

Traditio et Innovatio

Results of RF Simulations for Chains of Superconducting Cavities

Thomas Flisgen, Johann Heller, and Ursula van Rienen

Eucard² WP 12 Annual Review Meeting 2015 DESY, Hamburg, Germany, 8th – 9th of April 2015

Outline

- Introduction motivation for computations of RF properties in long cavity chains
- Used Approach: State Space Concatenations
- Analysis of RF properties in rotationally symmetric chains of superconducting structures
- Analysis of RF properties in chains of superconducting structures with HOM and input couplers
- Conclusions and Outlook

Introduction and Motivation

*Principle according to S. Molloy et al.: "High precision superconducting cavity diagnostics with higher order mode measurements", Phys. Rev. Spec. Top. Accel. Beams 9 (2006) 112802, 2006.

**Picture taken from: E. Vogel et al.: "Status of the 3rd harmonic systems for FLASH and XFEL in summer 2008", Proc. LINAC 2008.

Numerical Characterizations of RF Properties for 3rd Harmonic Cavities accomodated in FLASH and XFEL

String of cavities in ACC39 mounted in FLASH*

Cutoff frequencies of beam pipes:

1. TE11	Pol. 1	fco = 4.3920 GHz
2. TE11	Pol. 2	fco = 4.3920 GHz
3. TM01		fco = 5.7371 GHz
4. TE21	Pol. 1	fco = 7.2858 GHz
5. TE21	Pol. 2	fco = 7.2858 GHz
6. TE01		fco = 9.1412 GHz
7. TM11	Pol. 1	fco = 9.1412 GHz
8. TM11	Pol. 2	fco = 9.1412 GHz
9. TE31	Pol. 1	fco = 10.022 GHz
10.TE31	Pol. 2	fco = 10.022 GHz

*Picture courtesy E. Vogel et al.: "Status of the 3rd harmonic systems for FLASH and XFEL in summer 2008", Proc. LINAC 2008. **I. R. R. Shinton, N. Juntong, R. M. Jones: "Modal Dictionary of Cavity Modes for the Third Harmonic XFEL/FLASH Cavities", DESY note: DESY 12-053.

String of Cavities in ACC39 @ FLASH Beamline

String of cavities in ACC39 mounted in FLASH*

Universität

Rostock

Cutoff frequencies of beam pipes:

1. TE11	Pol. 1	fco = 4.3920 GHz
2. TE11	Pol. 2	fco = 4.3920 GHz
3. TM01		fco = 5.7371 GHz
4. TE21	Pol. 1	fco = 7.2858 GHz
5. TE21	Pol. 2	fco = 7.2858 GHz
6. TE01		fco = 9.1412 GHz
7. TM11	Pol. 1	fco = 9.1412 GHz
8. TM11	Pol. 2	fco = 9.1412 GHz
9. TE31	Pol. 1	fco = 10.022 GHz
10.TE31	Pol. 2	fco = 10.022 GHz

RF properties are determined by entire string. Computation of RF properties is expensive.

*Picture courtesy E. Vogel et al.: "Status of the 3rd harmonic systems for FLASH and XFEL in summer 2008", Proc. LINAC 2008. **I. R. R. Shinton, N. Juntong, R. M. Jones: "Modal Dictionary of Cavity Modes for the Third Harmonic XFEL/FLASH Cavities", DESY note: DESY 12-053.

EUCARD²

Problem Complexity of Direct Computations

*Pictures courtesy Liling Xiao, Lixin Ge, Kwok Ko, Kihwan Lee, Zenghai Li, Cho-Kuen Ng: "Superconducting Cavity Imperfection Study for Projekt X Linac Using ACE3P", ComPASS All-Hands Meeting LBNL, Sept. 27 -28, 2012 and Kwok Ko et. al: "Advances in Parallel Electromagnetic Code for Accelerator Science and Development", Proceedings of the Linear Accelerator Conference 2010, pp. 1028 – 1032, Tsukuba Japan 2010

Traditio et Innovatio

Concatenation Approach with Field Distributions: State Space Concatenations*

*T. Flisgen, H.-W. Glock, and U. van Rienen: "Compact Time-Domain Models of Complex RF Structures Based on the Real Eigenmodes of Segments", IEEE Transactions on Microwave Theory and Techniques, 61(6), June 2013.

