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Identical particle effects in

Higgs Decay to 4 Tauons



Lepton mass effects and identical particle effects

◮ Lepton mass effects

◮ Scale of lepton mass effects is set by off-shellness of the Z -boson

4m2
ℓ ≤ q2 ≤ (mH −mZ )

2

and not by the Higgs mass mH .

◮ τ mass effects are not negligible. (me,µ = 0 is a good approximation).

◮ Numerical example:

Γ(H → Z + Z∗(→ ττ))/Γ(H → Z + Z∗(→ µµ)) = 0.96 (−4.0%)

◮ Angular decay distribution of leptons changes. Can mimic the
contributions of new effective operators. Later.

◮ Test of lepton universality
◮ Branching ratio BR(H → eeee) = 3.27× 10−5

(Higgs handbook (Denner et al.))

◮ Identical particle effects

◮ In the decay Z → (τ+τ+)(τ−τ−) the two tauons in the two pairs (τ+τ+)
and (τ−τ−) are undistinguishable.

◮ Statistical factor of 1/4
◮ Quantum interference effects, i.e. more Feynman diagrams



Two Feynman diagrams

There are two Feynman diagrams that contribute to H → τ+τ−τ+τ−
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Figure: Feynman diagrams (A) and (B) contributing to H → τ+τ−τ+τ−.

They contribute to the rate as follows

|MA +MB |
2 = |MA|

2 + 2Re(MAM
∗
B) + |MB |

2



The diagonal contributions

◮ Diagrams describing the contributions from |MA|
2 and |MB |

2 are
topologically equivalent, i.e. |MA|

2 = |MB |
2

◮ Diagonal terms contribute as (add statistical factor 1/2! 2!)

1

4
(|MA|

2 + |MB |
2) =

1

2
|MA|

2

◮ If interference contribution 2Re(MAM
∗
B) (and lepton mass effects) are

neglected one finds

Γ(H → τ+τ−τ+τ−) =
1

2
Γ(H → τ+τ−µ+µ−)



Sign of interference contribution

The interference contribution is given by the absorptive part of a one-loop
contribution compared to the two-loop contributions of the diagonal
graphs. Take a minus sign into account.
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Figure: Squared Feynman diagrams ∼ |MA|
2 and ∼ Re(MAM

∗
B
) contributing to

H → τ+τ−τ+τ−.

Including the dynamics the interference contribution adds constructively.



Width dependence of interference contribution

◮ As the width of the Z becomes smaller and smaller the momentum
mismatch of the leptons in the interference contribution will become
bigger and bigger. One expects

lim
ΓZ→0

Γinterference

Γdiagonal

=⇒ 0

◮ Question: Does the relative suppression go like (ΓZ/mZ ) or like
(ΓZ/mZ )

2 ?



Some numerical results

Numerically one has (mZ fixed)

ΓZ Γnondiag/Γdiag Γnondiag/Γdiag

[GeV] [ΓZ/mZ ]

2.4952 10.31% 3.77
1.0 4.73% 4.32
0.5 2.50% 4.56
0.2 1.03% 4.71
0.1 0.53% 4.79
0.05 0.27% 4.89

Table: Dependence of the rate ratios of nondiagonal and diagonal contributions on the
Z–width for the decay H → Z∗(→ τ+τ−) + Z∗(→ τ+τ−).



Power of the width suppression

Use the δ–function representation

lim
ΓZ→0

1

(q2 −m2
Z )

2 +m2
ZΓ

2
Z

=
π

mZΓZ

δ(q2 −m
2
Z )

to analyze the diagonal contribution in the vicinity of q2 = m2
Z (keep MZ

fixed)

lim
ΓZ→0

∫
dq

2 F (q2)

(q2 −m2
Z )

2 +m2
ZΓ

2
Z

=
π

mZΓZ

∫
dq

2 δ(q2 −m
2
Z )F (q

2)

=
π

mZΓZ

F (m2
Z )

where the function F (q2) is regular at q2 = m2
Z . A similar analysis leads to

lim ΓZ→0 Γinterference = const. One finds

lim
ΓZ→0

Γinterference

Γdiagonal

= const. · mZ ΓZ

= const. ·m2
Z [ΓZ/mZ ]



The diagonal contribution ∼ |A|2

◮ The width formula for H → Z∗(p2) + Z∗(q2) (Grau, Pancheri, Phillips
1990)

Γ(H → allZ Z ) =

∫ m2
H

0

dp2mZΓZ

π[(p2 −m2
Z )

2 + (mZΓZ )2]

×

∫ (mH−p)2

0

dq2mZΓZ

π[(q2 −m2
Z )

