New observables in quarkonium production

J.P. Lansberg
IPN Orsay – Paris-Sud U. –CNRS/IN2P3 – Université Paris-Saclay

work done in collaboration with Hua-Sheng Shao (CERN)
Production Model: the current situation in one slide ...

Colour-Singlet Model (CSM) was always in the game for the P_T integrated yield.

Colour-Octet Mechanism (COM) helps in describing the P_T spectrum. Yet, the COM NLO/fitted differs a lot in their conclusions owing to their assumptions (dataset, P_T cut, polarisation/fitted or not, etc.).

All approaches have troubles in describing the polarisation and/or the η_c data (see Tuesday talks).

New hope in double-parton fragmentation (Kang, Qiu, Sterman, PRL). Next-to-leading power in P_T; not to be confused with Double-Parton Scattering.

All this motivates the study of new observables which can be more discriminant for specific effects. Examples for which data exists: quarkonium-pair production, J^ψ, Z, ...
Production Model: the current situation in one slide ...

- Colour-Singlet Model (CSM) back in the game
 [large NLO and NNLO correction to the P_T spectrum; but not perfect \rightarrow need a full NNLO]

Production Model: the current situation in one slide ...

- Colour-Singlet Model (CSM) back in the game
 [large NLO and NNLO correction to the P_T spectrum; but not perfect \rightarrow need a full NNLO]

- CSM was always in the game for the P_T integrated yield

Production Model: the current situation in one slide ...

- Colour-Singlet Model (CSM) back in the game
 [large NLO and NNLO correction to the P_T spectrum; but not perfect \rightarrow need a full NNLO]

- CSM was always in the game for the P_T integrated yield

- Colour-Octet Mechanism (COM) helps in describing the P_T spectrum
Colour-Singlet Model (CSM) back in the game
[large NLO and NNLO correction to the P_T spectrum; but not perfect \Rightarrow need a full NNLO]

CSM was always in the game for the P_T integrated yield

Colour-Octet Mechanism (COM) helps in describing the P_T spectrum

Yet, the COM NLO fits differ a lot in their conclusions owing to their assumptions (data set, P_T cut, polarisation fitted or not, etc.)
Production Model: the current situation in one slide ...

- Colour-Singlet Model (CSM) back in the game
 [large NLO and NNLO correction to the P_T spectrum; but not perfect → need a full NNLO]

- CSM was always in the game for the P_T integrated yield

- Colour-Octet Mechanism (COM) helps in describing the P_T spectrum

- Yet, the COM NLO fits differ a lot in their conclusions owing to their assumptions (data set, P_T cut, polarisation fitted or not, etc.)

- All approaches have troubles in describing the polarisation and/or the η_c data (see Tuesday talks)
Production Model: the current situation in one slide ...

- Colour-Singlet Model (CSM) back in the game
 [large NLO and NNLO correction to the P_T spectrum; but not perfect → need a full NNLO]

- CSM was always in the game for the P_T integrated yield

- Colour-Octet Mechanism (COM) helps in describing the P_T spectrum

- Yet, the COM NLO fits differ a lot in their conclusions owing to their assumptions (data set, P_T cut, polarisation fitted or not, etc.)

- All approaches have troubles in describing the polarisation and/or the η_c data (see Tuesday talks)

- New hope in double-parton fragmentation

 Kang, Qiu, Sterman, PRL 108 (2012) 102002

 [Next-to-leading power in P_T; Not to be confused with Double-Parton Scattering]
Production Model: the current situation in one slide ...

- Colour-Singlet Model (CSM) back in the game
 [large NLO and NNLO correction to the P_T spectrum; but not perfect → need a full NNLO]

- CSM was always in the game for the P_T integrated yield

- Colour-Octet Mechanism (COM) helps in describing the P_T spectrum

- Yet, the COM NLO fits differ a lot in their conclusions owing to their assumptions (data set, P_T cut, polarisation fitted or not, etc.)

- All approaches have troubles in describing the polarisation and/or the η_c data (see Tuesday talks)

- New hope in double-parton fragmentation

 Kang, Qiu, Sterman, PRL 108 (2012) 102002
 [Next-to-leading power in P_T; Not to be confused with Double-Parton Scattering]

- All this motivates the study of new observables

 which can be more discriminant for specific effects
Production Model: the current situation in one slide ...

- Colour-Singlet Model (CSM) back in the game
 [large NLO and NNLO correction to the P_T spectrum; but not perfect → need a full NNLO]

- CSM was always in the game for the P_T integrated yield

- Colour-Octet Mechanism (COM) helps in describing the P_T spectrum

- Yet, the COM NLO fits differ a lot in their conclusions owing to their assumptions (data set, P_T cut, polarisation fitted or not, etc.)

- All approaches have troubles in describing the polarisation and/or the η_c data (see Tuesday talks)

- New hope in double-parton fragmentation

 Kang, Qiu, Sterman, PRL 108 (2012) 102002

 [Next-to-leading power in P_T; Not to be confused with Double-Parton Scattering]

- All this motivates the study of new observables
 which can be more discriminant for specific effects

- Examples for which data exists: quarkonium-pair production, $J/\psi + Z$, …
Part I

Quarkonium-pair production
On the importance of α_s^5 contributions to $J/\psi + J/\psi$ & $J/\psi + \eta_c$

- LO to $J/\psi + J/\psi$ at α_s^4
On the importance of α_s^5 contributions to $J/\psi + J/\psi$ & $J/\psi + \eta_c$

- **LO** to $J/\psi + J/\psi$ at α_S^4
- At NLO, t channel gluon exchange appear (harder P_T spectrum)

J.P. Lansberg (IPNO)
On the importance of α_s^5 contributions to $J/\psi + J/\psi$ & $J/\psi + \eta_c$

- LO to $J/\psi + J/\psi$ at α_s^4
- At NLO, t channel gluon exchange appear (harder p_T spectrum)
- NLO* approximation to evaluate the impact of QCD corrections

[nicely confirmed by a full NLO]

On the importance of α_s^5 contributions to $J/\psi + J/\psi \& J/\psi + \eta_c$

- LO to $J/\psi + J/\psi$ at α_s^4
- At NLO, t channel gluon exchange appear (harder P_T spectrum)
- NLO* approximation to evaluate the impact of QCD corrections

$J/\psi + \eta_c$ suppressed by C parity: LO at α_s^5
On the importance of α_s^5 contributions to $J/\psi + J/\psi$ & $J/\psi + \eta_c$

- LO to $J/\psi + J/\psi$ at α_s^4
- At NLO, t channel gluon exchange appear (harder P_T spectrum)
- NLO* approximation to evaluate the impact of QCD corrections
- $J/\psi + \eta_c$ suppressed by C parity: LO at α_s^5

[nicely confirmed by a full NLO]

[First evaluation! (green band)]
On the importance of α_s^5 contributions to $J/\psi + J/\psi$ & $J/\psi + \eta_c$

- LO to $J/\psi + J/\psi$ at α_s^4
- At NLO, t channel gluon exchange appear (harder P_T spectrum)
- NLO* approximation to evaluate the impact of QCD corrections
- $J/\psi + \eta_c$ suppressed by C parity: LO at α_s^5
- The P_T & $M_{\psi\psi}$ distributions depend very much on the topology (see later)

JPL, H.S. Shao PRL 111, 122001 (2013)

[nicely confirmed by a full NLO]
On the importance of α_s^5 contributions to $J/\psi + J/\psi$ & $J/\psi + \eta_c$

- LO to $J/\psi + J/\psi$ at α_s^4
- At NLO, t channel gluon exchange appear (harder P_T spectrum)
- NLO* approximation to evaluate the impact of QCD corrections

$J/\psi + \eta_c$ suppressed by C parity: LO at α_s^5

The P_T & $M_{\psi\psi}$ distributions depend very much on the topology (see later)

$\sigma_{\text{central \ LO \ SPS}} = 4.83$ nb; $\sigma_{\text{central \ NLO \ SPS}} = 5.34$ nb; $\sigma_{\text{LHCb \ measured}} = 5.1 \pm 1.0 \pm 1.1$ nb: is that all at low P_T?