Workflow State Space Concatenations

Approach is also highly suitable for time domain

*Picture courtesy E. Vogel et al.: "Status of the 3rd harmonic systems for FLASH and XFEL in summer 2008", Proc. LINAC 2008.

08.04.2015

T. Flisgen, J. Heller and U. van Rienen

UNIVERSITÄT ROSTOCK

 $\mathbf{v}(t) = \mathbf{B}_{c}^{T} \mathbf{x}_{c}(t)$

Impedance or Scattering Parameters with SSC

*Picture courtesy E. Vogel et al.: "Status of the 3rd harmonic systems for FLASH and XFEL in summer 2008", Proc. LINAC 2008.

External Quality Factor Computation with SSC

**Picture courtesy E. Vogel et al.: "Status of the 3rd harmonic systems for FLASH and XFEL in summer 2008", Proc. LINAC 2008.

R/Q Factor Computation with SSC

**Picture courtesy E. Vogel et al.: "Status of the 3rd harmonic systems for FLASH and XFEL in summer 2008", Proc. LINAC 2008.

🕺 Traditio et Innovatio

Analysis of Multi-Cavity TM01 and TE21 Modes in a Concatenated Arrangement of Third Harmonic Cavities with Bellows

Models for 3rd Harmonic Cavity and Bellows

	Nine-Cell Cavity	Bellow	Beam Pipe
$N_{\rm s}$	$(2 \cdot) 172,380$	$(2 \cdot) 61,893$	$(2 \cdot) 12,150$
$N_{\rm sr}$	73	35	24
$T_{\rm rd}$	$2\min 49 \sec$	$46 \sec$	$10 \sec$

 $N_{\rm s}$: number of states of unreduced system

- $N_{\rm sr}$: number of states of reduced system
- $T_{\rm rd}$: computing time for reduction

Validation of Scattering Parameters

Scattering Parameter* Validation of SSC

Validation of R/Q Parameter

R/Q Parameter Validation of SSC

R/Q Parameters of Modes in Different Chains

=1000000000

R/Q Parameters of Modes in Different Chains

Electric Field Profile of Trapped Bellow Mode

Electric Field Profile of Trapped Bellow Mode

Remark: Order of Magnitude of Quality Factor (1/2)*

- Quality factors in the order of 10¹⁵ are not observed at measurements
- Laboratory measurements deliver the total quality factor

$$\frac{1}{Q_{\text{tot}}} = \frac{1}{Q_0} + \frac{1}{Q_{\text{ext}}} \to Q_{\text{tot}} = \frac{Q_0 Q_{\text{ext}}}{Q_0 + Q_{\text{ext}}}$$

• Intrinsic quality factors Q_0 are in the order of 10^9 ... 10^{11} , thus

$$Q_{\text{tot}} = \frac{Q_0 Q_{\text{ext}}}{Q_0 + Q_{\text{ext}}} = \frac{Q_0}{\frac{Q_0}{Q_{\text{ext}}} + 1} \approx Q_0 \quad \text{for} \quad \frac{Q_0}{Q_{\text{ext}}} \ll 1$$

- In other words, for this mode the intrinsic quality factor governs the observed quality factor, because the intrinsic quality factor is orders of magnitude smaller than the external quality factor.
- Model is broken for this mode because intrinsic losses are not covered.

*Q-factor issue has been brought up by Juliette Plouin during EuCARD 2 Meeting 2014 in Saclay

Remark: Order of Magnitude of Quality Factor (2/2)

HOM und power couplers are located in the vicinity of the bellow

• They are expected to lower the Q_{ext} of the mode significantly

🕺 Traditio et Innovatio

Analysis of Concatenated Arrangement of Third Harmonic Cavities with Bellows and <u>Input and</u> <u>HOM Couplers</u>

Models for 3rd Harmonic Cavity and Bellows

	HOMC	HOMPC	Nine-Cell Cav.	Bellow	Single-Cell Cav.
$N_{\rm s}$	242,880	323,532	$(4 \cdot) 71,478$	$(4 \cdot) 44,400$	$(4 \cdot) 2,916$
$N_{\rm sr}$	61	53	105	54	37
$T_{\rm rd}$	$9\min 1 \sec$	$11 \min 4 \sec$	$1 \min 3 \sec$	$31 \sec$	6 sec

