Performance Evaluation of Transactional Memory

Philipp Schoppe
CERN PH-SFT / University of Applied Sciences Miinster

Concurrency Forum November 19, 2014

Philipp Schoppe — Performance Evaluation of Transactional Memory November 19, 2014



Agenda

Traditional Concurrency Control
Introduction
Mutual Exclusion
Mutex Drawbacks
Lock-free Data Structures
Painful State of the Art

Transactional Memory
Introduction
Major Benefits
Status
Performance

Conclusion and Outlook

Philipp Schoppe — Performance Evaluation of Transactional Memory November 19, 2014



Traditional Concurrency Control

Introduction

v

Managing shared resources is critical

Ensure ordered access to shared data

v

Atomic hardware instructions

v

» Test-and-set
» atomic-increment
» CAS
» LL/SC

Memory barriers

v

» acquire barrier
> release barrier
» full barrier

November




Traditional Concurrency Control

Mutual Exclusion

» Critical section executed by one thread at a time
» Serialise access to shared data

» Locking

> Mutex
» Spinlock
» Readers-Writer lock

Philipp Schoppe — Performance Evaluation of Transactional Memory November 19, 2014



Traditional Concurrency Control

Mutex Drawbacks

» Deadlock
» Processes lock a set of objects
with two or more mutexes and
they each wait for the lock owned
by another thread.
» Priority inversion
> A low priority process may hold a
lock that is needed by a high
priority process

waiting for owned by

waiting for
R2

» Convoying
» A process may be descheduled or P1
interrupted while holding a lock.

November 19, 2014

lipp Schoppe — Performance Evaluation of Transactional Memory



Traditional Concurrency Control

Lock-free Data Structures

» Mutual exclusion is based on blocking an active process, if necessary
= Lock-free and wait-free data structures

Maurice Herlihy:
Definition (Lock-free)

A concurrent data structure is lock-free, if a process is guaranteed to complete
an operation on it after the system as a whole takes a finite number of steps.

ilipp Schoppe — Performance Evaluation of Transactional Memory November 19, 2014



Traditional Concurrency Control

Lock-free Data Structures

» Mutual exclusion is based on blocking an active process, if necessary
= Lock-free and wait-free data structures

Maurice Herlihy:
Definition (Lock-free)

A concurrent data structure is lock-free, if a process is guaranteed to complete
an operation on it after the system as a whole takes a finite number of steps.

Definition (Wait-free)

A concurrent data structure is wait-free, if each process is guaranteed to
complete an operation on it after taking a finite number of steps.

formance Evaluation of Transactional Memory November 19, 2014



Traditional Concurrency Control

Lock-free Data Structures

v

Lock-freedom has been subject to research for years

v

Only few efficient and correct implementations to a very limited range of
data structures are known

» A working algorithm is almost always a publishable result

» Wait-freedom with good performance is even harder to achieve

» Extremely complex to implement!

» Herb Sutter talks:
Atomic<> Weapons: The C++ Memory Model and Modern Hardware

Lock-Free Programming (or, Juggling Razor Blades)

ilipp Schoppe — Performance Evaluation of Transactional Memory November 19, 2014


http://channel9.msdn.com/Shows/Going+Deep/Cpp-and-Beyond-2012-Herb-Sutter-atomic-Weapons-1-of-2
https://www.youtube.com/watch?v=c1gO9aB9nbs

Traditional Concurrency Control

Painful State of the Art

» Joe Duffy: Solving 11 Likely Problems In Your Multithreaded Code

Forgotten Synchronization
Incorrect granularity

Read and write tearing
Lock-free reordering

Lock convoys

Priority inversion
Incomposability

VY Y VY VY VY VY

» MPI as a solution?

Philipp Schoppe — Performance Evaluation of Transactional Memory November 19, 2014


http://msdn.microsoft.com/en-us/magazine/cc817398.aspx

Transactional Memory

Introduction

» “Transactional Memory: Architectural Support for Lock-Free Data

Structures”

» Database-style transactions working on shared memory
» ACI(D)
» Atomicity: either all operations take effect, or nothing happens
» Consistency: a transaction can only commit legal results, leaving the system
in a valid state
> lIsolation: operations within a transaction are hidden from other, concurrently
running transactions
» Durability: when successfully committing, a transaction’s changes are
guaranteed to be permanent

» Optimistic speculation

» Extension to the cache-coherence protocol

—
ERN
W Philipp Schoppe — Performance Evaluation of Transactional Memory



http://dl.acm.org/citation.cfm?id=165164

Transactional Memory

Major Benefits

» Makes lock-free synchronization
easily accessible

» Composability

» “Generic Programming Needs
Transactional Memory”

» Easy to use

pp Schoppe — Performance Evaluation of Transactional Memory

Transactional block

int

int

set_

{

shared_data [20];

shared_data(int index, int value)

__transaction_atomic {
shared_data[index]
}

value;

November 19, 2014



http://transact2013.cse.lehigh.edu/gottschlich.pdf

Transactional Memory

Status

» Many Software Transactional Memory (STM) libraries available
> Intel released Transactional Synchronization Extensions (TSX) in the end of
2013
» But it contains a bug ...
» Velox stack CEEED
» Applications
» Benchmarks
» Compilers
> Libraries, system libraries
» Kernel scheduler
» Ongoing integration effort into the C+-+ standard

Philipp Schoppe — Performance Evaluation of Transactional Memory November 19


http://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/4th-gen-core-family-desktop-specification-update.pdf
http://www.velox-project.eu/releases

Transactional Memory

Performance

STM deemed inefficient
Performance is often not compared to traditional synchronization in literature
Hardware TM as a solution?

