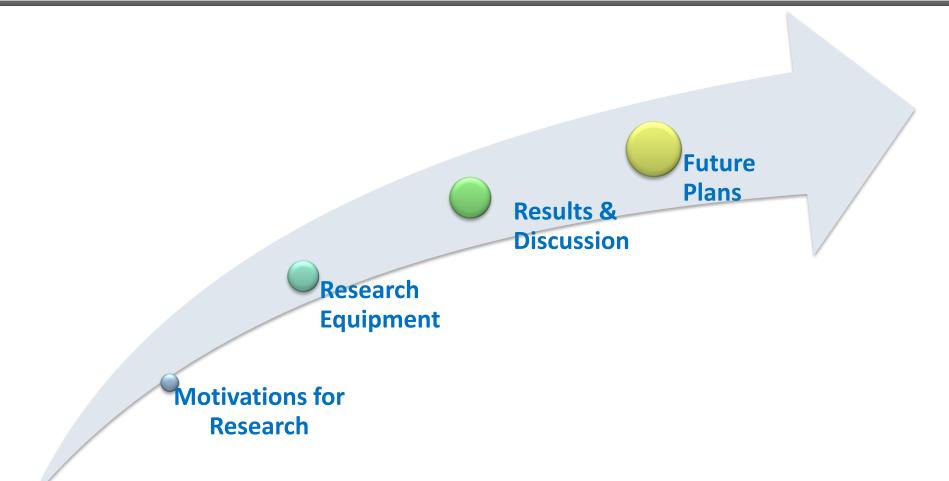


Photocathode Research using Facilities at Daresbury Laboratory: Progress Report

Sonal Mistry

Loughborough University, STFC ASTeC


Loughborough University

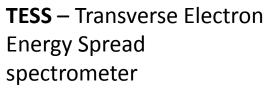
Motivations

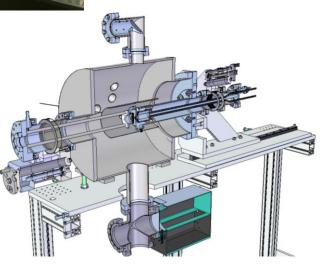
- VELA User Area 3 Stochtonisation Photoinjector User Res Backs
- Interest in investigating alternative metal to copper
- Investigate applicability of metals to *deliver ultra high brightness beams*

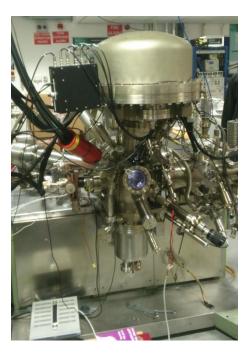
- Photoinjector consists of 2.5 cell S-band RF gun
- Cu photocathode:

Quantum Efficiency = 1 x 10⁻⁵

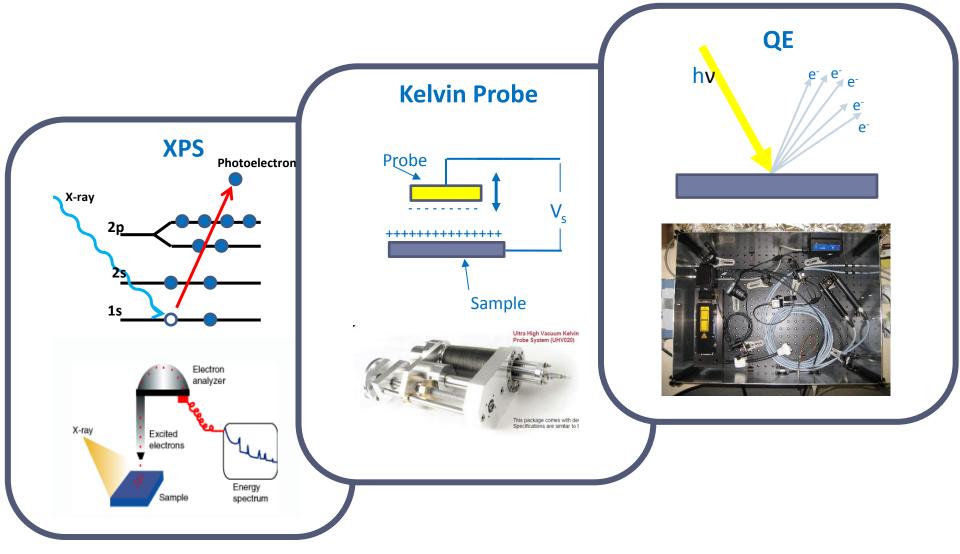
CLARA


- 1.5 cell high repetition rate gun
- Interchangeable photocathode

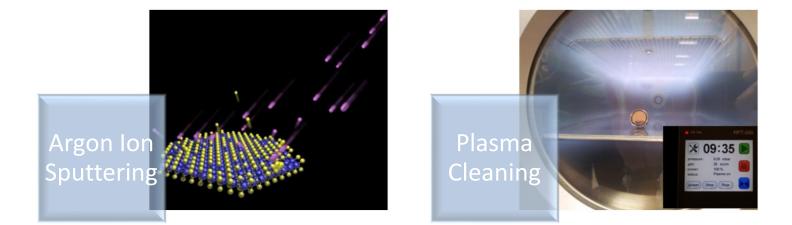


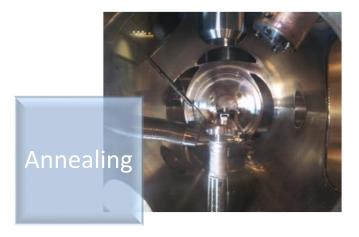

Photocathode Research Equipment

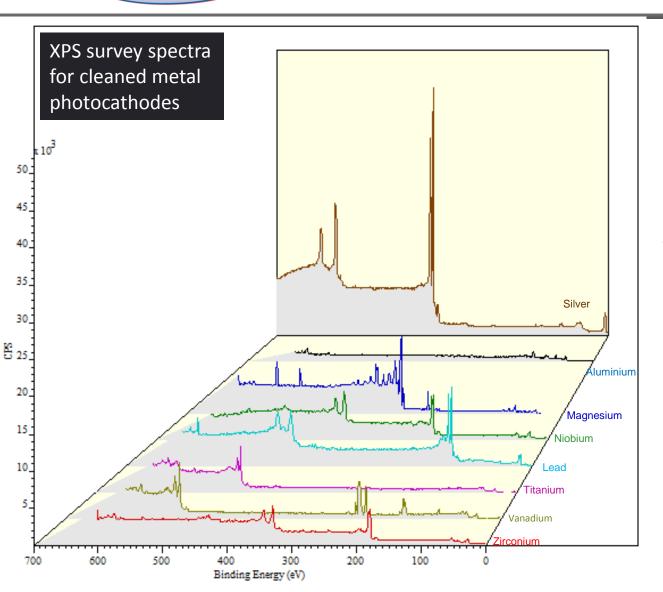
SAPI - Surface Analysis/Preparation Installation



ESCALAB-II – Surface analysis facility




Photocathode Research Techniques



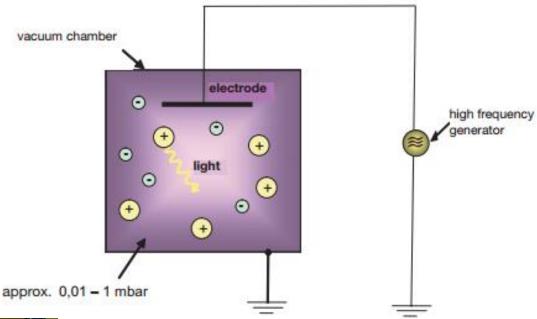
Photocathode Research Techniques

EUCARD² Experimental Procedure

1st Experiment Aim: To identify metal photocathodes with reasonable QE

A survey of a 10 bulk metals, chosen because:

- Widely used in photoinjectors
- Low work function
- Vacuum compatibility


Results: Ar⁺ sputter

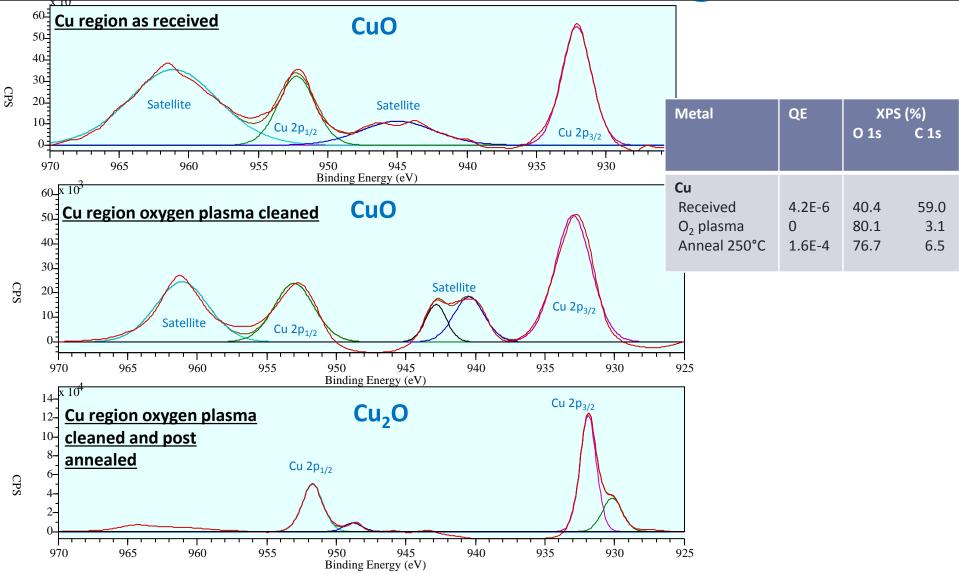
Metal	QE (%)	XPS for s surfac O 1s	-	Work Function (eV)	Metal	QE (%)	XPS for sa surface O 1s		Work Function (eV)
Al Received Ar ⁺ sputter	9.5E-6 2.2E-5	36.8 13.4	38.3 17.4	4.0 4.9	Nb Received Ar ⁺ sputter	3.9E-7 <u>1.9E-4</u>	47.8 16.2	48.6 21.0	5.3 4.7
Ag Received Ar⁺ sputter	8.5E-6 5.1E-5	0 0	59.4 0	5.1 5.1	Pb Received Ar ⁺ sputter	2.9E-5 2.4E-4	43.9 0	34.8 0	4.6 4.7
Cu Received Ar ⁺ sputter	5.0E-6 1.1E-5	32.9 0	66.2 0	5.4 5.3	Ti Received Ar ⁺ sputter	0 <u>3.3E-4</u>	39.2 14.6	53.6 16.8	4.7 4.5
Mg Received Ar ⁺ sputter	6.0E-6 <u>1.7E-3</u>	35.2 40.0	52.3 0	3.4 3.4	V Received Ar ⁺ sputter	1.4E-6 2.2E-5	45.7 25.0	45.9 0	5.5 5.0
Mo Received Ar⁺ sputter	1.47E-7 2.48E-6	24.2 7.8	64.9 17.8	5.1 5.2	Zr Received Ar ⁺ sputter	3.88E-6 2.89E-4	48.4 14.4	44.1 0	4.4 4.3

EUCARD² O₂ plasma cleaning and post annealing

VELA Cu photocathode prepared by:

- O₂ plasma cleaning
 - Removes carbon
 - Leaves thin oxygen layer
- Annealing
 - Oxygen dissolves into bulk

Second experiment applies this cleaning procedure to the metals identified in the first experiment.



Results: O₂ plasma cleaning

- Measurements for Ti, Zr, Mg, Cu, Nb, Pb:
- O₂ Plasma Cleaned for 20 minutes
- Annealed

Metal	QE (%)	XPS for sample surfaces (%) O 1s C 1s		Work Function (eV)	Metal	QE	XPS for sample surfaces (%) O 1s C 1s		Work Function (eV)
Ti O ₂ plasma Anneal 250°C (0.5 hr)	0 6.32E-5	87.1 88.3	5.1 4.5	5.8 4.5	Cu O ₂ plasma Anneal 250°C (0.5 hr)	0 1.6E-4	80.1 76.7	3.1 6.5	5.7 5.7
Anneal 250C (24 hr) Zr O ₂ plasma Anneal 250°C (0.5 hr) Anneal 250°C (24 hr)	1.16E-4 3.82E-7 6.94E-5 1.35E-4	79.9 78.4 83.5 74.6	9.0 12.4 3.9 9.8	4.3 4.9 4.3 4.8	Nb O ₂ plasma Anneal 300°C (0.5 hr)	5.21E-7 1.34E-4	87.5 80.2	5.7 6.3	5.7 4.5
Mg O ₂ plasma Anneal 200°C (0.5 hr) Anneal 200°C (4 hr) Anneal 200°C (24 hr)	3.82E-7 2.40E-5 4.90E-5 7.09E-5	83.5 76.8 67.8 66.7	3.2 3.5 9.4 3.8	4.4 3.9 3.7 3.6	Pb O ₂ plasma Anneal 160°C (0.5 hr) Anneal 200°C (0.5 hr)	3.47E-7 6.94E-6 1.67E-5	82.1 77.9 77.8	7.1 10.9 9.9	5.6 4.3 4.5