L.P. Sun et al. arXiv:1404.4042 [hep-ph] [First evaluation! (green band)]

JPL, H.S. Shao PRL 111, 122001 (2013) [nicely confirmed by a full NLO]

L.P. Lansberg (IPNO) New observables in quarkonium production September 1, 2016 4 / 20
On the importance of α_s^5 contributions to $J/\psi + J/\psi$ & $J/\psi + \eta_c$

- **LO** to $J/\psi + J/\psi$ at α_S^4
- At NLO, t channel gluon exchange appear (harder P_T spectrum)
- NLO* approximation to evaluate the impact of QCD corrections

$J/\psi + \eta_c$ suppressed by C parity: **LO** at α_S^5

- The P_T & $M_{\psi\psi}$ distributions depend very much on the topology (see later)
- $\sigma_{\text{LO SPS}} = 4.83$ nb; $\sigma_{\text{NLO SPS}} = 5.34$ nb; $\sigma_{\text{measured}}^{\text{LHCb}} = 5.1 \pm 1.0 \pm 1.1$ nb: is that all at low P_T?
- Large enhancement at high P_T

[picture of diagrams and plots]

New observables in quarkonium production

September 1, 2016 4 / 20
On the importance of QCD corrections: P_T enhanced topologies

- At Born (LO) order, the $P_T^{\psi\psi}$ spectrum is $\delta(P_T^{\psi\psi})$: 2 \rightarrow 2 topologies
On the importance of QCD corrections: P_T enhanced topologies

- At Born (LO) order, the $P_T^{\psi\psi}$ spectrum is $\delta(P_T^{\psi\psi})$: 2 \rightarrow 2 topologies
- It can be affected by initial parton k_T [↔ interest for TMD studies]
On the importance of QCD corrections: P_T enhanced topologies

- At Born (LO) order, the $P_T^{\psi\psi}$ spectrum is $\delta(P_T^{\psi\psi})$: 2 → 2 topologies
- It can be affected by initial parton k_T [↔ interest for TMD studies]
- By far insufficient (blue) to account for the CMS measured spectrum

![Graph showing $d\sigma/dP_T$ for $P_T^{\psi\psi}$ at 7 TeV@LHC, CMS Acceptance.](data: CMS Coll. JHEP 1409 (2014) 094)
On the importance of QCD corrections: P_T enhanced topologies

- At Born (LO) order, the $P_T^{\psi\psi}$ spectrum is $\delta(P_T^{\psi\psi})$: 2 \rightarrow 2 topologies
- It can be affected by initial parton k_T
 - By far insufficient (blue) to account for the CMS measured spectrum

\[\alpha_s^5 \text{ contributions (green) are crucial here and do a good job even at } P_T^{\psi\psi} \approx 30 \text{ GeV} \]
On the importance of QCD corrections: P_T enhanced topologies

- At Born (LO) order, the $P_{T\Psi\Psi}$ spectrum is $\delta(P_{T\Psi\Psi})$: 2 \rightarrow 2 topologies
- It can be affected by initial parton k_T [↔ interest for TMD studies]
- By far insufficient (blue) to account for the CMS measured spectrum

α_s^5 contributions (green) are crucial here and do a good job even at $P_{T\Psi\Psi} \simeq 30$ GeV

Slight offset up to $P_{T\Psi\Psi} \simeq 20$ GeV [about a factor 2, but well within error bars]
On the importance of QCD corrections: P_T enhanced topologies

- At Born (LO) order, the $P_T^{\psi\psi}$ spectrum is $\delta(P_T^{\psi\psi})$: 2 → 2 topologies
- It can be affected by initial parton k_T [↔ interest for TMD studies]
- By far insufficient (blue) to account for the CMS measured spectrum

\[\alpha_s^5 \] contributions (green) are crucial here and do a good job even at $P_T^{\psi\psi} \approx 30$ GeV

- Slight offset up to $P_T^{\psi\psi} \approx 20$ GeV [about a factor 2, but well within error bars]
- We do not expect NNLO (α_s^6) contributions to matter where one currently has data
 [the orange histogram shows one class of leading $P_T \alpha_s^6$ contributions]
On the importance of QCD corrections (III)

- CMS sample affected by an acceptance P_T cut (4-6 GeV)

CMS Coll. JHEP 1409 (2014) 094
On the importance of QCD corrections (III)

- CMS sample affected by an acceptance P_T cut (4-6 GeV)
- D0 sample has a slightly lower P_T cut (3 GeV)

<table>
<thead>
<tr>
<th></th>
<th>CMS</th>
<th>D0</th>
</tr>
</thead>
<tbody>
<tr>
<td>LO</td>
<td>$0.35^{+0.26}_{-0.17}$ pb</td>
<td>53^{+57}_{-27} fb</td>
</tr>
</tbody>
</table>
On the importance of QCD corrections (III)

- CMS sample affected by an acceptance P_T cut (4-6 GeV)
- D0 sample has a slightly lower P_T cut (3 GeV)
- We expect the corresponding P_T-integrated x-section to receive large real α_s^5 contributions (NLO*)

<table>
<thead>
<tr>
<th></th>
<th>CMS</th>
<th>D0</th>
</tr>
</thead>
<tbody>
<tr>
<td>LO</td>
<td>$0.35^{+0.26}_{-0.17}$ pb</td>
<td>53^{+57}_{-27} fb</td>
</tr>
<tr>
<td>NLO*</td>
<td>$1.5^{+2.2}_{-0.87}$ pb</td>
<td>170^{+340}_{-110} fb</td>
</tr>
</tbody>
</table>
On the importance of QCD corrections (III)

- CMS sample affected by an acceptance P_T cut (4-6 GeV)
- D0 sample has a slightly lower P_T cut (3 GeV)
- We expect the corresponding P_T-integrated x-section to receive large real α_s^5 contributions (NLO*)
- The α_s^5 contributions are however insufficient to describe the CMS data

J.P. Lansberg (IPNO)
New observables in quarkonium production
On the importance of QCD corrections (III)

- CMS sample affected by an acceptance P_T cut (4-6 GeV)
- D0 sample has a slightly lower P_T cut (3 GeV)
- We expect the corresponding P_T-integrated x-section to receive large real α_s^5 contributions (NLO*)
- The α_s^5 contributions are however insufficient to describe the CMS data
- As we will see, some kinematical distributions are also problematic → the so-called CMS puzzle

<table>
<thead>
<tr>
<th></th>
<th>CMS</th>
<th>D0</th>
</tr>
</thead>
<tbody>
<tr>
<td>LO</td>
<td>0.35$^{+0.26}_{-0.17}$ pb</td>
<td>53$^{+57}_{-27}$ fb</td>
</tr>
<tr>
<td>NLO*</td>
<td>1.5$^{+2.2}_{-0.87}$ pb</td>
<td>170$^{+340}_{-110}$ fb</td>
</tr>
<tr>
<td>Data</td>
<td>5.25 ± 0.52 pb</td>
<td>129 ± 46 fb</td>
</tr>
</tbody>
</table>
On the importance of QCD corrections (III)

- CMS sample affected by an acceptance P_T cut (4-6 GeV)
- D0 sample has a slightly lower P_T cut (3 GeV)
- We expect the corresponding P_T-integrated x-section to receive large real α_s^5 contributions (NLO*)
- The α_s^5 contributions are however insufficient to describe the CMS data
- As we will see, some kinematical distributions are also problematic → the so-called CMS puzzle
- As we will also see, this was foreseeable (this should not have been a puzzle at all)
The so-called CMS puzzle

Predictions for LHCb, DPS and QSPS at large Δy C.H. Kom, A. Kulesza, W.J. Stirling PRL

He & Kniehl found at LO that CO QCS at large Δy; yet still in disagreement with the data; NLO needed!

