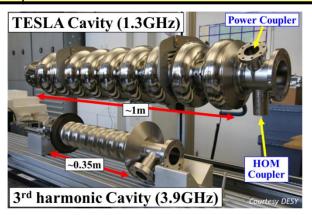

SRF HOM Diagnostics for the European XFEL

Nicoleta Baboi, Ursula van Rienen <u>Roger M. Jones</u> DESY, Univ. of Rostock, Univ. of Manchester/ Cockcroft Inst.


WP 12.4 SRF HOM Diagnostics for for European XFEL

TASK 12.4	HOM Distribution	R.M. Jones	
Sub-Task	Name	Coordinating Institute/Univ.	
12.4.1	HOMBPM	DESY	
12.4.2	HOMCD	Cockcroft/Univ. Manchester	
12.4.3	HOMGD	Univ. Rostock	

Overall Aim

- ✓ Beam phase (w.r.t. R.F.) and position within both 3.9 GHz and 1.3 GHz cavities
- ✓ Potentially provides remote structure alignment
- ✓ Transverse wakes are an issue! (~ ω^3)

Four-year task due to staff resources commuted to Three yearsP. Jain, PDRA (now at Roorkee, IIT)

Task 12.4 HOM Diagnostics in SC Accelerator Cavities -Staff

- □ <u>Sub-task leaders</u>: Nicoleta Baboi (DESY), Ursula van Rienen (Univ. Rostock), Roger M. Jones (CI/Univ. Manchester).
- **P.D.R.A.:** Puneet Jain, N. Joshi (CI/Univ. of Manchester) □ Ph.D.s: Liangliang Shi (DESY/Univ. of Manchester), Thomas Flisgen (Univ. of Rostock)
 - WP 12.4.1

N. Baboi, DESY

Y

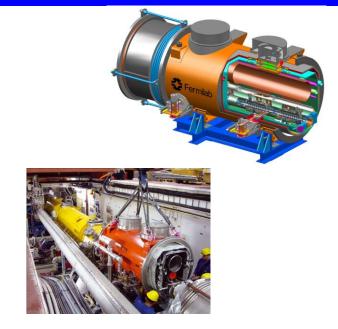
P. Jain. L. Shi, CI/Univ. of Manchester Univ of Manchester/DES

N. Joshi. CI/Univ of Manchester

T. Flisgen,

Univ. of Rostock

U. Van Rienen. Univ. of Rostock

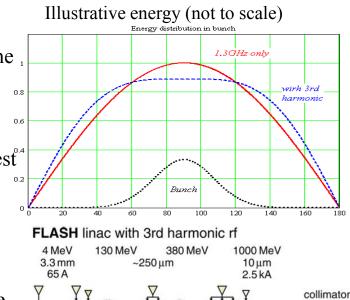

R.M. Jones, Overview of SRF HOM Diagnostic Task, DESY, Hamburg, April 8th 2015

WP 12.4.2

WP 12.4.3

12.4 FLASH Third Harmonic Cavities

- □ Fermilab has constructed a third harmonic accelerating (3.9GHz) superconducting module and cryostat for a new generation high brightness photo-injector.
- □ This system will compensate the nonlinear distortion of the longitudinal phase space due to the RF curvature of the 1.3 GHz TESLA cavities prior to bunch compression.

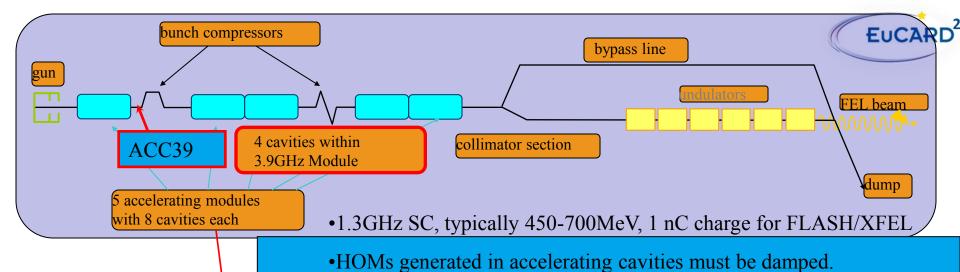

- ☐ The cryomodule, consisting of <u>four 3.9GHz cavities</u>, has been installed in the FLASH photoinjector downstream, of the first 1.3 GHz cryomodule (consisting of 8 cavities).
- □ Four 3.9 GHz cavities provide the energy modulation, ~20 MV, needed for compensation.
- □ Eight cavities are required per module for XFEL