Results: O₂ plasma cleaning

EUCARD²

Results: Ar plasma cleaned

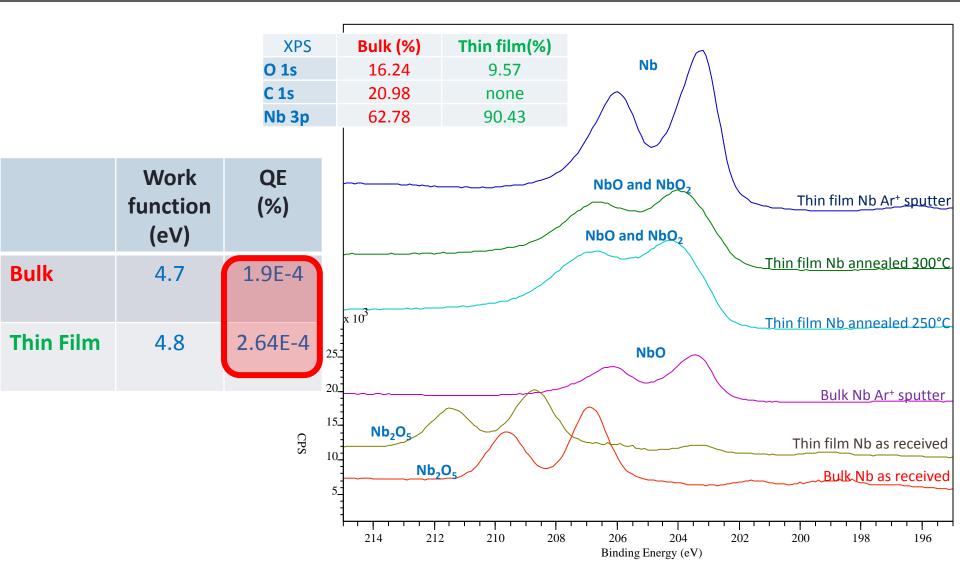
www.mon Diacma

- Argon plasma treatment is **just as effective in removing C 1s** from the sample surfaces
- QE obtained for oxygen plasma treatment and post anneal is greater than that obtained with argon plasma treatment for all samples

All	son Plas	IId		Oxygen Plasma					
Metal	QE	XPS O 1s	(%) C 1s	Work Function (eV)	Metal	QE	XPS O 1s	(%) C 1s	Work Function (eV)
Cu Received Ar plasma Anneal 250°C ½ hrs	4.2E-6 2.1E-7 5.6E-5	40.4 84.0 78.9	59.0 4.0 4.4	5.1 5.4 4.7	Cu Received O ₂ plasma Anneal 250°C ½ hrs	4.2E-6 0 1.6E-4	40.4 80.1 76.7	59.0 3.1 6.5	5.1 5.7 5.7
Nb Received Ar plasma Anneal 300°C ½ hrs	5.9E-7 3.5E-8 5.9E-5	39.9 89.3 80.8	55.2 3.3 5.0	4.8 5.3 4.3	Nb Received O ₂ plasma Anneal 300°C ½ hrs	5.9E-7 5.2E-7 1.3E-4	39.9 87.5 80.2	55.2 5.7 6.3	4.8 5.7 4.5