Evaluation of TM during my master thesis

» Experimental evaluation for queue and simple histogram
» Results from other literature and research

vV v v Yy

o~
CER

RN
\W Philipp Schoppe — Performance Evaluation of Transactional Memory November



http://www.lab4inf.fh-muenster.de/lab4inf/docs/thesis/MA_Philipp_Schoppe.pdf

Transactional Memory

Benchmark System

» Intel Core i7-4790, quad core CPU with eight threads
» Each core runs at 3.60 GHz

» 32 KB of L1 data cache
> 64 bytes cache line size
» 16 GB RAM

Philipp Schoppe — Performance Evaluation of Transactional Memory

November 19, 2014



Transactional Memory

Benchmark Setup

» Queue and histogram
» One million enqueue<>dequeue pairs / fill operations.

» Distribute work over 1-8 threads

» 10 warmup runs

> Take mean timing of 40 runs

» Regulate contention through a delay functor object

» LoadLevel: :NONE [Ons]

» LoadLevel: :Low [270ns]

» LoadLevel: :Medium [684ns]
» LoadLevel: :High [1554ns]

Philipp Schoppe — Performance Evaluation of Transactional Memory November 19



Transactional Memory

Queue Benchmark

None Low
209 Datastructure e
—— Mutex Queue X =g
—A- TM Queue i X% * _{_)K
- #® - RTM Queue / % ,')g{ .
-=+- STM Queue . -—k \.
15— ~#- Spinlock Queue ,* 7 *
=3 -3% - Lockfree Queue / B i
3 / ’
o :
¥
fll 10— \
c
© \-
Q \
é v
0.5 \
) \

Threads

November 19, 2014

Philipp Schoppe — Performance Evaluation of Transactional Memory



Transactional Memory

Queue Benchmark

Medium High
4 -

Datastructure * *
—— Mutex Queue g
—A- TM Queue J
- @ - RTM Queue %
-+ STM Queue / =
&~ Spinlock Queue 4 4

Q3 - -3 - Lockfree Queue 7/ F{

= -

S

D

)

o

n

T

[

G 2

)]

=

=

1 -

Threads

Philipp Schoppe — Performance Evaluation of Transactional Memory November 19, 2014



Transactional Memory

Histogram Benchmark

None

Datastructure

3~ —— Mutex Histogram
—A- TM Histogram
- @ - RTM Histogram
-+ STM Histogram
—#~ SpinLock Histogram

(Mean-) Speedup
1

Low




Transactional Memory

Histogram Benchmark

Medium High
4 -
Datastructure
—— Mutex Histogram 5
—A- TM Histogram
- @ - RTM Histogram
-+ STM Histogram 4
o5 -~ SpinLock Histogram 2
=1 o\ 3 A+
8_ / i ° SA
8 g
-~ e
T2 -
43}
=3
1 -

Threads

‘mance Evaluation of Transactional Memory



Transactional Memory

Experimental Evaluation in Literature

Experimental evaluation of TM, especially hardware TM is rare

No common conclusion has been drawn w.r.t. its feasibility

Lee-TM authors observe STM on par with coarse-grained locking
In general, STM is not outperforming conventional locking techniques

vV vV v v Y

“Peformance Evaluation of Intel TSX for High-Performance
Computing”

» Sometimes outperforms even fine-grained locking solutions
> But it sometimes performs worse than STM, when not optimized

» Similar picture given by Sylvain Geneves

Philipp Schoppe — Performance Evaluation of Transactional Memory November


http://dl.acm.org/citation.cfm?id=1273029
http://dl.acm.org/citation.cfm?id=2503232
http://sgeneves.wdfiles.com/local--files/talks/RTM.pdf

Conclusion and Outlook

TM feasible?

» As usual: it depends...

v

Mutexes: Spend more time on debugging
TM: Spend more time on making code faster

New hardware implementations may improve performance

vV v.v Vv

Wait for C++ language extension and transaction safe STL

Philipp Schoppe — Performance Evaluation of Transactional Memory November 19



Thank you for your attention

Philipp Schoppe — Performance Evaluation of Transactional Memory



	Traditional Concurrency Control
	Introduction
	Mutual Exclusion
	Mutex Drawbacks
	Lock-free Data Structures
	Painful State of the Art

	Transactional Memory
	Introduction
	Major Benefits
	Status
	Performance

	Conclusion and Outlook