WP 12.4 FLASH 3.9 GHz Parameters

Number of Cavities	4		
Active Length	0.346 meter		
Gradient	14 MV/m		
Phase	-179°		
R/Q [= $U^2/(wW)$]	750 Ω		
E _{peak} /E _{acc}	2.26		
B _{peak}	68 mT		
$(E_{acc} = 14 \text{ MV/m})$			
Q _{ext}	1.3 X 10 ⁶		
BBU Limit for HOM, Q	<1 X 10 ⁵		
Total Energy	20 MeV		
Beam Current	9 mA		
Forward Power, per cavity	9 kW		
Coupler Power, per coupler	45 kW		

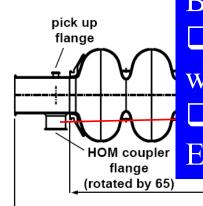
□ Adding a harmonic ensures the 2^{nd} derivative at the max is zero for total field (could use any of the harmonics in the expansion, but using the lowest freq. ensures the transverse wakefields ~ ω^3 are minimised).

- The third harmonic system (3.9GHz) compensates for the nonlinear distortion of the longitudinal phase space due to cosine-like voltage curvature of 1.3 GHz cavities.
- □ It linearises the energy distribution upstream of the bunch compressor thus facilitating a small normalized emittance ~1.10⁻⁶ m.rad.