 $N_{\rm s}$: number of states of unreduced system $N_{\rm sr}$: number of states of reduced system $T_{\rm rd}$: computing time for reduction

Computations performed on an Intel Core i5-2400 CPU @ 3.10 GHz machine equipped with 8 GB RAM

Validation of Scattering Parameters

Scattering Parameter* Validation of SSC

*from HOM coupler to HOM coupler

Validation of External Q Factor

Scattering Transmission via entire Chains*

The longer the chain, the more the bands are populated
Tendency: longer chain, larger external Q factors

Latest Results: Field Plots* with ParaView

Conclusions and Outlook

Summary

- The State Space Concatenation approach is used for real life structures, i.e. chains with HOM and input couplers
- Validation shows that SSC delivers reasonable results
- The field distributions of multi-cavity modes are more complex than modes in single cavities (see ParaView plots)
- Bands of long cavity chains are denser populated with modes and resonances in between the bands of single cavities occur
- The investigated structures show the tendency that the external Q and the R/Q are larger for longer chains

Future Plans

- Creation of modal compendium for eigenmodes in chains of four and eight cavities (FLASH and X-FEL chains)
- Direct comparison of the SSC scheme with other approaches such as ACE3P
- Using a tetrahedral mesh to discretize the segments of the cavity chain
- Publication of PhD thesis in terms of a monographie?

Further Slides

Traditio et Innovatio

Approach to determine RF Properties of large/long Structures based on S-**Parameters**: Coupled S-Parameter Calculations*

*H.-W. Glock, K. Rothemund, U. van Rienen: "CSC - A System for Coupled S-Parameter Calculations", TESLA-Report 2001-25 H.-W. Glock, K. Rothemund, U. van Rienen: "CSC - A Procedure for Coupled S-Parameter Calculations ", IEEE TransMag, Vol. 38, 2002

CSC Workflow

*Picture courtesy E. Vogel et al.: "Status of the 3rd harmonic systems for FLASH and XFEL in summer 2008", Proc. LINAC 2008.

CSC Workflow

Some advantages of CSC:

- properties of equal segments need to be computed only once
- symmetry of segments can be employed to reduce computation costs
- highly suitable to perform parameter studies

*Picture courtesy E. Vogel et al.: "Status of the 3rd harmonic systems for FLASH and XFEL in summer 2008 ", Proc. LINAC 2008.

Transmission via ACC39 String

Traditio et Innovatio

T. Flisgen, H.-W. Glock, P. Zhang, I. R. R. Shinton, N. Baboi, R. M. Jones, and U. van Rienen: "Scattering parameters of the 3.9 GHz accelerating module in a freeelectron laser linac: A rigorous comparison between simulations and measurements", Phys. Rev. ST Accel. Beams, 17:022003, February 2014

External Q Factor Computation with CSC*

*D. Hecht, K. Rothemund, H.-W. Glock, and U. van Rienen: "Computation of RF properties of long and complex structures", Proc. EPAC2002, pp. 1685 **Picture courtesy E. Vogel et al.: "Status of the 3rd harmonic systems for FLASH and XFEL in summer 2008", Proc. LINAC 2008.

Eigenmode (and R/Q) Computation with CSC*

*K. Rothemund, H.-W. Glock, M. Borecky, and U. van Rienen: "Eigenmode Calculation in Long and Complex RF Structure Using the Coupled S-Parameter Calculation Technique", 'Proc. of the 6th Int. Computational Accelerator Physics Conference ICAP 2000, September 11-14, Darmstadt, Germany, (2000) **Picture courtesy E. Vogel et al.: "Status of the 3rd harmonic systems for FLASH and XFEL in summer 2008", Proc. LINAC 2008.

Eigenmode (and R/Q) Computation with CSC*

*K. Rothemund, H.-W. Glock, M. Borecky, and U. van Rienen: "Eigenmode Calculation in Long and Complex RF Structure Using the Coupled S-Parameter Calculation Technique", 'Proc. of the 6th Int. Computational Accelerator Physics Conference ICAP 2000, September 11-14, Darmstadt, Germany, (2000) **Picture courtesy E. Vogel et al.: "Status of the 3rd harmonic systems for FLASH and XFEL in summer 2008", Proc. LINAC 2008.