=1$ (odd in θ_i)

Some references on computation mode

$O_{V,A}$ SM	$m_\ell = 0$	Krüger,Sehgal,Sinha,Sinha	'99
$O_{V,A}$ SM	$m_\ell eq 0$	Faessler, Gutsche, Ivanov, Körner, Lyubivitskij	'02
idem		Krüger, Matias	'05
add $O_{S,P}$	$m_\ell eq 0$	Altmanshofer, Ball, Bharucha, Buras, Straub, Wick	'08
add $O_{\mathcal{T}}$	$m_\ell eq 0$	Gosh et al/Bobeth et al	'10'12
all	$m_{\ell_1} \neq m_{\ell_2} \neq 0 ^{\star}$	our work	'15

in Gm^{lk,II} - basis expression relatively compact nevertheless provide mathematica notebook in arxiv-file results in Mathematica notebook

Note on conventions

- need to define angles of decay and anti-particles decay
- we follow LHCb conventions:

 $\frac{d^4(\Gamma\pm\bar{\Gamma})}{dq^2d\cos\theta_\ell d\cos\theta_K d\phi}\Big|_{\rm LHCb}$

CP-even (CP-odd) limit of CP-conservation

 "theorist's conventions" differ By matching our calculation we get the following diagram:

 differ in translation in sign in g(J)₇₈₉ from literature i.e. φ→-φ
 def. φ is subtle
 not affect current "fits" but important when weak or strong phases included
 hopefully can be clarified near future

$$\begin{split} B \to K^*\ell\ell|_{\rm LHCb} & \xrightarrow{g_{4,5,9} \to -J_{4,5,9}} B \to K^*\ell\ell|_{\rm theory} \\ & & & \\ g_{7,8,9} \to -g_{7,8,9} & & \\ \bar{B} \to \bar{K}^*\ell\ell|_{\rm LHCb} & \xrightarrow{g_{4,6,7,9} \to -J_{4,6,7,9}} \bar{B} \to \bar{K}^*\ell\ell|_{\rm theory} \end{split}$$

1+(1,)

l'(l,)

How compute: 2 methods

cf. talk Korner standard Jacob-Wick method

- **Dirac-trace technology** (parameterisation of momenta say in B-frame) $(\ell_2)^{\mu} = (f_{\ell}(E_2, q_0, -q_z), -|\vec{p}_{\ell}| \sin \theta_{\ell} \cos \phi, +|\vec{p}_{\ell}| \sin \theta_{\ell} \sin \phi, f_{\ell}(E_2, q_z, -q_0)),$ $(p_K)^{\mu} = (f_{K^*}(E_K, p_0, q_z), -|\vec{p}_K| \sin \theta_K, 0, -f_{K^*}(E_K, q_z, p_0)),$
- Jacob-Wick-technology (use SO(3)/Wigner representation matrices)

generalised standard formalism: $B \rightarrow K_J(\rightarrow K\pi) \gamma^*(\rightarrow I_1 I_2)$ by decomposing SO(3,1) tensors into SO(3) irreps and summing J_{γ} (up to spin 2)

Addressing the nature of the anomalies through moments analysis

Current interest: R_K-anomaly

in combination with $H \rightarrow \mu \tau$ "anomaly" is rather interesting

LHCb

SM

20

 $q^2 \,[{\rm GeV^2/c^4}]$

-LHCb -BaBar -Belle

10

5

15

1.5

0.5

$$R_K \equiv \frac{\mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)}{\mathcal{B}(B^+ \to K^+ e^+ e^-)} \stackrel{\approx}{\sim} R_K|_{\rm SM} \simeq 1$$