2 + (mZΓZ )2]
Γ(H → Z

∗
Z

∗)

where

Γ(H → Z
∗
Z

∗) =
1

2

g 2
W

8π cos2 θW

|~p|

m2
Hm

2
Z

(
p
2
q
2
)
(−g

µν+
qµqν

q2
)(−gµν+

pµpν

p2
)



Choice of gauge

◮ unitary gauge

Γ(H → Z
∗
Z

∗) ∼
∑

m

εα(m, p2)ε∗ β(m, p2)
∑

n

εβ(n, q2)ε∗α(n, q2)

= (−g
µν +

pµpν

m2
Z

)(−gµν +
qµqν

m2
Z

)

=

(
4−

p2

m2
Z

−
q2

m2
Z

+
pq pq

m4
Z

)

◮ Spin 1 (Lorenz, Landau) gauge

Γ(H → Z
∗
Z

∗) ∼ (−g
µν +

pµpν

p2
)(−gµν +

qµqν

q2
)

=

(
2 +

pq pq

p2q2

)

◮ Feynman gauge

Γ(H → Z
∗
Z

∗) ∼ (−g
µν)(−gµν)

= 4



Correct result

The result is obviously gauge variant.

The problem is that the concept of an external off-shell gauge boson is
not a gauge invariant concept. One must attach fermion pairs to the
off-shell gauge boson to get a gauge invariant result. In addition one must
use the unitary gauge to get a gauge invariant result.



The unitary gauge

Consider the gauge boson propagator in the general Rξ gauge and rewrite
it into a convenient form.

D
µν =

i

q2 −m2
Z

(
−g

µν +
qµqν(1− ξZ )

q2 − ξZm2
Z

)

=
i

q2 −m2
Z

(
−g

µν +
qµqν

m2
Z

)
− i

qµqν

m2
Z

1

q2 − ξZm2
Z

.

The first term is the unitary propagator. The second gauge-dependent
term is cancelled by the contribution of the neutral Goldstone φ0.

Again one needs to attach fermion pairs to the gauge boson and to the
neutral Goldstone boson to see the cancellation. Explicit examples of this
cancellation can be found in the book of Peskin-Schroeder and in Körner
[1402.2787].



Attaching (massless) fermion pairs to the off-shell gauge bosons

Split the unitary gauge propagator into a spin 1 and a spin 0 piece:

− g
νβ +

qνqβ

m2
Z

=

(
−g

νβ +
qνqβ

q2

︸ ︷︷ ︸
spin 1

)
−

qνqβ

q2

(
1−

q2

m2
Z

)

︸ ︷︷ ︸
spin 0

,

For massless external fermions the spin 0 piece gives zero contribution.
When zero mass fermions are attached to off-shell gauge bosons one can
use the spin 1 gauge.

The correct result is

Γ(H → Z
∗
Z

∗) ∼

(
p2q2

m4
Z

)
Γ(spin 1 gauge)

Where do the factors p2 and q2 come from? They come from attaching a
fermion pair to the off-shell gauge bosons. To keep things simple take
mℓ = 0.

∫
dΩpL

µν(p) =
4π

3
p
2
P

µν
1 (p))

∫
dΩqL

µν(q) =
4π

3
q
2
P

µν
1 (q)



Attaching (massless) fermion pairs to the off-shell gauge bosons

dΓi j

dp2dq2
(p2, q2) = 2 · Bi Bj

1

π

mZΓ

(p2 −m2
Z )

2 +m2
ZΓ

2
Z

1

π

mZΓ

(q2 −m2
Z )

2 +m2
ZΓ

2
Z

·

(
p2q2

m4
Z

)
Γ(H → Z

∗ + Z
∗)spin 1 gauge

Sum over the channels

∑

i,j

Bi Bj ≈
1

2

(∑

i

Bi

)(∑

j

Bj

)
=

1

2

i) i 6= j Bi Bj = Bj Bi

ii) i = j Bi Bi ≈
1
2
Bi Bj

The factor 1/2 is crucial to obtain the idetical particle factor of 1/2
appropiate for the decay H → Z∗ Z∗.



Angular decay distribution 1

Covariant expression:

W (θp, θq, χ) = gαα′ P
αµ
1 (p)Pα′µ′

0⊕1 (q) L(p)
µν(p) L

(q)

µ′ν′(q)P
νβ
1 (p)Pν′β′

0⊕1 (q) g
∗
ββ′

Z Z

χ

θqθp

+

τ+

x
z

−

−τ
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Figure: Definition of the momenta p and q, the polar angles θp and θq , and the
azimuthal angle χ in the cascade decay H → Z(→ e+e−) + Z∗(→ τ+τ−)



Angular decay distribution 2

Two routes to proceed:

◮ Define momenta in three frames. Boost momenta to Higgs rest
frame. Do the contractions.
(Cabibbo, Maksymowicz 1965, Buchalla et al. 2014)

◮ Helicity method (Jacob, Wick 1959)

Transform covariant distribution to a helicity distribution with the help of
the completeness relations for polarization vectors. To make life a bit
simpler we treat the on-shell (p)– off-shell (q) case.

