Phenomenology of near-threshold states: a practical parametrisation for the line shapes

A.V. Nefediev

(ITEP & MEPhI, Moscow, Russia)

in collaboration with

F.-K. Guo, C. Hanhart, Yu. S. Kalashnikova, P. Matuschek, R. V. Mizuk, Q. Wang, J.-L. Wynen

Confinement XII

Introduction

Outline

- Motivation of the research
- Coupled-channel approach to near-threshold states
- Practical parametrisation for the line shapes
- A paradigmatic example—combined data analysis for

 $\Upsilon(5S) \to \pi Z_b^{(\prime)} \to \pi B^{(*)} \bar{B}^*$ $\Upsilon(5S) \to \pi Z_b^{(\prime)} \to \pi \pi \Upsilon(nS) \quad n = 1, 2, 3$ $\Upsilon(5S) \to \pi Z_b^{(\prime)} \to \pi \pi h_b(mP) \quad m = 1, 2$

 $Z_b = Z_b(10610) \qquad Z'_b = Z_b(10650)$

- Nature of $Z_b(10610)$ and $Z_b(10650)$ from data
- Conclusions

Relevant referenes:

C. Hanhart et al. Phys. Rev. Lett. 115 (2015), 202001 [arXiv:1507.00382 [hep-ph]] F.-K. Guo et al., Phys. Rev. D 93 (2016), 074031 [arXiv:1602.00940 [hep-ph]]

Motivation

Experimental background:

- Many exotic hadrons are discovered which do not fit into simple Quark Model picture [Z_b(10610) & Z_b(10650)]
- Most of them reside near strong thresholds $[B\bar{B}^* \& B^*\bar{B}^*]$
- Overlapping structures $[Z_b(10610) \& Z_b(10650)]$

Goal:

- Simple but phenomenologically adequate tool to analyse data on exotic states
- Preserve unitarity and analyticity
- Combined analysis of all relevant channels \implies use full information contained in the data $[B\bar{B}^*, B^*\bar{B}^*, \pi\Upsilon(1S), \pi\Upsilon(2S), \pi\Upsilon(3S), \pi h_b(1P), \pi h_b(2P)]$
- Override gap between theory and experiment

Why not just to use Breit-Wigners?

Note:

BW implies substitution loop operator \rightarrow constant width Then:

- No threshold phenomena in BW (Im part does not change across threshold)
- Notions "mass" and "width" are misleading near threshold(s) (e.g. for cusp $M_{\text{peak}} = M_{\text{threshold}}$ and $\Gamma_{\text{visible}} < \sum \Gamma_{\text{partial}}$)
- BW has problems with analyticity (Only one pole of two symmetric poles is picked up. This works fine near the resonance but both poles are important near threshold)
- Naive sum of BW's violates unitarity $(Im(BW) \propto |BW|^2 \text{ but } Im(BW_1 + BW_2) \not\propto |BW_1 + BW_2|^2)$

Conclusion:

BW's should never be used for near-threshold states $\mathbb{R} \to \mathbb{R} \to \mathbb{R}$

Alternative approach: Coupled channels

- The most general formulation of the problem:
 - $N_{\rm p}=\#$ of bare poles (elementary states) $[N_{\rm p}=0]$
 - $N_{\rm e}=\#$ of elastic (open-flavour) channels $[N_{\rm e}=2]$
 - $N_{\rm in} = \#$ of inelastic (hidden-flavour) channels [$N_{\rm in} = 5$]
- Lippmann-Schwinger equations (LSE) used guarantee that
 - Unitarity is preserved (all channels iterated to all orders)
 - Threshold effects are captured (width \rightarrow loop operators)
 - Analyticity is preserved (both Re(loop) and Im(loop) kept)
- Parameters (couplings etc) have clear physical interpretation
- Additional input (symmetries, lattice measurements, theoretical predictions, etc) is straightforward to implement

Coupled channels: Problems and solutions

Problems:

- Typically, $N_{
 m p}=0..2$, $N_{
 m e}=1..2$ however $N_{
 m in}\gg 1$
- Extra inelastic channels entail reformulation of entire problem
- LSE cannot be solved analytically in general terms

Simplifications:

- Neglect direct interaction between inelastic channels (for example, $\rho(\bar{Q}Q) \leftrightarrow \omega(\bar{Q}Q)$ or $\pi(\bar{Q}Q) \leftrightarrow \pi(\bar{Q}Q)$)
- Assume elastic-to-inelastic form factors in a separable form Outcome:
 - All channels involved are completely disentangled
 - LSE are solved analytically; solution \rightarrow parametrisation
 - Inelastic channels enter additively (e.g. $\sum_{i=1}^{N_{\text{in}}}$)
 - ullet The problem reduces to matrices $N_{\mathrm{e}} \times N_{\mathrm{e}}$ and $N_{\mathrm{p}} \times N_{\mathrm{p}}$

Introduction

Practical parametrisation

• Direct interaction elastic t matrix [2 parameters—see below]

• Couplings

Vertex	Transition				
$v_{lpha a}$	elastic S-wave channels \Leftrightarrow bare poles				
$v_{ai}(oldsymbol{k}) = rac{oldsymbol{\lambda}_{ai}}{oldsymbol{k}} oldsymbol{k} ^{l_i}$	inelastic l_i -wave channels \Leftrightarrow bare poles				
$v_{ilpha}(m{k}) = m{g}_{ilpha} m{k} ^{l_i}$	S -wave elastic $\Leftrightarrow l_i$ -wave inelastic channels				
$\left[egin{array}{c} g_{[\pi\Upsilon(nS)][B]}\ g_{[\pi h_b(mP)][} \end{array} ight]$	${}_{(*)\bar{B}^{*}]}(n=1,2,3)$ 6 parameters ${}_{B^{(*)}\bar{B}^{*}]}(m=1,2)$ 4 parameters				

- Ratios of production sources $\xi_{\alpha} \left[\xi = \frac{g_{[\pi\Upsilon(5S)][B^*\bar{B}^*]}}{g_{[\pi\Upsilon(5S)][B\bar{B}^*]}} \right]$
- Norm in each distribution [7 channels = 7 norms]

Note!

