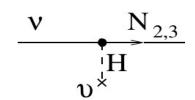

Right-handed neutrinos: can LHC find them?

Philippe Mermod FCC-ee physics meeting, 24 November 2014

The neutrino Minimum Standard Model (vMSM)

Ann. Rev. Nucl. Part. Sci. 59, 191 (2009)

- Postulate three majorana right-handed neutrinos with masses below the EW scale
- Explain neutrino masses, and accommodate for dark matter and matter-antimatter asymmetry


Light (N_1) stable dark matter $N_{2,3}$ long-lived

Direct searches for N_{2.3}

- Production through mixing with ordinary neutrinos
- Probe small mixing \rightarrow need many neutrinos
- Possibilities at existing accelerator facilities:

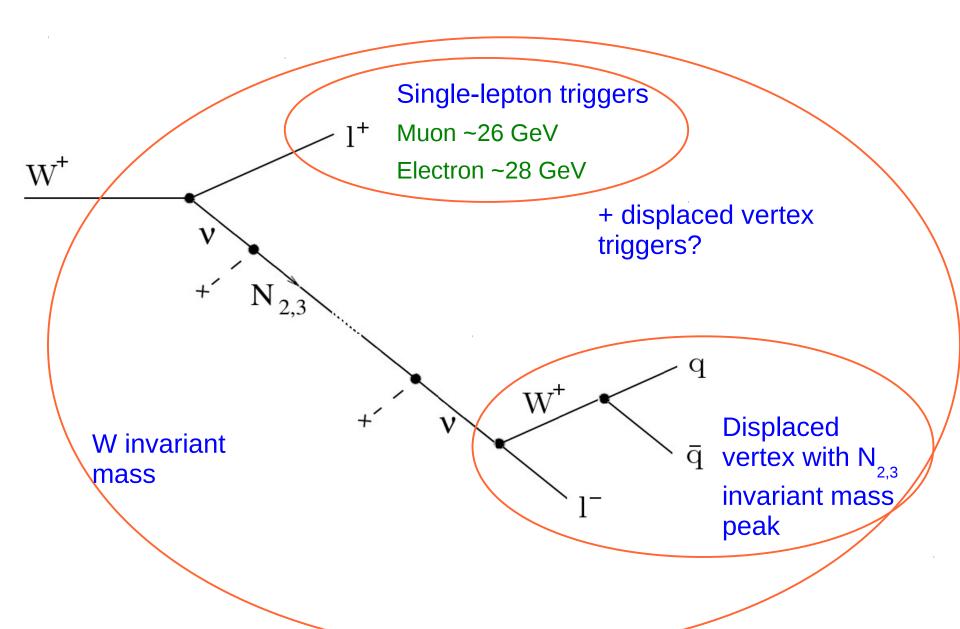
ν source	$N_{2,3}$ mass	best machine	number of νs	remarks
с	$< 2 { m GeV}$	SPS dump	$5 \cdot 10^{16}$	SHiP experiment
au	$< 2 { m ~GeV}$	KEKb	10^{9}	third generation
b	$< 5 { m GeV}$	KEKb	10^{8}	
		LHC	10^{13}	low acceptance / large backgrounds
W	$< 80 { m ~GeV}$	LHC	10^{9}	focus of this talk
Z	$< 90 {\rm ~GeV}$	LEP1	$7\cdot 10^6$	difficult at hadron colliders

- For M > 2 GeV, best current constraints are from LEP1
- Tiny mixing / long lifetime (10⁻¹¹ 0.1 s) allowed by observations and cosmology
 - Displaced vertices!
 - Could be done at the LHC (Phys. Rev. D 89, 073005 (2014))
 - Need also SHiP, FCC

Lepton collider vs. hadron collider

- e⁺e⁻
 - Can exploit Z resonance
 - No trigger issues
- pp
 - Cross section: W ~10X larger than Z
 - Use lepton from W for triggering and for flavour analysis

Neutrinos from W decays at the LHC


• Run1 (8 TeV)