J.P. Lansberg (IPNO) New observables in quarkonium production September 1, 2016
The so-called CMS puzzle

- At $P_T^{\psi\psi} \approx 0$, where the bulk of the yield lies, one has $M_{\psi\psi} \sim 2m_{\psi}\cosh\frac{\Delta y}{2}$
The so-called CMS puzzle

- At $P_{T}^{\psi\psi} \approx 0$, where the bulk of the yield lies, one has $M_{\psi\psi} \approx 2m_{T}^{\psi} \cosh \frac{\Delta y}{2}$
- Large Δy, i.e. large relative longitudinal momenta, correspond to large $M_{\psi\psi}$.

[At $\Delta y = 3.5$ and $P_{T} = 6$ GeV, $M_{\psi\psi} \approx 40$ GeV.]
The so-called CMS puzzle

- At $P_T^{\psi\psi} \approx 0$, where the bulk of the yield lies, one has $M_{\psi\psi} \approx 2m_T^\psi \cosh \frac{\Delta y}{2}$
- Large Δy, i.e. large relative longitudinal momenta, correspond to large $M_{\psi\psi}$.

 \[\text{[At } \Delta y = 3.5 \text{ and } P_T = 6 \text{ GeV, } M_{\psi\psi} \approx 40 \text{ GeV.]} \]
- The most natural solution for this excess is the independent production of two J/ψ
 \[\rightarrow \text{ double parton scattering} \]
The so-called CMS puzzle

- At $P_T^\psi\psi \approx 0$, where the bulk of the yield lies, one has $M_{\psi\psi} \approx 2m_T \cosh \frac{\Delta y}{2}$
- Large Δy, i.e. large relative longitudinal momenta, correspond to large $M_{\psi\psi}$.

 [At $\Delta y = 3.5$ and $P_T = 6$ GeV, $M_{\psi\psi} \approx 40$ GeV.]
- The most natural solution for this excess is the independent production of two J/ψ → double parton scattering
- Predictions for LHCb, $\text{DPS} \gg \text{SPS}$ at large Δy

The so-called CMS puzzle

- At $P_T^{\psi\psi} \approx 0$, where the bulk of the yield lies, one has $M_{\psi\psi} \approx 2m_T^{\psi} \cosh \frac{\Delta y}{2}$
- Large Δy, i.e. large relative longitudinal momenta, correspond to large $M_{\psi\psi}$.

$$\text{[At } \Delta y = 3.5 \text{ and } P_T = 6 \text{ GeV, } M_{\psi\psi} \approx 40 \text{ GeV.]}$$

- The most natural solution for this excess is the independent production of two J/ψ \rightarrow double parton scattering
- Predictions for LHCb, DPS \gg SPS at large Δy
- He & Kniehl found at LO that CO \gg CS at large Δy; yet still in disagreement with the data; NLO needed!

Z. He, B. Kniehl PRL 115, 022002 (2015)
On the importance of double parton scatterings at large Δy I

In fact, the argument of C.H. Kom, A. Kulesza, and W.J. Stirling was used by D0 to separate out DPS from SPS contributions.

![Graph showing data prompt, SP MC, DP MC, and Syst. uncertainty for $N_{\eta(J/\psi, J/\psi)}$ versus $\Delta \eta(J/\psi, J/\psi)$ at $L = 8.1 \text{ fb}^{-1}$](image)

D0 Coll. PRD 90 (2014) 111101
On the importance of double parton scatterings at large Δy I

In fact, the argument of C.H. Kom, A. Kulesza, and W.J. Stirling was used by D0 to separate out DPS from SPS contributions

- The DPS MC template is obtained from

$$\sigma^{\text{DPS}} = \frac{1}{2} \frac{\sigma_\psi \sigma_\psi}{\sigma_{\text{eff}}}$$
On the importance of double parton scatterings at large Δy

In fact, the argument of C.H. Kom, A. Kulesza, and W.J. Stirling was used by D0 to separate out DPS from SPS contributions.

- The DPS MC template is obtained from $\sigma^{DPS} = \frac{1}{2} \frac{\sigma_{\psi} \sigma_{\psi}}{\sigma_{\text{eff}}}$.
- Fitting these MC templates, they splitted 129 ± 46 fb into $\sigma^{DPS} = 70 \pm 23$ fb and $\sigma^{SPS} = 59 \pm 23$ fb by comparing the histograms.
- $\sigma^{SPS}_{\text{CSM}} = 170^{+340}_{-110}$ fb and $\sigma^{SPS}_{D0} = 59 \pm 23$ fb are still compatible at 1-σ level.
On the importance of double parton scatterings at large Δy

In fact, the argument of C.H. Kom, A. Kulesza, and W.J. Stirling was used by D0 to separate out DPS from SPS contributions.

- The DPS MC template is obtained from $\sigma^{DPS} = \frac{1}{2} \frac{\sigma_{\psi} \sigma_{\psi}}{\sigma_{eff}}$.
- Fitting these MC templates, they splitted 129 ± 46 fb into $\sigma^{DPS} = 70 \pm 23$ fb and $\sigma^{SPS} = 59 \pm 23$ fb by comparing the histograms.
- $\sigma_{CSM}^{SPS} = 170^{+340}_{-110}$ fb and $\sigma_{D0}^{SPS} = 59 \pm 23$ fb are still compatible at 1-\sigma level.
- In turn, they obtained $\sigma_{eff} = 4.8 \pm 2.5$ mb.
On the importance of double parton scatterings at large Δy I

In fact, the argument of C.H. Kom, A. Kulesza, and W.J. Stirling was used by D0 to separate out DPS from SPS contributions

The DPS MC template is obtained from $\sigma^{\text{DPS}} = \frac{1}{2} \sigma_{\psi} \sigma_{\psi}$

Fitting these MC templates, they splitted 129 ± 46 fb into $\sigma^{\text{DPS}} = 70 \pm 23$ fb and $\sigma^{\text{SPS}} = 59 \pm 23$ fb by comparing the histograms

$\sigma^{\text{SPS}}_{\text{CSM}} = 170^{+340}_{-110}$ fb and $\sigma^{\text{SPS}}_{\text{D0}} = 59 \pm 23$ fb are still compatible at 1-σ level

In turn, they obtained $\sigma_{\text{eff}} = 4.8 \pm 2.5$ mb

A natural question arises: using $\sigma^{\text{DPS}} = \frac{1}{2} \sigma_{\psi} \sigma_{\psi}$ and $\sigma_{\text{eff}} = 4.8 \pm 2.5$ mb, can one account for the large Δy CMS data?
Let us investigate the consistency between DPS+NLO and CMS data. For that we assume:

\[\sigma_{DPS} / one.fitted / two.fitted / \]

\[\sigma_{ψ} \]

\[\sigma_{ψ eff} \]

We take \(\sigma_{ψ eff} / four.fitted / eight.fitted \).

\[/ two.fitted / five.fitted \]

mb from DPS/zero.fitted.

\(σ_{ψ} \) are fit from data with a Crystal Ball function parametrising S^A gg ψ X.