undulator

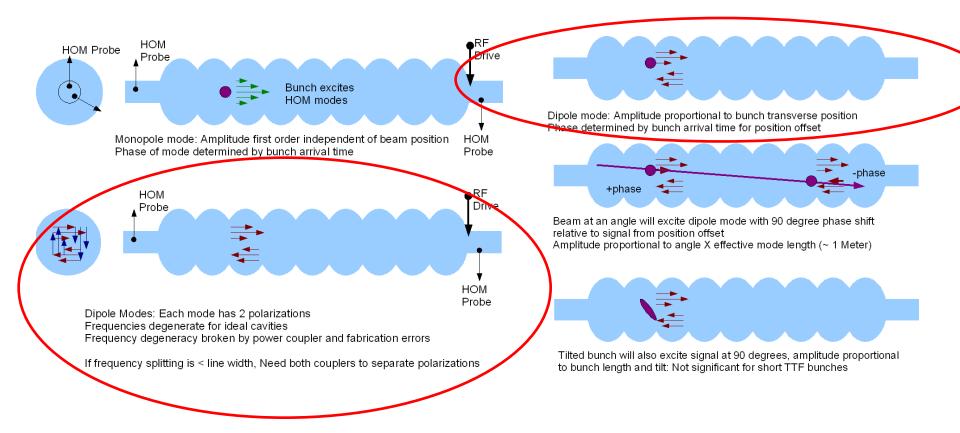
bypass

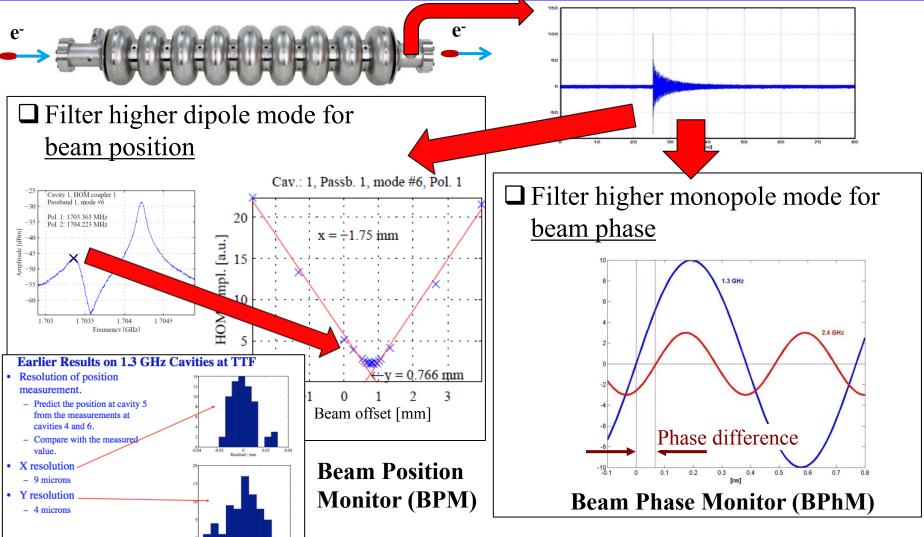


- •Monitored HOMs facilitate beam/cavity info
- Forty cavities exist at FLASH.
- -Couplers/cables already exist.

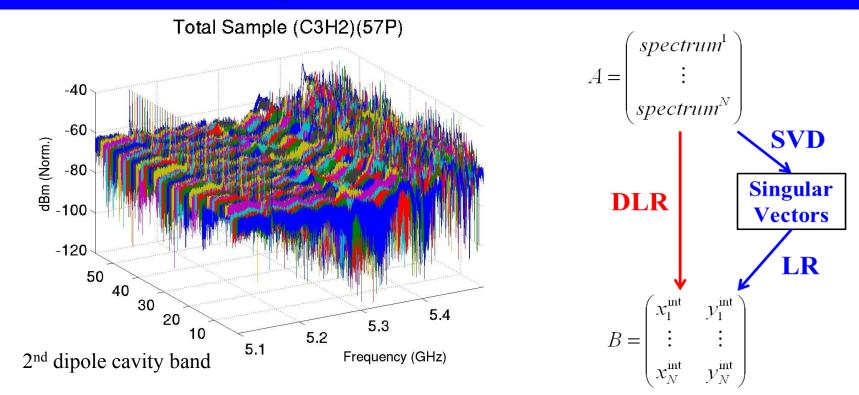
-Electronics enable monitoring of HOMs (wideband and narrowband response).

Based on 1.3 GHz (SLAC/FNAL/DESY) Diagnostics – The HOMS electronics were redesigned for ACC39 within FLASH as part of EuCARD For EuCARD2 new diagnostics will be required for the European XFEL


Cu / Nb


1061 mm

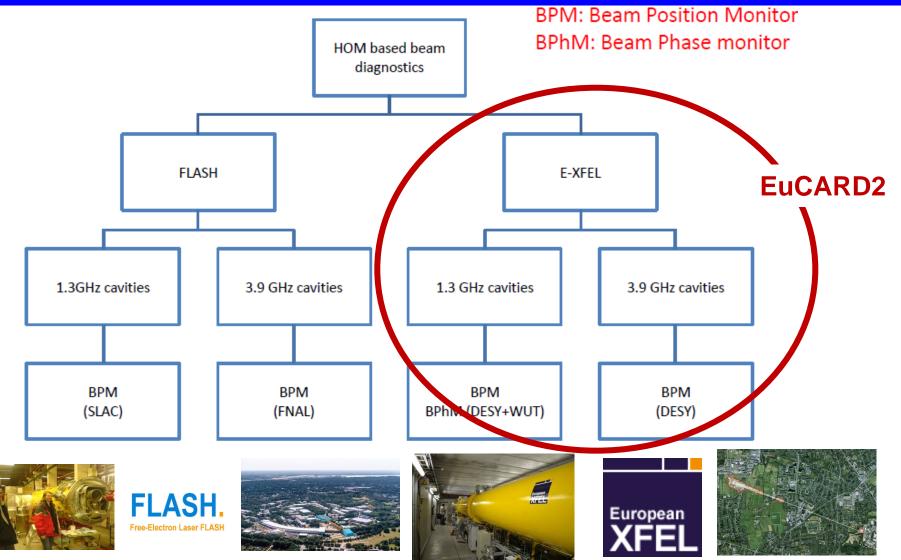
KANA JUNCO, OVELVIEW OF OKT HONT DIAGNOSIK LASK, DEG 1, HAINBURG, April 8th 2015


