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Traditional Concurrency Control

Introduction

v

Managing shared resources is critical

Ensure ordered access to shared data

v

Atomic hardware instructions

v

» Test-and-set
» atomic-increment
» CAS
» LL/SC

Memory barriers

v

» acquire barrier
> release barrier
» full barrier
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Traditional Concurrency Control

Mutual Exclusion

» Critical section executed by one thread at a time
» Serialise access to shared data

» Locking

> Mutex
» Spinlock
» Readers-Writer lock
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Traditional Concurrency Control

Mutex Drawbacks

» Deadlock
» Processes lock a set of objects
with two or more mutexes and
they each wait for the lock owned
by another thread.
» Priority inversion
> A low priority process may hold a
lock that is needed by a high
priority process

waiting for owned by

waiting for
R2

» Convoying
» A process may be descheduled or P1
interrupted while holding a lock.
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Traditional Concurrency Control

Lock-free Data Structures

» Mutual exclusion is based on blocking an active process, if necessary
= Lock-free and wait-free data structures

Maurice Herlihy:
Definition (Lock-free)

A concurrent data structure is lock-free, if a process is guaranteed to complete
an operation on it after the system as a whole takes a finite number of steps.
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Traditional Concurrency Control

Lock-free Data Structures

» Mutual exclusion is based on blocking an active process, if necessary
= Lock-free and wait-free data structures

Maurice Herlihy:
Definition (Lock-free)

A concurrent data structure is lock-free, if a process is guaranteed to complete
an operation on it after the system as a whole takes a finite number of steps.

Definition (Wait-free)

A concurrent data structure is wait-free, if each process is guaranteed to
complete an operation on it after taking a finite number of steps.
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Traditional Concurrency Control

Lock-free Data Structures

v

Lock-freedom has been subject to research for years

v

Only few efficient and correct implementations to a very limited range of
data structures are known

» A working algorithm is almost always a publishable result

» Wait-freedom with good performance is even harder to achieve

» Extremely complex to implement!

» Herb Sutter talks:
Atomic<> Weapons: The C++ Memory Model and Modern Hardware

Lock-Free Programming (or, Juggling Razor Blades)
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http://channel9.msdn.com/Shows/Going+Deep/Cpp-and-Beyond-2012-Herb-Sutter-atomic-Weapons-1-of-2
https://www.youtube.com/watch?v=c1gO9aB9nbs

Traditional Concurrency Control

Painful State of the Art

» Joe Duffy: Solving 11 Likely Problems In Your Multithreaded Code

Forgotten Synchronization
Incorrect granularity

Read and write tearing
Lock-free reordering

Lock convoys

Priority inversion
Incomposability

VY Y VY VY VY VY

» MPI as a solution?
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http://msdn.microsoft.com/en-us/magazine/cc817398.aspx

Transactional Memory

Introduction

» “Transactional Memory: Architectural Support for Lock-Free Data

Structures”

» Database-style transactions working on shared memory
» ACI(D)
» Atomicity: either all operations take effect, or nothing happens
» Consistency: a transaction can only commit legal results, leaving the system
in a valid state
> lIsolation: operations within a transaction are hidden from other, concurrently
running transactions
» Durability: when successfully committing, a transaction’s changes are
guaranteed to be permanent

» Optimistic speculation

» Extension to the cache-coherence protocol

—
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http://dl.acm.org/citation.cfm?id=165164

Transactional Memory

Major Benefits

» Makes lock-free synchronization
easily accessible

» Composability

» “Generic Programming Needs
Transactional Memory”

» Easy to use
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Transactional block

int

int

set_

{

shared_data [20];

shared_data(int index, int value)

__transaction_atomic {
shared_data[index]
}

value;
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http://transact2013.cse.lehigh.edu/gottschlich.pdf

Transactional Memory

Status

» Many Software Transactional Memory (STM) libraries available
> Intel released Transactional Synchronization Extensions (TSX) in the end of
2013
» But it contains a bug ...
» Velox stack CEEED
» Applications
» Benchmarks
» Compilers
> Libraries, system libraries
» Kernel scheduler
» Ongoing integration effort into the C+-+ standard
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http://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/4th-gen-core-family-desktop-specification-update.pdf
http://www.velox-project.eu/releases

Transactional Memory

Performance

STM deemed inefficient
Performance is often not compared to traditional synchronization in literature
Hardware TM as a solution?

Evaluation of TM during my master thesis

» Experimental evaluation for queue and simple histogram
» Results from other literature and research

vV v v Yy
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http://www.lab4inf.fh-muenster.de/lab4inf/docs/thesis/MA_Philipp_Schoppe.pdf

Transactional Memory

Benchmark System

» Intel Core i7-4790, quad core CPU with eight threads
» Each core runs at 3.60 GHz

» 32 KB of L1 data cache
> 64 bytes cache line size
» 16 GB RAM

Philipp Schoppe — Performance Evaluation of Transactional Memory

November 19, 2014



Transactional Memory

Benchmark Setup

» Queue and histogram
» One million enqueue<>dequeue pairs / fill operations.

» Distribute work over 1-8 threads

» 10 warmup runs

> Take mean timing of 40 runs

» Regulate contention through a delay functor object

» LoadLevel: :NONE [Ons]

» LoadLevel: :Low [270ns]

» LoadLevel: :Medium [684ns]
» LoadLevel: :High [1554ns]
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Transactional Memory

Queue Benchmark
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Transactional Memory

Queue Benchmark
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Transactional Memory

Histogram Benchmark
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Transactional Memory

Histogram Benchmark
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Transactional Memory

Experimental Evaluation in Literature

Experimental evaluation of TM, especially hardware TM is rare

No common conclusion has been drawn w.r.t. its feasibility

Lee-TM authors observe STM on par with coarse-grained locking
In general, STM is not outperforming conventional locking techniques

vV vV v v Y

“Peformance Evaluation of Intel TSX for High-Performance
Computing”

» Sometimes outperforms even fine-grained locking solutions
> But it sometimes performs worse than STM, when not optimized

» Similar picture given by Sylvain Geneves
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http://dl.acm.org/citation.cfm?id=1273029
http://dl.acm.org/citation.cfm?id=2503232
http://sgeneves.wdfiles.com/local--files/talks/RTM.pdf

Conclusion and Outlook

TM feasible?

» As usual: it depends...

v

Mutexes: Spend more time on debugging
TM: Spend more time on making code faster

New hardware implementations may improve performance

vV v.v Vv

Wait for C++ language extension and transaction safe STL
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Thank you for your attention
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