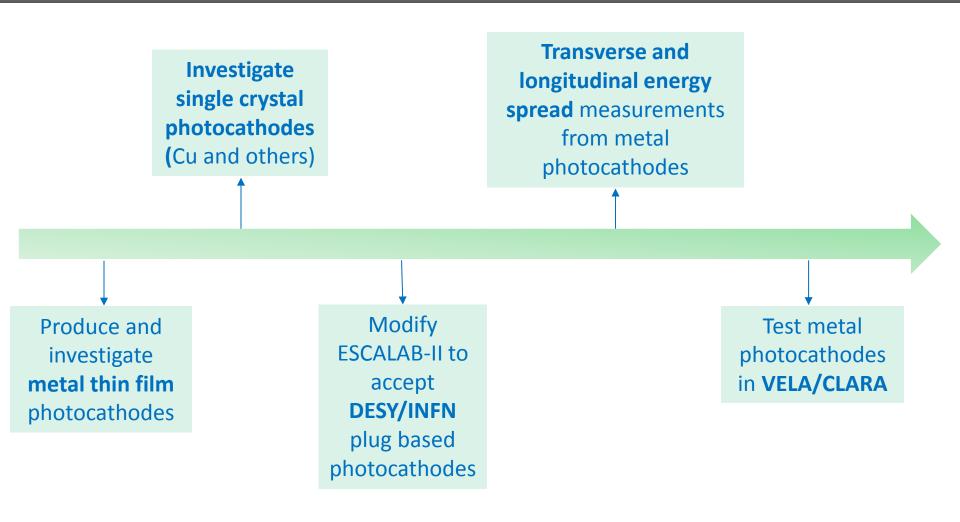
Argon Plasma


Thin Films Photocathodes


Along with polycrystalline metals, can consider also using film deposition

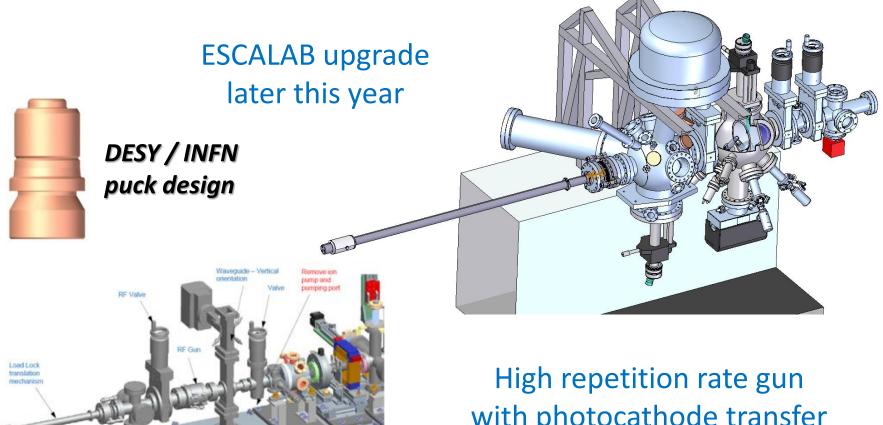
- Metal thin films deposited on silicon substrate by magnetron sputtering
- So far only Cu and Nb thin films have been produced (μm)

Metal thin film	QE (%)	XPS for sample surfaces (%) O 1s C 1s		Measured φ (eV)
Cu				
Received	1.47E-6	23.5	67.8	5.1
Heated 250°C	1.14E-4	20.2	61.7	4.9
Repeat	1.17E-4	17.9	62.0	4.7
Nb				
Received	7.75E-7	63.1	25.3	4.4
Heated 250°C	2.45E-5	61.5	4.3	4.9
Heated 300°C	5.66E-6	55.8	15.9	5.1
Ar ⁺ sputter	2.64E-4	9.6	0	4.8



EUCARD² Nb thin film compared with bulk

Future Plans



Ion pump

Rotate G

Rotate Pumpin Tee 90 degrees

Future Plans

with photocathode transfer facility to be commissioned 2016

- New results for O₂ and Ar plasma cleaned photocathodes
- Preliminary results for Cu and Nb thin film photocathodes
- Progress with design work for ESCALAB upgrade
- Commissioning of High Repetition Rate gun in February 2016

For Further Information: -DELIVERABLE REPORT: 12.4, *'SCIENTIFIC REPORT ON PHOTOCATHODE R&D'* MILESTONE REPORT: MS75, *'INVESTIGATION OF QUANTUM YIELD AND ENERGY SPECTRUM OF THE ELECTRONS, EMITTED FROM THE METAL PHOTOCATHODE'*