WP 12.4 Response of HOM modes to beam

WP 12.4 Analysis of Narrowband Signals – Beam Position and Beam Phase

WP 12.4 Principle of HOM BPMs: DLR & SVD

□ Direct Linear Regression (DLR) □


 $A \cdot M + B_0 = B$

Gingular Value Decomposition (SVD)

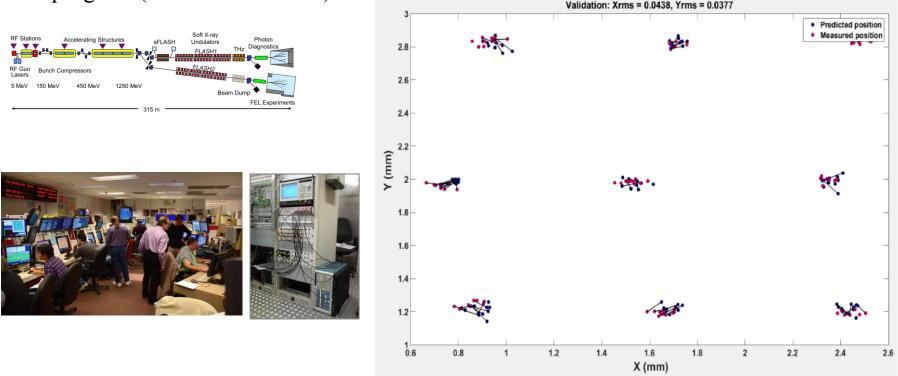
$$A = U \cdot S \cdot V^T \longrightarrow A_S$$

$$A_{\rm S} \cdot M_{\rm S} + B_{\rm 0S} = B$$

WP 12.4 Response of HOM modes to beam EuCARD -> EuCARD2

12.4 Summary of Plans and Status of HOM Position Diagnostics

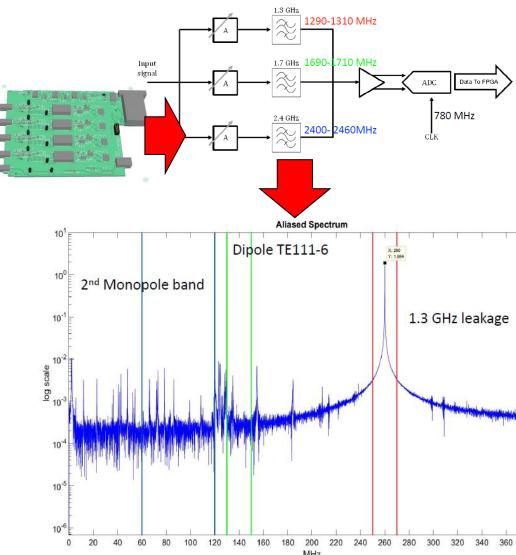
	FLASH	European XFEL
1.3 GHz Cavities	 Electronics installed in 40 cavities (SLAC/CEA/DESY) Raw signals used for beam centering EuCARD²: Unstable calibration (phase or even frequency drifts?) 	 Electronics under design, based on same frequency as for FLASH (WUT/DESY)
3.9 GHz Cavities	 Theoretical and experimental studies (EuCARD: UROS, UMAN, DESY together with FNAL) Defined specs for HOMBPM electronics (also for XFEL) Electronics under construction (FNAL), to be installed and tested/ commissioned this autumn EuCARD²: Unstable calibration (same problem as for 1.3 GHz?) 	 Electronics under design, based on same frequency ranges as for FLASH (DESY) But much more challenging: 8 coupled cavities cf. 4 4.5 cf 1 MHz bunch frequency Different orientation of cavities EuCARD²: Need significant theoretical and experimental studies


