Status Report

Tokyo Institute of Technology

Masahiro Tanaka

18 November 2014

Table of contents

- ${\scriptstyle \bullet}$ H→bb sample was normalized by the method Uta suggested to me
 - Cross section of Higgs production is calculated by MadGraph
 - Real branching ratio calculated by HDECAY is used
- Some of Delphes setups are changed
 - B-tagging
 - Electron reconstruction
 - Tracking efficiency

Normalization

- Charged current Higgs production was produced by MadGraph
 p e- > vl h j
- The cross section is calculated to be 0.1099 pb
- Branching ratio of H→bb process was calculated to be 57.7% by HDECAY
- Cross section of Charged current H \rightarrow bb process is 0.1099×0.577 = 0.063 pb Resu
- Result with new normalization(PGS)

	σ (pb)	Number of Samples(10 ⁶)	N/ σ (fb ⁻¹)
Charged Current H→bb	0.063	0.1	1587
Charged Current background	5.9	0.6	101.6
Neutral Current background	28	3	107.2

Setups of Delphes

• Charged hadron tracking efficiency - Coverage of PGS setup is $|\eta| < 4.7$

- -new : 60% for $1.5 < |\eta| < 4.7$ and 0.1 < PT < 1.085% for $1.5 < |\eta| < 4.7$ and PT > 1.0 0% for $|\eta| > 4.7$ - default : 4.7→3.0
- Electron tracking efficiency
 - Coverage of PGS setup is $|\eta| < 4.7$
 - -new : 50% for $1.5 < |\eta| < 4.7$ and 0.1 < PT < 1.0 GeV83% for $1.5 < |\eta| < 4.7$ and 1.0 < PT < 1090% for $1.5 < |\eta| < 4.7$ and PT > 10 0% for $|\eta| > 4.7$ - default : $4.7 \rightarrow 3.0$

Setups of Delphes

- Momentum resolution for charged tracks
 - Coverage of PGS setup is $|\eta| < 4.7$
 - -new : 3% for $1.5 < |\eta| < 4.7$ and 0.1 < PT < 1.0 GeV2% for $1.5 < |\eta| < 4.7$ and 1.0 < PT < 104% for $1.5 < |\eta| < 4.7$ and 10 < PT < 2005% for $1.5 < |\eta| < 4.7$ and PT > 200

- default : $4.7 \rightarrow 3.0$

Electron and Photon efficiency

- Coverage of PGS setup is $|\eta| < 4.7$

-new :85% for $1.5 < |\eta| < 4.7$ and PT > 4 GeV 0% for $|\eta| > 4.7$

- default : 4.7→3.0

Setups of Delphes

Electron and Photon efficiency

- Setups of electron and photon are same
- -new :85% for $1.5 < |\eta| < 4.7$ and PT > 4 GeV 0% for $|\eta| > 4.7$
- -default : $4.7 \rightarrow 3.0$

Electron and Photon isolation

- Setups of electron and photon are same
- Minimum PT = 4.0 GeV (default 0.5GeV, PGS 4.0 GeV)

B-tagging

- $\Delta R = 1.3$ (Some values ware tried)

PT and Number of jet

- $_{\bullet}$ kt algorithm with $\Delta R{=}0.9$ is used for jet reconstruction
- Delphes and PGS are compared
- They are in good agreement

Number of b-jet

- Some values of ΔR are tried($\Delta R{=}1.1,~1.3,~1.5$)
- ${\scriptstyle \bullet}$ Number of b-jet increase as ΔR increase
- Values around $\Delta R=1.3$ seem to be the best
- $\Delta R=1.3$ is chosen in this analysis

Total ET and Missing ET

- About Total ET, they are in good agreement
- About Missing ET, distributions of NC background are different because of the difference of calculation method of missing ET
 - PGS smear energy of neutrino
 - Delphes exactly calculate addition of all dropped energy

Number of electron

- Delphes tags more electron
 - Coverage is same between Delphes and PGS
 - Electron efficiency has to be smaller in high η region ? now coverage is just expanded

Q² and y

• They are in good agreement

Result

- 100 fb⁻¹ is assumed
- Each error is square root of events
- Difference of NCbkg seems to come from the difference of missing ET

Summary

- H→bb sample was normalized by using the cross section of charged current Higgs production calculated by MadGraph and real branching ratio calculated by HDECAY
- Some of setups of Delphes were modified and the result was compared with that of PGS