- All parameters are real, imaginary parts come from loops
- If additional inelasticity is needed then data set is incomplete

Introduction Motivation Coupled channels Parametrisation $Z_b(10610)/Z_b(10650)$ Conclusions **Constraints from Heavy Quark Spin Symmetry** $m_b \gg \Lambda_{QCD} \implies$ Heavy-quark spin decouples • Spin w.f.'s of $B^{(*)}\bar{B}^*$ pairs with quantum numbers 1^{+-} read $|B\bar{B}^*\rangle = 0^-_{\bar{b}b} \otimes 1^-_{\bar{q}q} + 1^-_{\bar{b}b} \otimes 0^-_{\bar{q}q} \implies \frac{g_{[\pi h_b(mP)][B^*\bar{B}^*]}}{g_{[\pi h_b(mP)][B\bar{B}^*]}} = -\frac{g_{[\pi\Upsilon(nS)][B^*\bar{B}^*]}}{g_{[\pi\Upsilon(nS)][B\bar{B}^*]}} = 1$ A.E. Bondar et al. PRD 84 (2011) 054010

• Direct interaction elastic potential

$$V(1^{+-}) = \begin{pmatrix} V_{B\bar{B}^* \to B\bar{B}^*} & V_{B\bar{B}^* \to B^*\bar{B}^*} \\ V_{B^*\bar{B}^* \to B\bar{B}^*} & V_{B^*\bar{B}^* \to B^*\bar{B}^*} \end{pmatrix} \propto \begin{pmatrix} \gamma_s^{-1} + \gamma_t^{-1} & \gamma_s^{-1} - \gamma_t^{-1} \\ \gamma_s^{-1} - \gamma_t^{-1} & \gamma_s^{-1} + \gamma_t^{-1} \end{pmatrix}$$

Note! $\gamma_s = \gamma_t$ implies no $B\bar{B}^* \leftrightarrow B^*\bar{B}^*$ direct transitions Light-quark spin symmetry???

M.B. Voloshin, PRD 93 (2016) 074011

Parametrisation

Fits for the data

Fit	γ_s , MeV	γ_t ,MeV	ξ	$\frac{g_{[\pi h_b(1P)][B^*\bar{B}^*]}}{g_{[\pi h_b(1P)][B\bar{B}^*]}}$	$\frac{g_{[\pi h_b(2P)][B^*\bar{B}^*]}}{g_{[\pi h_b(2P)][B\bar{B}^*]}}$	C.L.
Α	35^{+38}_{-56}	-228^{+68}_{-61}	$-0.83^{+0.08}_{-0.07}$	$1.73_{-0.42}^{+0.68}$	$1.72_{-0.43}^{+0.70}$	55%
В	-86^{+32}_{-36}	-93^{+35}_{-39}	-1*	1*	1*	47%

* Constrained from HQSS (7 norms + 7 parameters for shapes)

Data:

A. Garmash et al. [Belle Collab.], PRL 116 (2016) 212001 [arXiv:1512.07419] A. Bondar et al. [Belle Collab.], PRL 108 (2012) 122001 [arXiv:1110.2251]

Conclusions from the fits

Fit	γ_s , MeV	γ_t ,MeV	ξ	$\frac{g_{[\pi h_b(1P)][B^*\bar{B}^*]}}{g_{[\pi h_b(1P)][B\bar{B}^*]}}$	$\frac{g_{[\pi h_b(2P)][B^*\bar{B}^*]}}{g_{[\pi h_b(2P)][B\bar{B}^*]}}$	C.L.
Α	35^{+38}_{-56}	-228^{+68}_{-61}	$-0.83^{+0.08}_{-0.07}$	$1.73_{-0.42}^{+0.68}$	$1.72_{-0.43}^{+0.70}$	55%
В	-86^{+32}_{-36}	-93^{+35}_{-39}	-1	1	1	47%

- Fits A and B have similar (high) quality
 - Both fits give similar S-matrix poles
- Both Z_b 's are virtual states with $\varepsilon_B \sim 1 \, {
 m MeV}$
- $Z_b^{(\prime)}$ w.f.'s have (only?) two-meson components
- More precise data needed to fix parameters
- HQSS may be better met in updated data
- Fit B: HQSS implies LQSS ???

Introduction

Conclusions

- Coupled channels + natural assumptions = simple but phenomenologically adequate parametrisation
- Parametrisation is well suited for combined data analysis
- Parameters have clear physical interpretation ⇒ way to override the gap between theory and experiment
- Unitariry is preserved =>>> if the fit requires additional inelasticity then the data set is incomplete
- Easy to generalise, namely
 - (i) to extend the basis of coupled channels
 - (ii) to implement symmetry constraints
 - (iii) to use info from complementary approaches (e.g. lattice)
- Further developments to include:
 - (i) final-state interaction
 - (ii) one-pion exchange
 - (iii) additional production mechanisms