12.4 Summary of Plans and Status of HOM Phase Diagnostics

	FLASH	European XFEL
1.3 GHz Cavities	 Proof-Of-Principle made (SLAC/ CEA/DESY) Electronics under design (same as for XFEL HOMBPM, WUT/DESY) EuCARD²: experimental studies 	- Same as for FLASH
3.9 GHz Cavities	 So far no isolated monopole mode identified, which could be used for phase monitoring Theoretical (and experimental) studies (lower priority in EuCARD²) 	- Same as for FLASH

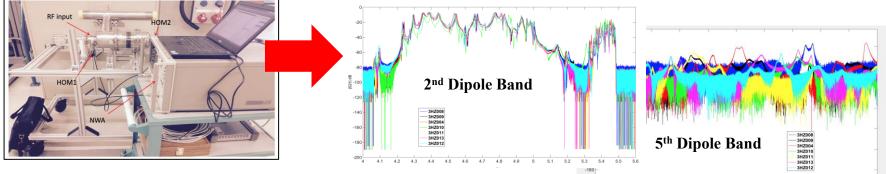
See WP12.4.1 talk by L. Shi/N. Baboi

WP 12.4 Repeatability Measurements on HOMBPMs


- □ Stable beam position recorded over a period of 5 days using HOMBPMs in 1.3 GHz cavities –first measurement
 - Repeated measurements over time
 - Dedicated beam time has been limited and consequently has impeded further progress (L. Shi & N. Baboi)

R.M. Jones, Overview of SRF HOM Diagnostic Task, DESY, Hamburg, April 8th 2015

WP 12.4 Repeatability Measurements on 1.3 GHz HOMBPMs


- Initial beam with test electronics for 1.3 GHz cavities
 - Identified monopole and dipole mode regions
 - Prototype electronics being fabricated (Samer Bou Habib – WUT & DESY)
- Redesign of non-functioning 5 GHz electronics for 3.9 GHz cavities complete (see M18 report)
 - Boards under construction (Thomas Wamsat -DESY)
- Expected to be complete in 2 months (~ June 2015)

WP 12.4 Summary of Transmission Measurements on Third Harmonic Cavities

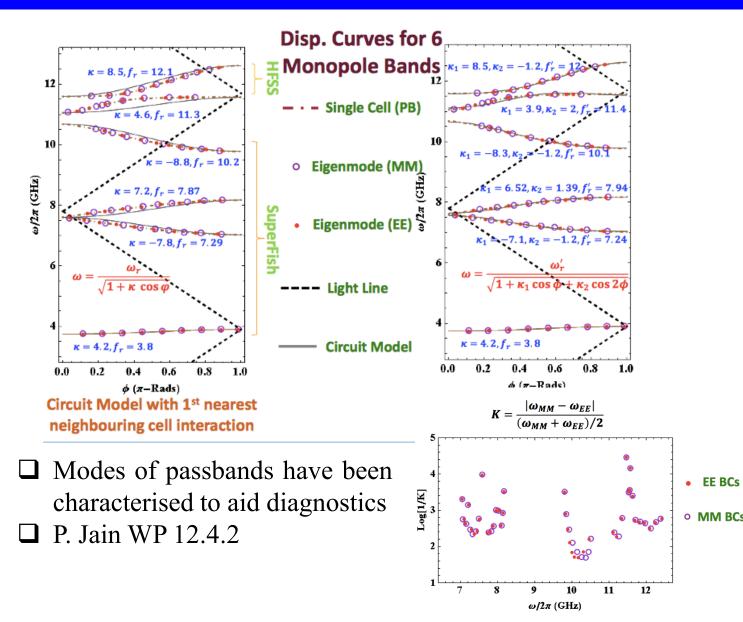
Measured (L. Shi & N. Baboi) S21 for seven out of the eight 3.9 GHz cavities needed for XFEL modules