1.charm should not play a *direct* role as coupling to leptons universal

2.QED effects: are they sizeable? Note: B->KII; QED effects are not taken into account $R_{\pi}^{\rm sl} = \frac{\Gamma(\pi \to e^{+}\nu)}{\Gamma(\pi \to \mu^{+}\nu)} = \frac{m_{e}^{2}}{m_{\mu}^{2}} \frac{(m_{\pi}^{2} - m_{e}^{2})^{2}}{(m_{\pi}^{2} - m_{\mu}^{2})^{2}} (1 + \delta_{\rm QED}) , \quad |\delta_{\rm QED}| \simeq 4\%$

$$\Rightarrow$$
 suggest a way to diagnose/ bound size

• Becomes a proper $1 \rightarrow 3$ process and by crossing a $2 \rightarrow 2$ with Mandelstam variables

$$B(p_B) + \ell^-(-\ell_1) \to K(p) + \ell^-(\ell_2) ,$$

$$s[u] = (p \pm \ell_2[\ell_1])^2 = \frac{1}{2} \left[(m_B^2 + m_K^2 + 2m_\ell^2 - q^2) \pm \beta_\ell \sqrt{\lambda} \cos \theta_\ell \right]$$

• \Rightarrow s[u] enter logs \Rightarrow **no restriction sin(\theta_l),cos(\theta_l)-powers;** Legendre polynomial [or $\Omega_m^{[k,l]}$] serves as a complete basis (non-vanishing higher moments)

$$\frac{d^2\Gamma(B\to K\ell^+\ell^-)}{dq^2\,d\cos\theta_\ell} = \sum_{l_\ell\ge 0} G^{(l_\ell)}P_{l_\ell}(\cos\theta_\ell)$$

diagnosing QED effects $B \rightarrow K^{(*)}I^+I^-$

• B→KI+I⁻ moments:

$$M_{\bar{\ell}\ell}^{(l_{\ell})} = \int_{-1}^{1} d\cos\theta_{\ell} P_{l_{\ell}}(\cos\theta_{\ell}) \frac{d^{2}\Gamma(B \to K\ell^{+}\ell^{-})}{dq^{2} d\cos\theta_{\ell}} = \frac{1}{2l_{\ell}+1} G_{\bar{\ell}\ell}^{(l_{\ell})}$$

- LFA beyond LFA (eg. QED effects) $M_{\bar{\ell}\ell}^{(l_{\ell}>2)} = 0 \qquad \qquad M_{\bar{\ell}\ell}^{(l_{\ell}>2)} \neq 0$
- 2. likely QED-signature

$$M_{\bar{e}e}^{(l_\ell > 2)} \neq M_{\bar{\mu}\mu}^{(l_\ell > 2)}$$

$$|M_{\bar{e}e}^{(l_{\ell}>2)}| > |M_{\bar{\mu}\mu}^{(l_{\ell}>2)}|$$
$$\left[\alpha_{\text{QED}} f\left(\ln\left(\frac{m_b}{m_{\ell}}\right)\right) \text{-effects}\right]$$

З.

1.

R_K is $M_{\bar{\ell}\ell}^{(l_\ell=0)}$ -moment - behaviour of moment in l_ℓ crucial Rough computation suggests moderate fall-off Amplitude: S-wave : D-wave = 1 : ~0.5(large uncertainty)

refinement: competitor signature

• higher dimensional operators (dimension 8,10....) $\delta H^{\text{eff}} = C^{(j)}O^{(j)} + ...$

$$O^{(j)} = \bar{s}_L \Gamma^{(j)}_{\mu_1 \dots \mu_j} b \ \bar{\ell} \Gamma^{(j) \ \mu_1 \dots \mu_j} \ell$$

with higher SO(3)-spin $\Gamma^{(j)}_{\mu_1\dots\mu_j} \equiv \gamma_{\{\mu_1} D^+_{\mu_2}\dots D^+_{\mu_j\}}, D^+ \equiv \overleftarrow{D} + \overrightarrow{D}, \text{ with } \overrightarrow{D}$

• QED versus higher dimensional operators

$$C^{(j)} = \frac{\mathcal{O}(1)}{(m_W^2)^j} \left[1 + \alpha_{\text{QED}} f_j \cdot \left(\frac{m_W^2}{m_b^2}\right)^{(j-1)} \right] , \quad \text{for } j \ge 1 ,$$