_ Already produced $5 \cdot 10^8 \text{ vs} (e+\mu)$ in each experiment

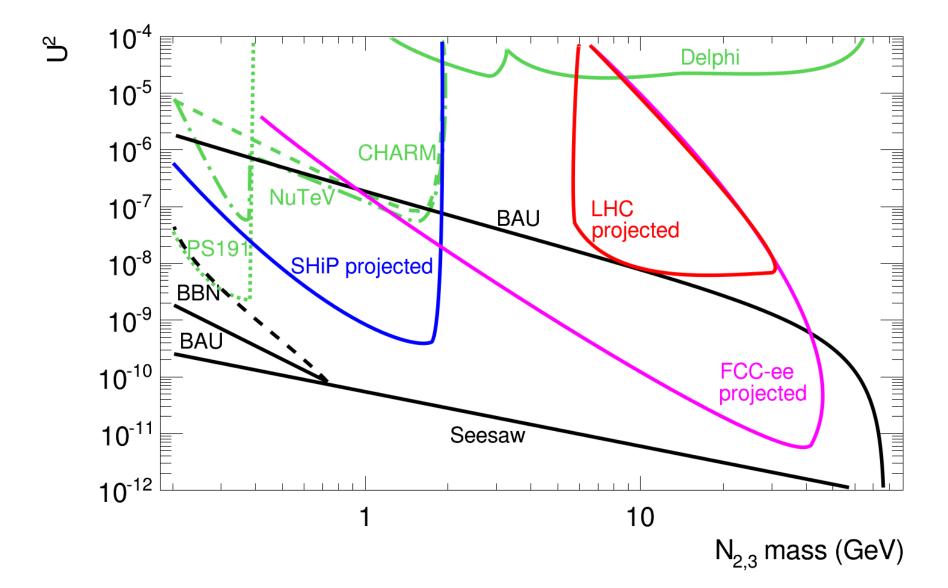
• Run2 (14 TeV)

 $-10^9 vs$ (e+ μ) for each 25 fb⁻¹ in each experiment

Main signature in ATLAS or CMS

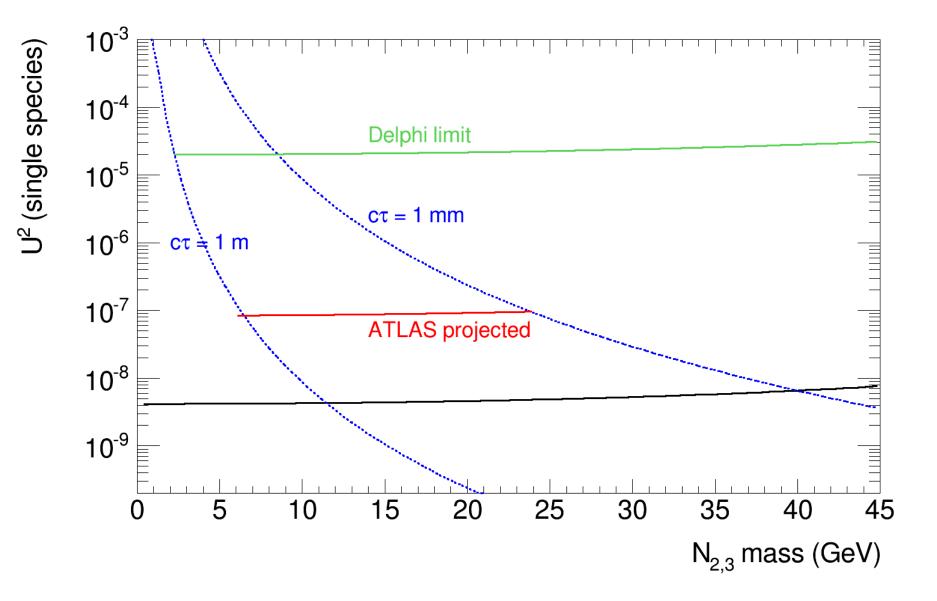
ATLAS search – assumptions on backgrounds

- Based on experience with previous ATLAS searches for displaced vertices in inner detector (PLB 707, 478 (2012), PLB 719, 280 (2013), ATLAS-CONF-2013-092 (2013))
 - Adequate track and vertex reconstruction tools, similar backgrounds
 - Not sensitive to N_{2,3} signature due to high pT thresholds imposed by requirement to trigger on displaced lepton
- Two main background sources at vertex distance > 1 mm
 - Metastable hadron decays (B, K)
 - Hadronic interactions with material
- Three very effective cuts to reduce these to negligible levels
 - Material veto (3D map in latest analysis)
 - Vertex invariant mass > 6 GeV
 - Vertex N_{tracks} > 4 OR require a lepton among them


ATLAS search – assumptions on efficiencies

- Decay distance acceptance for displaced vertex analysis
 - $-1 \text{ mm} \leq c\tau \leq 1 \text{ m}$
 - Formulas (Phys Rev D 29, 2539 (1984)) used to relate that to constraints on $N_{2,3}$ mass and mixing
- Reconstruction efficiencies (conservative assumptions):
 - Branching ratio (hadronic N_{2,3} decay): 50%
 - Trigger (single muon): 50%
 - Track and vertex reconstruction: 20% based on previous experience, mainly due to tracks with large impact parameter
- Comparison with best limits in relevant mass range
 - Delphi LEP1 analysis (Z. Phys. C 74, 57 (1997))

ATLAS reach estimate (50 fb⁻¹ @ 14 TeV)



The (approximative) big picture

ATLAS reach estimate (20 fb⁻¹ @ 8 TeV)