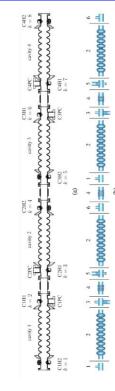
- Room temperature measurements of S21 (sans final input coupler)
- 3HZ010 has an input coupler and was also measured at 2K
- These measurements may shed some light on subsequent measurements to be performed on the 8 cavities with a module (coupled cavity spectrum)

□ Next steps:

Each colour represents a different cavity

- Measure S21 for cavities in string (at room temperature and at 2K)
- Measure S21 for reserve 3.9GHz cavities (and later for 2nd injector)
- See WP12.4.1 talk by L. Shi

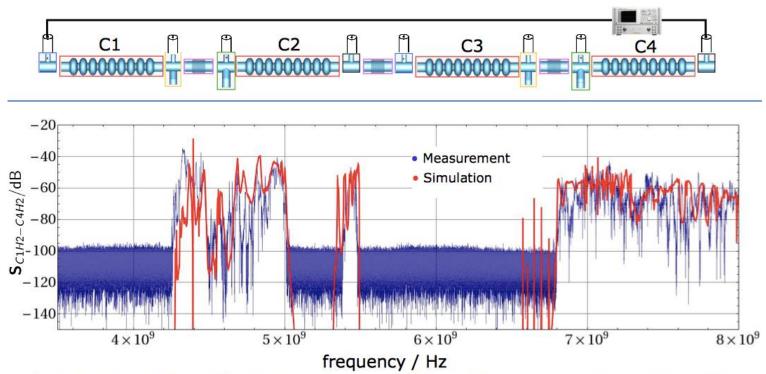

12.4 HOMs in 3.9 GHz SC Cavities


- Cavity modes up to 10GHz allows identification of potential trapped modes and modal types, monopole, dipole, quadrupole and sextupole
- □ Contains all 6 cavity dipole bands below 10GHz
- HFSS results agree well with by MAFIA simulations
- Modes within the modules can be inter-cavity, beam pipe or trapped
 Majority within the first six passbands are inter-cavity computationally expensive and sensitive to small geometrical perturbations!

E-field distribution	ω/2π (GHz)	Band type	R/Q: Ω/cm ²
	4.2953	D Band 1 #1 EE	0.00
	4.3580	D Band 1 #2 EE	0.29
	4.4460	D Band 1 #3 EE	0.00
	4.5388	D Band 1 #4 EE	1.08
	4.5972	D Band 1 #5 EE	0.79
	4.6399	D Band 1 #6 EE	0.16

□ We require characterization of a limited number of modes for HOM diagnostics (large R/Q desirable)

WP 12.4 Mode Characterisation



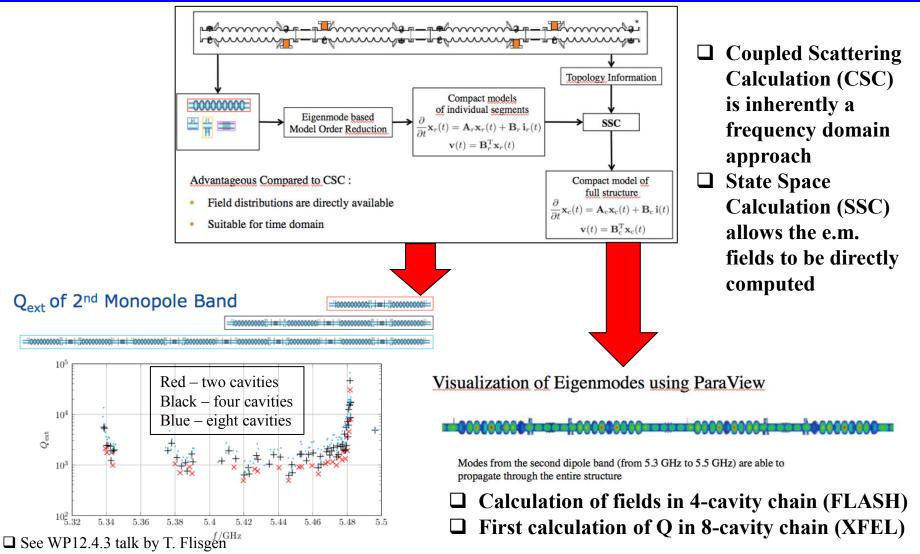
 K provides an indication as to the degree at which the mode is contained within the cavity – i.e. it indicates the sensitivity to the boundary conditions and is a means of <u>understanding</u> whether or not the mode is a <u>coupled cavity mode</u> or a true trapped cavity mode