Gap between theory and CMS data is filled at large \(Δy \) and \(M_{ψψ} \) by DPS+NLO CSMPSPS Agreement not altered elsewhere; improved even at low \(P_{ψψ} T \) (see (a)). Conversely, fitting our own \(σ_{ψ eff} \) from the CMS data should yield a value compatible with /four.fitted./eight.fitted mb.
On the importance of double parton scatterings at large Δy II

- Let us investigate the consistency between D0 and CMS data
- For that we assume: $\sigma^{DPS} = \frac{1}{2} \frac{\sigma_\psi \sigma_\psi}{\sigma_{\text{eff}}}$
- We take $\sigma_{\text{eff}} = 4.8 \pm 2.5 \text{ mb}$ from D0
On the importance of double parton scatterings at large Δy II

- Let us investigate the consistency between D0 and CMS data.
- For that we assume: $\sigma^{DPS} = \frac{1}{2} \frac{\sigma_\psi}{\sigma_{eff}}$
- We take $\sigma_{eff} = 4.8 \pm 2.5$ mb from D0.
- σ_ψ are fit from data with a Crystal Ball function parametrising $|A_{gg\rightarrow \psi X}|^2$

Let us investigate the **consistency** between D0 and CMS data.

For that we assume: $\sigma_{DPS} = \frac{1}{2} \frac{\sigma_{\psi} \sigma_{\psi}}{\sigma_{\text{eff}}}$

We take $\sigma_{\text{eff}} = 4.8 \pm 2.5 \text{ mb}$ from D0

σ_{ψ} are fit from data with a Crystal Ball function parametrising $|A_{gg\to \psi X}|^2$

Gap between theory and CMS data is filled at large Δy and $M_{\psi\psi}$ by DPS + NLO* CSM SPS

Figure (a): Graph showing the comparison between theory and CMS data for $P_T^{\psi\psi}$ distribution.

Figure (b): Graph showing the acceptance cuts on J/Ψ.

Figure (c): Graph showing the $d\sigma/dM_{\psi\psi}$ distribution.

On the importance of double parton scatterings at large Δy II

- Let us investigate the consistency between D0 and CMS data
- For that we assume: $\sigma_{DPS} = \frac{1}{2} \frac{\sigma_{\psi} \sigma_{\psi}}{\sigma_{\text{eff}}}$
- We take $\sigma_{\text{eff}} = 4.8 \pm 2.5$ mb from D0
- σ_{ψ} are fit from data with a Crystal Ball function parametrising $|\mathcal{A}_{gg \to \psi \chi}|^2$

- Gap between theory and CMS data is filled at large Δy and $M_{\psi \psi}$ by DPS + NLO* CSM SPS
- Agreement not altered elsewhere; improved even at low $P_T^{\psi \psi}$ (see (a))

[Graphs and plots showing the comparison between theory and CMS data are shown here.]
Let us investigate the consistency between D0 and CMS data.

For that we assume: \(\sigma^\text{DPS} = \frac{1}{2} \frac{\sigma_\psi}{\sigma_{\text{eff}}} \)

We take \(\sigma_{\text{eff}} = 4.8 \pm 2.5 \text{ mb} \) from D0.

\(\sigma_\psi \) are fit from data with a Crystal Ball function parametrising \(|A_{gg \rightarrow \psi X}|^2 \)

Gap between theory and CMS data is filled at large \(\Delta y \) and \(M_{\psi \psi} \) by DPS + NLO* CSM SPS.

Agreement not altered elsewhere; improved even at low \(P_T^{\psi \psi} \) (see (a)).

Conversely, fitting our own \(\sigma_{\text{eff}} \) from the CMS data should yield a value compatible with 4.8 mb.
Our fit of the double parton scatterings

Table 2

Result of the fit of the DPS yield via σ_{eff} on the 18 CMS values.

<table>
<thead>
<tr>
<th>σ_{eff} (mb)</th>
<th>χ^2</th>
<th>d.o.f.</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ_1</td>
<td>11.0</td>
<td>± 2.9</td>
</tr>
<tr>
<td>σ_2</td>
<td>8.2</td>
<td>± 2.2</td>
</tr>
<tr>
<td>σ_3</td>
<td>5.3</td>
<td>± 1.4</td>
</tr>
<tr>
<td>Only LO SPS</td>
<td>N/A</td>
<td>7.6</td>
</tr>
<tr>
<td>Only NLO SPS</td>
<td>N/A</td>
<td>2.6</td>
</tr>
</tbody>
</table>

Effect of the unknown J_{ψ} polarization checked: σ_2 vs σ_1 five fitted% quoted by CMS

Sources of uncertainties:
- Template for σ_ψ (see above)
- The CMS data uncertainties (incl. pol.)
- The theoretical uncertainties on the NLO† CSMSPS yield
Our fit of the double parton scatterings

- To assess the systematics, we used 3 fits of σ_ψ
 - Fit 1: CDF and LHC data as done by Kom et al
 - Fit 2: CDF and LHC data (including new larger-P_T data)
 - Fit 3: only CDF data (supposedly close to the D0 template)

\[
\begin{array}{cccc}
\sigma_e f [\text{mb}] & \chi^2 & \text{d.o.f.} & \text{d.o.f.} \\
\sigma_\psi \text{Fit 1} & 25 & 11 & \pm 2.9 & 1.9 & 16 \\
\sigma_\psi \text{Fit 2} & 8.2 & \pm 2.2 & 1.8 & 16 \\
\sigma_\psi \text{Fit 3} & 5.3 & \pm 1.4 & 1.9 & 16 \\
\text{Only LO SPS} & \text{N/A} & 7.6 & 17 \\
\text{Only NLO} \ast & \text{SPS} & \text{N/A} & 2.6 & 17 \\
\end{array}
\]
Our fit of the double parton scatterings

- To assess the systematics, we used 3 fits of σ_ψ
 - Fit 1: CDF and LHC data as done by Kom et al
 - Fit 2: CDF and LHC data (including new larger-P_T data)
 - Fit 3: only CDF data (supposedly close to the D0 template)
- Effect of the unknown J/ψ polarisation checked: 20% for D0 vs 25% quoted by CMS

Table 2

<table>
<thead>
<tr>
<th>σ_{DPS} [mb]</th>
<th>χ^2/d.o.f.</th>
<th>d.o.f.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fit 1</td>
<td>11.2 ± 2.9</td>
<td>1.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>Fit 2</td>
<td>8.2 ± 2.2</td>
<td>1.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>Fit 3</td>
<td>5.3 ± 1.4</td>
<td>1.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>Only LO SPS</td>
<td>7.6</td>
<td>17</td>
</tr>
<tr>
<td>Only NLO</td>
<td>2.6</td>
<td>17</td>
</tr>
</tbody>
</table>

New observables in quarkonium production
Our fit of the double parton scatterings

- To assess the systematics, we used 3 fits of σ_ψ
 - Fit 1: CDF and LHC data as done by Kom et al
 - Fit 2: CDF and LHC data (including new larger-P_T data)
 - Fit 3: only CDF data (supposedly close to the D0 template)

- Effect of the unknown J/ψ polarisation checked: 20% for D0 vs 25% quoted by CMS

- Sources of uncertainties:
 - Template for σ_ψ (see above)
 - The CMS data uncertainties (incl. pol.)
 - The theoretical uncertainties on the NLO* CSM SPS yield

Result of the fit of the DPS yield via σ_{eff} on the 18 CMS values.