◮ Off-shell spin 1+spin 0 propagator (unitary gauge)

P
µ′α′

0⊕1 (q) = −g
µ′α′

+
qµ′

qα′

m2
V

= −
∑

λV∗=t,±1,0

εµ
′

(λV∗)ε∗α′

(λV∗) ĝλV∗λV∗ .

◮ On-shell spin 1 propagator (p2 = m2
Z )

P
αµ
1 (p) = −g

αµ +
pαpµ

p2
=

∑

λV=±1,0

ε̄α(λV )ε̄
∗µ(λV )



Angular decay distribution 3

Helicity representation of angular decay distribution

W (θp, θq, χ) =∑

λV ,λ′

V
J,J′λV∗ ,λ′

V∗

(−FS)
2−J−J′

L
(p)

λV λ′

V

(cos θp)HλV ,λV∗H
∗
λ′

V
,λ′

V∗

L
(q)

λV∗ λ′

V∗

(cos θq, χ)

with J, J ′ = 0, 1 λV∗ , λ′
V∗ = t,±1, 0, λV , λ

′
V = ±1, 0

Helicity amplitudes for H → Z Z∗ :

HλV ,λV∗ = gαβ ε̄
∗α(λV )ε

∗β(λV∗)



Angular decay distribution 4; a sample result

Normalized angular decay distribution (
∫
angles

W̃ (θp, θq, χ) = 1 )

W̃ (θp, θq, χ) =
1

8π

(
1 +

7∑

i=1

F̃ihi (θp, θq, χ)

)

i F̃Z
i (mℓ = 0) F̃Z

i (mℓ = mτ ) hi (θp, θq, χ)

1 −0.9115 −0.6257 P2(cos θq)

2 −0.9115 −0.9391 P2(cos θp)

3 +0.9557 +0.6561 P2(cos θp)P2(cos θq)

4 +0.0030 +0.0023 cos θp cos θq

5 +0.0167 +0.0132 sin θp sin θq cosχ

6 +0.1875 +0.1287 sin 2θp sin 2θq cosχ

7 +0.0332 +0.0228 sin2 θp sin
2 θq cos 2χ

Table: Numerical results for the normalized coefficient functions F̃i (q
2) at

q2 = 50GeV
2. Legendre polynomial P2(cos θ) =

1
2
(3 cos2 θ − 1).



Helicity composition of the gauge bosons

On-shell – off-shell case

Figure: Differential rates dΓZα/dq
2 (indices α = U, L, S for the decay

H → Z(→ e+e−) + Z∗(→ ℓ+ℓ−) with mℓ = 0 and mℓ = mτ .

◮ L refers to (Z∗Z∗) double density matrix element ρLL
◮ U – ′′ – ρTT

◮ S – ′′ – ρLS



On-shell – off-shell vs. Off-shell – off-shell decays

ΓZ [GeV ] ΓZ
U/Γ

Z ΓZ
L /Γ

Z ΓZ
S /Γ

Z

H → Z (→ e+e−) + Z∗(→ ℓ+ℓ−)
(mℓ = mµ) 1.01× 10−7 GeV 0.41 0.59 0

(mℓ = mτ ) 0.97× 10−7 GeV 0.41 0.55 0.04

H → Z∗(→ e+e−) + Z∗(→ ℓ+ℓ−)
(mℓ = mµ) 1.22× 10−7 GeV 0.39 0.61 0

(mℓ = mτ ) 1.20× 10−7 GeV 0.39 0.59 0.02

Table: Total and normalized partial decay rates for the four-body decays
H → Z(→ e+e−) + Z∗(→ ℓ+ℓ−) and H → Z∗(→ e+e−) + Z∗(→ ℓ+ℓ−).



Some final remarks

◮ There is a great deal of interesting physics in the process
H → τ+τ−τ+τ−. Gauge invariance, identical particle effects, lepton
mass effects, topology of Feynman diagrams, momentum mismatch,
no external off-shell gauge bosons, ....

◮ Experimentalists are getting better and better in the identification of
tauons. Taus from the process H → τ+τ−τ+τ− are used to train tau
finding algorithms for the gold plated process H → τ+τ−.

◮ My office mate and friend Jian Wang calculated many of the rates in
minutes using MadGraph. We took two years. There is essential
agreement but some differences in detail. My congratulations for the
MadGraph team for having done a tantalizingly good job.

◮ Many thanks to my collaborators Stefan Groote and Lauri Kaldamäe
for collaboration and Matthias Neubert for support.