> (Ref:) Schuhmann & Weiland TESLA-Report 2000-08, DESY

R.M. Jones, Overview of SRF HO. ______

WP 12.4 S₂₁ of HOMs in 3.9 GHz SC Accelerator Cavities

T. Flisgen, H.-W. Glock, P. Zhang, I. R. R. Shinton, N. Baboi, R. M. Jones, and U. van Rienen: "Scattering parameters of the 3.9 GHz accelerating module in a freeelectron laser linac: A rigorous comparison between simulations and measurements", Phys. Rev. ST Accel. Beams, 17:022003, February 2014


➢Using concatenation techniques transmission through the complete FLASH module ACC39 is possible- using Coupled Scattering Calculation (CSC)

Accurately compute each section

Concatenate for complete module

See WP12.4.3 talk by T. Flisgen

WP 12.4 Field Computation in 3.9 GHz SC Accelerator Cavities

Deliverables & Milestones

All taken from:

Deliverables (http://eucard2.web.cern.ch/science/deliverables) Milestones (http://eucard2.web.cern.ch/science/milestones)

Deliverables

□ D12.3 Design of electronics for XFEL HOM diagnostics (M18 –complete)[†]

□ D12.7 Completed characterisation of HOMS in the 8-cavity XFEL module (M36)[†]

D12.4.1 Report on characterisation of HOMS in XFEL coupled 3HC cryomodule (M48 –April 2017)[‡]

Milestones

□ MS82 Completed coupled cavity simulations of 8-cavity module (M36)

†Commuted from milestones
‡ Original deliverable

Concluding Remarks on Task 12.4

□ Ongoing measurements (both parasitic and otherwise) on HOM diagnostics at FLASH provide vital information on methodology for XFEL

□ Stand-alone S21 measurements on 3rd harmonic cavities indicate similar spectra

□ Simulation of 4 coupled cavities was challenging -8 in the XFEL module is even more computationally demanding. Initial results e-field encouraging!

□ A Compendium of modes will be generated for the 8-cavity chain within modules in XFEL

□ On track for deliverables/milestones with caveats (see N. Baboi's Saclay talk). Had several skype meetings to review progress to date.

□ HOMSC14 well attended from our WP12.4 in July 2014 at FNAL

□ PRST-AB paper (T. Flisgen et al, *Scattering parameters of the 3.9 GHz accelerating module in a free-electron laser linac: A rigorous comparison between simulations & measurements*). Ph.D. to be submitted as EU Monograph.

 \Box Faulty electronics board (M18 report), rebuilt and on-track for retesting in ~ 3months.

New PDRA will take up appointment in Manchester, eta in May 2015 R.M. Jones, Overview of SRF HOM Diagnostic Task, DESY, Hamburg, April 8th 2015

Task 12.4 Talks

□ <u>Overview of SRF HOM Diagnostics for the European XFEL task</u>, R.M. Jones (University of Manchester/Cockcroft Inst.)

 HOMBPM <u>Beam Position Monitors</u>: <u>HOMBPM Resolution Study</u>,
 L. Shi, N. Baboi (DESY)

 HOMGD <u>G</u>eometric <u>D</u>ependencies: <u>Results of RF Simulations for Chains of Superconducting Cavities</u>, T. Flisgen, U. Van Rienen (University of Rostock)