<table>
<thead>
<tr>
<th>σ_{eff} [mb]</th>
<th>$\chi^2_{\text{d.o.f.}}$</th>
<th>d.o.f.</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ_ψ Fit 1 [25]</td>
<td>11 ± 2.9</td>
<td>1.9</td>
</tr>
<tr>
<td>σ_ψ Fit 2</td>
<td>8.2 ± 2.2</td>
<td>1.8</td>
</tr>
<tr>
<td>σ_ψ Fit 3</td>
<td>5.3 ± 1.4</td>
<td>1.9</td>
</tr>
<tr>
<td>Only LO SPS</td>
<td>N/A</td>
<td>7.6</td>
</tr>
<tr>
<td>Only NLO* SPS</td>
<td>N/A</td>
<td>2.6</td>
</tr>
</tbody>
</table>
Our fit of the double parton scatterings

To assess the systematics, we used 3 fits of σ_ψ:
- Fit 1: CDF and LHC data as done by Kom et al
- Fit 2: CDF and LHC data (including new larger-P_T data)
- Fit 3: only CDF data (supposedly close to the D0 template)

Effect of the unknown J/ψ polarisation checked: 20% for D0 vs 25% quoted by CMS

Sources of uncertainties:
- Template for σ_ψ (see above)
- The CMS data uncertainties (incl. pol.)
- The theoretical uncertainties on the NLO* CSM SPS yield

Result of the fit of the DPS yield via σ_{eff} on the 18 CMS values.

<table>
<thead>
<tr>
<th>σ_{eff} [mb]</th>
<th>$\chi^2_{\text{d.o.f.}}$</th>
<th>d.o.f.</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ_ψ Fit 1 [25]</td>
<td>11 ± 2.9</td>
<td>1.9</td>
</tr>
<tr>
<td>σ_ψ Fit 2</td>
<td>8.2 ± 2.2</td>
<td>1.8</td>
</tr>
<tr>
<td>σ_ψ Fit 3</td>
<td>5.3 ± 1.4</td>
<td>1.9</td>
</tr>
<tr>
<td>Only LO SPS</td>
<td>N/A</td>
<td>7.6</td>
</tr>
<tr>
<td>Only NLO* SPS</td>
<td>N/A</td>
<td>2.6</td>
</tr>
</tbody>
</table>

σ_{DPS} computed for D0 & LHCb; agreement checked: $\chi^2_{\text{d.o.f.}}$: 0.5-1.2 (LHCb) & 0.06-0.5 (D0)
Our fit of the double parton scatterings

- To assess the systematics, we used 3 fits of σ_ψ
 - Fit 1: CDF and LHC data as done by Kom et al
 - Fit 2: CDF and LHC data (including new larger-P_T data)
 - Fit 3: only CDF data (supposedly close to the D0 template)

- Effect of the unknown J/ψ polarisation checked: 20% for D0 vs 25% quoted by CMS

- Sources of uncertainties:
 - Template for σ_ψ (see above)
 - The CMS data uncertainties (incl. pol.)
 - The theoretical uncertainties on the NLO* CSM SPS yield

Result of the fit of the DPS yield via σ_{eff} on the 18 CMS values.

<table>
<thead>
<tr>
<th></th>
<th>σ_{eff} [mb]</th>
<th>$\chi^2_{\text{d.o.f.}}$</th>
<th>d.o.f.</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ_ψ, Fit 1 [25]</td>
<td>11 ± 2.9</td>
<td>1.9</td>
<td>16</td>
</tr>
<tr>
<td>σ_ψ, Fit 2</td>
<td>8.2 ± 2.2</td>
<td>1.8</td>
<td>16</td>
</tr>
<tr>
<td>σ_ψ, Fit 3</td>
<td>5.3 ± 1.4</td>
<td>1.9</td>
<td>16</td>
</tr>
<tr>
<td>Only LO SPS</td>
<td>N/A</td>
<td>7.6</td>
<td>17</td>
</tr>
<tr>
<td>Only NLO* SPS</td>
<td>N/A</td>
<td>2.6</td>
<td>17</td>
</tr>
</tbody>
</table>

- σ^DPS computed for D0 & LHCb; agreement checked:
 $\chi^2_{\text{d.o.f.}}$: 0.5-1.2 (LHCb) & 0.06-0.5 (D0)

- Best agreement with Fit 3 confirming the consistency:
 $\sigma_{\text{eff}} = 4.8 \pm 2.5$ mb vs $\sigma_{\text{eff}} = 5.3 \pm 1.4$ mb
Our fit value for σ_{eff}: $8.2 \pm 2.0 \pm 2.9 \text{ mb}$
Predictions: excited states

JPL, H.-S. Shao PLB 751 (2015) 479
Predictions: excited states

- Even though we find it a natural, accounting for DPS introduces another parameter.
Predictions: excited states

- Even though we find it a natural, accounting for DPS introduces another parameter.
- How to check that one is not playing with a further d.o.f. on the theory side?
Predictions: excited states

- Even though we find it a natural, accounting for DPS introduces another parameter
- How to check that one is not playing with a further d.o.f. on the theory side?
- DPS vs SPS dominance are characterised by different feed-down patterns
Predictions: excited states

- Even though we find it a natural, accounting for DPS introduces another parameter
- How to check that one is not playing with a further d.o.f. on the theory side?
- DPS vs SPS dominance are characterised by different feed-down patterns
- We define $F_{\psi'\psi}^{\chi_c}$ ($F_{\psi'\psi}$) as the fraction of events containing at least one χ_c (ψ')
Predictions: excited states

- Even though we find it a natural, accounting for DPS introduces another parameter
- How to check that one is not playing with a further d.o.f. on the theory side?
- DPS vs SPS dominance are characterised by different feed-down patterns
- We define $F^{\chi_c}_{\psi\psi} (F^{\psi'}_{\psi\psi})$ as the fraction of events containing at least one χ_c (ψ')
- Under DPS dominance (e.g. large Δy), $\sigma^{\text{DPS}}_{ab} = \frac{m}{2} \frac{\sigma_a \sigma_b}{\sigma_{\text{eff}}} (m: \text{symmetry factor})$

$$F^{\chi_c}_{\psi\psi} = F^{\chi_c}_\psi \times \left(F^{\chi_c}_\psi + 2F^{\text{direct}}_\psi + 2F^{\psi'}_\psi \right),$$

$$F^{\psi'}_{\psi\psi} = F^{\psi'}_\psi \times \left(F^{\psi'}_\psi + 2F^{\text{direct}}_\psi + 2F^{\chi_c}_\psi \right),$$

$$F^{\text{direct}}_{\psi\psi} = \left(F^{\text{direct}}_\psi \right)^2$$
Predictions: excited states

- Even though we find it a natural, accounting for DPS introduces another parameter
- How to check that one is not playing with a further d.o.f. on the theory side?
- DPS vs SPS dominance are characterised by different feed-down patterns
- We define $F_{\psi\psi}^{\chi_c} (F_{\psi\psi}^{\psi'})$ as the fraction of events containing at least one $\chi_c (\psi')$
- Under DPS dominance (e.g. large Δy), $\sigma_{ab}^{DPS} = \frac{m}{2} \frac{\sigma_a \sigma_b}{\sigma_{eff}}$ (m: symmetry factor)

$$F_{\psi\psi}^{\chi_c} = F_{\psi\psi}^{\chi_c} \times \left(F_{\psi\psi}^{\chi_c} + 2F_{\psi\psi}^{\text{direct}} + 2F_{\psi\psi}^{\psi'} \right), \ F_{\psi\psi}^{\psi'} = F_{\psi\psi}^{\psi'} \times \left(F_{\psi\psi}^{\psi'} + 2F_{\psi\psi}^{\text{direct}} + 2F_{\psi\psi}^{\chi_c} \right), \ F_{\psi\psi}^{\text{direct}} = \left(F_{\psi\psi}^{\text{direct}} \right)^2$$