QED wins even without logs for Wilson coefficients

time for a graphical summary

qualitative overview of effects* LFA QED higher-dim

* emphasis on qualitative (size of effects are for illustration only)

Method of (partial) moments

method of moments extendable to B->K*II using orthogonality of Legendre P.
 see also Beaujean, Chraszcz, Serra vanDyk '15

$$M_m^{l_K, l_\ell} \equiv \frac{1}{8\pi} \int_{-1}^1 d\cos\theta_K \int_{-1}^1 d\cos\theta_\ell \int_0^{2\pi} d\phi \, (\Omega_m^{l_K, l_\ell})^* \frac{d^4\Gamma}{d(\text{angles})} = \frac{(1+\delta_{m0})G_m^{l_K, l_\ell}}{2(2l_K+1)(2l_\ell+1)}$$

our proposal is to look for
 1) partial moments (or in θ_l-angle)

$$k_m^{l_\ell}(\theta_K) = \frac{1}{4\pi} \int_{-1}^{1} d\cos\theta \int_{0}^{2\pi} d\phi \left(\Omega_m^{l_K,l_\ell}\right)^* \frac{d^4\Gamma}{d(\text{angles})} = \frac{1+\delta_{m0}}{2\left(2l_\ell+1\right)} \sum_{l_K \ge 0} D_{m,0}^{l_K}(\Omega_K) G_m^{l_K,l_\ell}$$

for example:
$$k_0^2(\theta_K) = \frac{1}{5} \left(G_0^{0,2} + \frac{1}{2}\left(3\cos^2\theta_K - 1\right)G_0^{2,2}\right) \text{ in LFA}$$

2) higher moments i.e. do not assume $M_m^{j,j'} = 0$, $\forall m \text{ and } j \ge 3 \text{ or } j' \ge 3$
but measure/bound them!

expect the full program of 1) and 2) to be equivalent in some statistical sense

conclusions and summary

- angler distribution computed can be used for any $S \rightarrow V(\rightarrow S_1S_2)I_1I_2$ -decay
- **comment:** to be sure δC_9 is not charm: (cf. backup slides) resonance residues and phases have to be measured (begun in $B \rightarrow K \mu \mu$ Lyon RZ'14 for broad resonances and is pursued by LHCb for rest)

conclusions and summary II

• method of moments can help to clarify nature of some $b \rightarrow s$ "anomalies"

Note: standard likelihood-fit assumes assumes distribution of LFA if no higher moments then ok but else bias

- 1.diagnose $B \rightarrow K^{(*)}$ || QED-effects (previous slide LHCb analysis under way) comment: "of course this does not replace a real calculation"
- **2.** may also use higher moments below to check for possible J/ Ψ -backgrounds in $B \rightarrow K^*(\rightarrow K \pi) \mu\mu$ angular analysis ("home of anomalies")
 - e.g. $B \rightarrow K \mu \mu \gamma$ with 1) γ undetected 2) π from underlying event \Rightarrow may result in $B \rightarrow K^*(\rightarrow K \pi) \mu \mu$ signal window with downward shift in q^2 impacts, in particular, below J/ Ψ (10³-enhancement could compensate for "above"

Now, LHCb estimates this event to be negligible but general lesson is that checking higher moments could help to clarify matters

BACKUP

II.C comment charm resonances in $B \rightarrow K^{(*)}II$

 $BF(B \to K\ell\ell)$

LHCb PRL 111 (2013)

pronounced $J^{PC} = 1 - charm$ resonance structure

 Using a fit to BES-II data e⁺e⁻→hadrons able to check status of "naive" factorisation at high q² in B→KII

naive fac. by factor \sim (-2.5) fits the data well

 Led us to speculate P₅'-anomaly in B→K (*)II might be related to charm (since charm pronounced)

1) pronounced to J/ Ψ 2) accommodated by photon penguin C₁₀ not nec.

- effect same sign as in naive fac. in "-" versus "0" helicity
- <u>my comment</u>: that's what
 B→ J/Ψ K* experimental
 angular analysis predicts
 for J/Ψ,Ψ(2S)-contributions