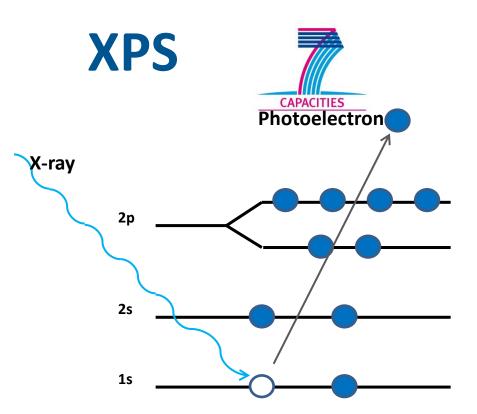
Acknowledgements

STFC ASTeC

Deepa Angal-Kalinin, Boris Militsyn, Lee Jones, Joe Herbert, Tim Noakes, Reza Valizadeh, Keith Middleman, Mark Surman

Daresbury Technology Department Ryan Cash and Barry Fell

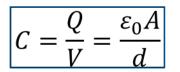
Loughborough University Mike Cropper


Thank you for listening!

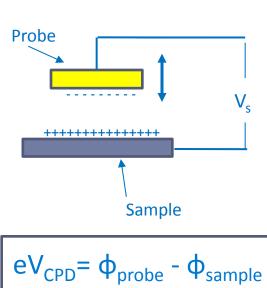
XPS process:

University

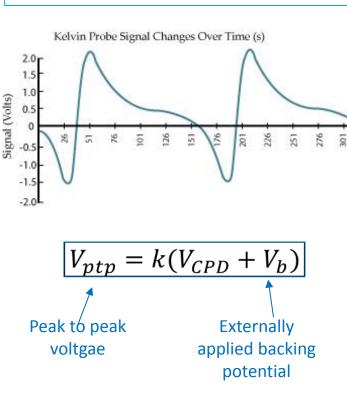
- Sample surface illuminated with X-Rays
- X-Rays absorbed within 10 nm of sample
- Core level electrons are emitted
- Measure E_k of photoelectrons
- Corresponding E_b is deduced: $E_k = hv - E_b - \phi_s$ Kinetic Energy X-Ray Binding work function Energy Energy


- E_b for core level electrons are unique for each chemical species
- Therefore spectrum represents surface composition

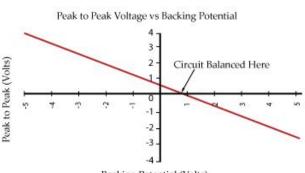
Loughborough e partners and the European Commission under Capacities 7th Framework Programme, Grant Agreement 312453



 Probe set to vibrate upon close contact with sample surface



• As d varies, so does C

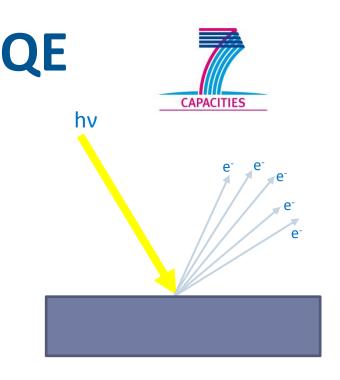


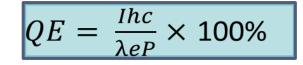
University

- Result is a periodic flow of charge around the circuit, and thus a varying voltage
- Output signal is periodic (V_s)

- V_b is set to a range of potentials and a plot of V_{ptp} verses V_b is made.
- When V_{ptp} = 0 the V_{CPD} of the surface is equal and opposite to V_b.

Backing Potential (Volts)


Loughborough e partners and the European Commission under Capacities 7th Framework Programme, Grant Agreement 312453



- QE is the average photoelectric yield per incident photon.
- QE measurements comprise

University

- a LED source giving 265 nm (4.65 eV) light and a pico-ammeter to measure drain current.
- a UV LASER source which offers higher intensity at 266 nm
- Photodiode used to measure LED power
- QE suggests how much current can be extracted from a cathode and as such is an indication of the potential beam current.
- This property is unique to each photocathode material and is a function of the laser wavelength and the photocurrent produced.

Loughborough e partners and the European Commission under Capacities 7th Framework Programme, Grant Agreement 312453