- Under SPS CSM dominance,
 - $F_{\psi\psi}^{\psi'}$ is slightly enhanced by symmetry factors,
 - $F_{\psi\psi}^{\chi_c}$, unlike single quarkonium production, is not enhanced and is found to be small
Predictions: excited states

- Even though we find it a natural, accounting for DPS introduces another parameter
- How to check that one is not playing with a further d.o.f. on the theory side?
- DPS vs SPS dominance are characterised by different feed-down patterns
- We define $F_{\psi'\psi}^{\chi_c}(F_{\psi'\psi}^{\psi'})$ as the fraction of events containing at least one $\chi_c (\psi')$
- Under DPS dominance (e.g. large Δy), $\sigma_{ab}^{DPS} = \frac{m}{2} \frac{\sigma_a \sigma_b}{\sigma_{eff}}$ (m: symmetry factor)

$$
F_{\psi'\psi}^{\chi_c} = F_{\psi'\psi}^{\chi_c} \times \left(F_{\psi'\psi}^{\chi_c} + 2F_{\psi'\psi}^{\text{direct}} + 2F_{\psi'\psi}^{\psi'} \right),
F_{\psi'\psi}^{\psi'} = F_{\psi'\psi}^{\psi'} \times \left(F_{\psi'\psi}^{\psi'} + 2F_{\psi'\psi}^{\text{direct}} + 2F_{\psi'\psi}^{\chi_c} \right),
F_{\psi'\psi}^{\text{direct}} = (F_{\psi'\psi}^{\text{direct}})^2
$$

- Under SPS CSM dominance,
 - $F_{\psi'\psi}^{\psi'}$ is slightly enhanced by symmetry factors,
 - $F_{\psi'\psi}^{\chi_c}$, unlike single quarkonium production, is not enhanced and is found to be small
- Overall:

<table>
<thead>
<tr>
<th></th>
<th>(CSM) SPS</th>
<th>DPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>$F_{\psi'\psi}^{\psi'}$</td>
<td>45%</td>
<td>20%</td>
</tr>
<tr>
<td>$F_{\psi'\psi}^{\chi_c}$</td>
<td>small</td>
<td>50%</td>
</tr>
</tbody>
</table>
Part II

$J/\psi + Z$ production
ATLAS analyses

Following the pioneering searches by CDF, for the first time ATLAS recently observed associated production of $J^{+\psi}W$ and $J^{+\psi}Z$.
Following the pioneering searches by CDF, for the first time ATLAS recently observed associated production of $J/\psi + W$ and $J/\psi + Z$

Following the pioneering searches by CDF, for the first time, ATLAS recently observed associated production of $J/\psi + W$ and $J/\psi + Z$.

These were recently addressed in theoretical works up to NLO (for the SPS)

L. Gang et al. PRD 83 (2011) 014001; JHEP02(2011)071
Following the pioneering searches by CDF, for the first time, ATLAS recently observed associated production of $J/\psi + W$ and $J/\psi + Z$

These were recently addressed in theoretical works up to NLO (for the SPS)

L. Gang et al. PRD 83 (2011) 014001; JHEP02(2011)071

For both, these SPS predictions seem too small to reproduce the data, even when some DPS contributions are considered
Following the pioneering searches by CDF, for the first time ATLAS recently observed associated production of $J/\psi + W$ and $J/\psi + Z$

These were recently addressed in theoretical works up to NLO (for the SPS)

L. Gang et al. PRD 83 (2011) 014001; JHEP02(2011)071

For both, these SPS predictions seem too small to reproduce the data, even when some DPS contributions are considered

The discrepancy is largest for $J/\psi + Z$, which I discuss now

based on JPL, H.S. Shao arXiv:1608.03198 [hep-ph]
The ATLAS puzzle
The ATLAS puzzle

- **Assuming a DPS yield with** $\sigma_{\text{eff}} = 15 \text{ mb}$ *(because of their 4 jet analysis)*

 - Prompt DPS subtracted

 $$ R_{J/\psi+Z}^{\text{DPS}} = \frac{\mathcal{B}(J/\psi \rightarrow \mu^+ \mu^-) \sigma(pp \rightarrow Z + J/\psi)}{\sigma(pp \rightarrow Z)} $$

 $$ = \left(45 \pm 13_{\text{stat}} \pm 6_{\text{syst}} \pm 10_{\text{DPSsub}} \right) \times 10^{-7} $$
The ATLAS puzzle

- Assuming a DPS yield with $\sigma_{\text{eff}} = 15 \text{ mb}$ (because of their 4 jet analysis)

 $R_{J/\psi+Z}^{\text{DPS subtracted}} = \mathcal{B}(J/\psi \rightarrow \mu^+ \mu^-) \sigma(pp \rightarrow Z + J/\psi)/\sigma(pp \rightarrow Z)$

 $= (45 \pm 13_{\text{stat}} \pm 6_{\text{syst}} \pm 10_{\text{DPS sub}}) \times 10^{-7}$

- whereas
The ATLAS puzzle

- **Assuming a DPS yield with** $\sigma_{\text{eff}} = 15 \text{ mb}$ (because of their 4 jet analysis)

 \[R_{J/\psi + Z}^{\text{DPS subtracted}} = \frac{B(J/\psi \rightarrow \mu^+ \mu^-) \sigma(pp \rightarrow Z + J/\psi)}{\sigma(pp \rightarrow Z)} = (45 \pm 13_{\text{stat}} \pm 6_{\text{syst}} \pm 10_{\text{DPS sub}}) \times 10^{-7} \]

- **whereas**

 - the CS based predictions are around $(1 - 5) \times 10^{-7}$
Assuming a DPS yield with $\sigma_{\text{eff}} = 15 \text{ mb}$ (because of their 4 jet analysis),

$$R_{J/\psi+Z}^{\text{DPS subtracted}} = \mathcal{B}(J/\psi \to \mu^+\mu^-) \frac{\sigma(pp \to Z + J/\psi)}{\sigma(pp \to Z)}$$

$$= (45 \pm 13_{\text{stat}} \pm 6_{\text{syst}} \pm 10_{\text{DPS sub}}) \times 10^{-7}$$

whereas

- the CS based predictions are around $(1 - 5) \times 10^{-7}$
- the most optimistic NRQCD-based predictions (CS+CO) reaches 9×10^{-7}
The ATLAS puzzle

- Assuming a DPS yield with $\sigma_{\text{eff}} = 15 \text{ mb}$ (because of their 4 jet analysis)

$$R_{J/\psi+Z}^{\text{DPS subtracted}} = \mathcal{B}(J/\psi \to \mu^+ \mu^-) \frac{\sigma(pp \to Z + J/\psi)}{\sigma(pp \to Z)}$$

$$= (45 \pm 13_{\text{stat}} \pm 6_{\text{syst}} \pm 10_{\text{DPS sub}}) \times 10^{-7}$$

- whereas
 - the CS based predictions are around $(1 - 5) \times 10^{-7}$
 - the most optimistic NRQCD-based predictions (CS+CO) reaches 9×10^{-7}

- A priori, the $\Delta \phi$ distribution hints at a significant SPS yield (peak at π)
Assuming a DPS yield with $\sigma_{\text{eff}} = 15 \text{ mb}$ (because of their 4 jet analysis) and prompt $R_{J}/2$ subtracted:

$$R_{J}/2 = \frac{B(J/\psi \rightarrow \mu^+ \mu^-) \sigma(pp \rightarrow Z + J/\psi)}{\sigma(pp \rightarrow Z)}$$

$$= \frac{45 \pm 13_{\text{stat}} \pm 6_{\text{syst}} \pm 10_{\text{DPS sub}}}{10^{-7}}$$

whereas

- the CS based predictions are around $(1 - 5) \times 10^{-7}$
- the most optimistic NRQCD-based predictions (CS+CO) reaches 9×10^{-7}

A priori, the $\Delta \phi$ distribution hints at a significant SPS yield (peak at π)

- Gap opening at large $P_T^{J/\psi}$
The ATLAS puzzle

- Assuming a DPS yield with $\sigma_{\text{eff}} = 15 \text{ mb}$ (because of their 4 jet analysis)

 \[R_{J/\psi+Z}^{\text{DPS subtracted}} = B(J/\psi \to \mu^+\mu^-) \sigma(pp \to Z + J/\psi)/\sigma(pp \to Z) = (45 \pm 13_{\text{stat}} \pm 6_{\text{syst}} \pm 10_{\text{DPS sub}}) \times 10^{-7} \]

- whereas
 - the CS based predictions are around $(1 - 5) \times 10^{-7}$
 - the most optimistic NRQCD-based predictions (CS+CO) reaches 9×10^{-7}

- A priori, the $\Delta \phi$ distribution hints at a significant SPS yield (peak at π)
- Gap opening at large P_T^ψ
- We have thus decided to re-analyse the SPS theory with the Colour-Evaporation Model (CEM) which usually overshoots data at large P_T^ψ (↔ upper SPS limit)
Our re-analysis
Our re-analysis

- We use a NLO CEM computation of $J/\psi + Z$ with the single non-perturbative CEM parameter P_ψ^{prompt} fit to the latest single-J/ψ ATLAS data at 8 TeV.
Our re-analysis

- We use a NLO CEM computation of $J/\psi + Z$ with the single non-perturbative CEM parameter $\mathcal{P}_\psi^{\text{prompt}}$ fit to the latest single-J/ψ ATLAS data at 8 TeV.
- Just as the CEM tends to produce too many J/ψ at large P_T, we expect it to be the same for $J/\psi + Z$ and to provide us with an upper SPS limit.

[NRQCD predictions would be very disparate; some give $\sigma < 0$]
Our re-analysis

- We use a NLO CEM computation of $J/\psi + Z$ with the single non-perturbartive CEM parameter P_{ψ}^{prompt} fit to the latest single-J/ψ ATLAS data at 8 TeV.
- Just as the CEM tends to produce too many J/ψ at large P_T, we expect it to be the same for $J/\psi + Z$ and to provide us with an upper SPS limit.

[NRQCD predictions would be very disparate; some give $\sigma < 0$]

- we obtain

<table>
<thead>
<tr>
<th></th>
<th>exp</th>
<th>LO CEM SPS</th>
<th>NLO CEM SPS</th>
<th>DPS ($\sigma_{\text{eff}} \approx 15 \text{ mb}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATLAS inclusive</td>
<td>$63 \pm 13 \pm 5 \pm 10$</td>
<td>$4.1^{+1.3}_{-1.0}$</td>
<td>$7.6^{+2.0}_{-1.6}$</td>
<td>17</td>
</tr>
<tr>
<td>ATLAS fiducial</td>
<td>$36.8 \pm 6.7 \pm 2.5$</td>
<td>$2.2^{+0.7}_{-0.6}$</td>
<td>$4.2^{+1.1}_{-0.9}$</td>
<td>7</td>
</tr>
<tr>
<td>CMS fiducial</td>
<td>–</td>
<td>$3.9^{+1.3}_{-0.9}$</td>
<td>$7.5^{+2.0}_{-1.6}$</td>
<td>16</td>
</tr>
</tbody>
</table>

The theoretical uncertainty for the (N)LO SPS is from the renormalisation and factorisation scales. All quantities are in units of 10^{-7}.
Our re-analysis

- We use a NLO CEM computation of $J/\psi + Z$ with the single non-perturbartive CEM parameter $\mathcal{P}_\psi^{\text{prompt}}$ fit to the latest single-J/ψ ATLAS data at 8 TeV.
- Just as the CEM tends to produce too many J/ψ at large P_T, we expect it to be the same for $J/\psi + Z$ and to provide us with an upper SPS limit.

[NRQCD predictions would be very disparate; some give $\sigma < 0$]

- we obtain

<table>
<thead>
<tr>
<th></th>
<th>exp</th>
<th>LO CEM SPS</th>
<th>NLO CEM SPS</th>
<th>DPS ($\sigma_{\text{eff}} \approx 15 \text{ mb}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATLAS inclusive</td>
<td>$63 \pm 13 \pm 5 \pm 10$</td>
<td>$4.1^{+1.3}_{-1.0}$</td>
<td>$7.6^{+2.0}_{-1.6}$</td>
<td>17</td>
</tr>
<tr>
<td>ATLAS fiducial</td>
<td>$36.8 \pm 6.7 \pm 2.5$</td>
<td>$2.2^{+0.7}_{-0.6}$</td>
<td>$4.2^{+1.1}_{-0.9}$</td>
<td>7</td>
</tr>
<tr>
<td>CMS fiducial</td>
<td>$-,$</td>
<td>$3.9^{+1.3}_{-0.9}$</td>
<td>$7.5^{+2.0}_{-1.6}$</td>
<td>16</td>
</tr>
</tbody>
</table>

The theoretical uncertainty for the (N)LO SPS is from the renormalisation and factorisation scales. All quantities are in units of 10^{-7}.

- This gives a $2-\sigma$ discrepancy with a DPS contribution set by $\sigma_{\text{eff}} = 15 \text{ mb}$
Boosting the DPS yield

Some quarkonium studies point at a σ_{eff} lower than zero fitted mb. By fitting the first two fitted points ($\Delta /{\text{uni03D5}} /\text{zero.fitted}$), ATLAS got an upper DPS limit where $\sigma_{\text{DPS}} /\text{three.fitted}$.

Fitting the whole yield within uncertainties with SPS set to zero fitted gives a lower limit for $\sigma_{\text{eff}} /\text{four.fitted}$ / seven.fitted mb. With the NLOCEM and its uncertainties (upper SPS limit), we can obtain an upper limit of seven.fitted /one.fitted mb.

Both approaches yield compatible results, but what about the azimuthal spectrum if the SPS yield is six.fitted of the ATLAS yield?
Boosting the DPS yield

- Some quarkonium studies point at a σ_{eff} lower than 10 mb

- By fitting the first two fitted points (Δ_{uni03D5}/zero.fitted), ATLAS got an upper DPS limit where σ_{DPS}/three.fitted.
- Fitting the whole yield within uncertainties with SPS set to zero.fitted gives a lower limit for σ_{eff}/four.fitted./seven.fitted mb.
- With the NLOCEM and its uncertainties (upper SPS limit), we can obtain an upper limit of seven.fitted./one.fitted mb.

What about the azimuthal spectrum if the SPS yield is six.fitted of the ATLAS yield?
Boosting the DPS yield

- Some quarkonium studies point at a σ_{eff} lower than 10 mb
- By fitting the first 2 points ($\Delta \phi \sim 0$), ATLAS got an upper DPS limit where $\sigma_{\text{DPS}} \times 3$,
Boosting the DPS yield

- Some quarkonium studies point at a σ_{eff} lower than 10 mb.
- By fitting the first 2 points ($\Delta \phi \sim 0$), ATLAS got an upper DPS limit where $\sigma_{\text{DPS}} \times 3$.

- Fitting the whole yield within uncertainties with SPS set to 0 gives a lower limit for $\sigma_{\text{eff}} = 4.7$ mb. With the NLO CEM and its uncertainties (upper SPS limit), we can obtain an upper limit of 7.1 mb.
Boosting the DPS yield

- Some quarkonium studies point at a σ_{eff} lower than 10 mb
- By fitting the first 2 points ($\Delta\phi \sim 0$), ATLAS got an upper DPS limit where $\sigma_{\text{DPS}} \times 3$,

\[\text{Fitting the whole yield within uncertainties with SPS set to 0 gives a lower limit for } \sigma_{\text{eff}} = 4.7 \text{ mb.} \]

- Both approaches yield compatible results, but
Some quarkonium studies point at a σ_{eff} lower than 10 mb.

By fitting the first 2 points ($\Delta\phi \sim 0$), ATLAS got an upper DPS limit where $\sigma_{\text{DPS}} \times 3$.

Fitting the whole yield within uncertainties with SPS set to 0 gives a lower limit for $\sigma_{\text{eff}} = 4.7$ mb. With the NLO CEM and its uncertainties (upper SPS limit), we can obtain an upper limit of 7.1 mb.

Both approaches yield compatible results, but

What about the azimuthal spectrum if the SPS yield is 1/6 of the ATLAS yield?
Issue with the azimuthal distribution?
It is important to note that what is shown is a raw yield distribution and that ATLAS efficiency is larger at large P_T: large P_T events have more chance to be recorded.
It is important to note that what is shown is a raw yield distribution and that ATLAS efficiency is larger at large P_T: large P_T events have more chance to be recorded.

Our NLO CEM evaluation allows us to state that, in the ATLAS acceptance, DPS dominate at low P_T and SPS at large P_T.
Issue with the azimuthal distribution?

- It is important to note that what is shown is a raw yield distribution and that ATLAS efficiency is larger at large P_T: large P_T events have more chance to be recorded.
- Our NLO CEM evaluation allows us to state that, in the ATLAS acceptance, DPS dominate at low P_T and SPS at large P_T.

Can the peak size (with only 1/6 of SPS events overall) be due to that?
Issue with the azimuthal distribution?

- It is important to note that what is shown is a raw yield distribution and that ATLAS efficiency is larger at large P_T: large P_T events have more chance to be recorded.
- Our NLO CEM evaluation allows us to state that, in the ATLAS acceptance, DPS dominate at low P_T and SPS at large P_T.

Can the peak size (with only 1/6 of SPS events overall) be due to that? YES!
Issue with the azimuthal distribution?

- It is important to note that what is shown is a raw yield distribution and that ATLAS efficiency is larger at large P_T: large P_T events have more chance to be recorded.
- Our NLO CEM evaluation allows us to state that, in the ATLAS acceptance, DPS dominate at low P_T and SPS at large P_T.

Can the peak size (with only $1/6$ of SPS events overall) be due to that? **YES!**
- The last plot has been made by folding our DPS and SPS cross sections by an estimation of the ATLAS efficiency, and it works.
Part III

Conclusion
Conclusion

For the first time, our study shows that both DPSs and the NLO QCD corrections to SPSs are crucial to account for the existing J/ψ data. ICHEP News: Confirmation by the recent ATLAS study using our predictions: ATLAS-CONF-

two.fitted/zero.fitted/one.fitted/six.fitted-

zero.fitted/four.fitted/seven.fitted.

Still for J/ψ, this provides evidence for

(i) the dominance of α_s(LO) CS contributions for the total cross section,

(ii) the dominance of α_s(NLO) CS contributions at mid and large P_T,

(iii) the dominance of DPS contributions at large Δy and at large $M_{\psi\psi}$.

We have also derived generic formulae predicting feed-down contributions or, equally speaking, charmonium-pair-production rates involving excited states, in case DPSs dominate. These do not depend on σ_{eff}.

CHECK

by measuring $J/\psi\psi$ or $J/\psi\chi_c$ production. Their relatively small value of σ_{eff} (vs jet-related extractions) obtained from fitting the CMS data may be a first hint at its flavour dependence.

σ_{eff} (vs jet-related extractions) obtained from fitting the CMS data may be a first hint at its flavour dependence.

Impact of colour-octet channels not clear; waiting for NLO...
Conclusion

- For the first time, our study shows that both DPSs and the NLO QCD corrections to SPSs are crucial to account for the existing di-J/ψ data

ICHEP NEWS: Confirmation by the recent ATLAS study using our predictions: ATLAS-CONF-2016-047
Conclusion

- For the first time, our study shows that both DPSs and the NLO QCD corrections to SPSs are crucial to account for the existing di-J/ψ data.

 ICHEP NEWS: Confirmation by the recent ATLAS study using our predictions: ATLAS-CONF-2016-047

- Still for di-J/ψ, this provide evidence for
 1. the dominance of α_s^4 (LO) CS contributions for the total cross section,
 2. the dominance of α_s^5 (NLO) CS contributions at mid and large $P_T^{\psi\psi}$,
 3. the dominance of DPS contributions at large Δy and at large $M_{\psi\psi}$.

- We have also derived generic formulae predicting feed-down contributions or, equally speaking, charmonium-pair-production rates involving excited states, in case DPSs dominate. These do not depend on σ_{eff}.

- Check by measuring $J/\psi\psi$ or $J/\psi\chi_c$ production.

- The relatively small value of σ_{eff} (vs jet-related extractions) obtained from fitting the CMS data may be a first hint at its flavour dependence.

 [This however relies on the validity of the pocket formula]

- Impact of colour-octet channels not clear; waiting for NLO.

- A small σ_{eff}, i.e. large DPS, is also required to describe $J/\psi Z$, but also $\Upsilon J/\psi$.
Conclusion

- For the first time, our study shows that both DPSs and the NLO QCD corrections to SPSs are crucial to account for the existing di-J/ψ data.

 ICHEP NEWS: Confirmation by the recent ATLAS study using our predictions: ATLAS-CONF-2016-047

- Still for di-J/ψ, this provides evidence for:
 1. The dominance of α_s^4 (LO) CS contributions for the total cross section,
 2. The dominance of α_s^5 (NLO) CS contributions at mid and large $P_T^{\psi\psi}$,
 3. The dominance of DPS contributions at large Δy and at large $M_{\psi\psi}$.

- We have also derived generic formulae predicting feed-down contributions or, equally speaking, charmonium-pair-production rates involving excited states, in case DPSs dominate. These do not depend on σ_{eff}.
Conclusion

- For the first time, our study shows that both DPSs and the NLO QCD corrections to SPSs are crucial to account for the existing di-J/ψ data.

 ICHEP NEWS: Confirmation by the recent ATLAS study using our predictions: ATLAS-CONF-2016-047

- Still for di-J/ψ, this provide evidence for:
 1. The dominance of α_s^4 (LO) CS contributions for the total cross section,
 2. The dominance of α_s^5 (NLO) CS contributions at mid and large $P_T^{\psi\psi}$,
 3. The dominance of DPS contributions at large Δy and at large $M_{\psi\psi}$.

- We have also derived generic formulae predicting feed-down contributions or, equally speaking, charmonium-pair-production rates involving excited states, in case DPSs dominate. These do not depend on σ_{eff}.

- ⇒ CHECK by measuring $J/\psi + \psi'$ or $J/\psi + \chi_c$ production.
Conclusion

- For the first time, our study shows that both DPSs and the NLO QCD corrections to SPSs are crucial to account for the existing di-J/ψ data

 ICHEP NEWS: Confirmation by the recent ATLAS study using our predictions: ATLAS-CONF-2016-047

- Still for di-J/ψ, this provide evidence for

 (i) the dominance of α_s^4 (LO) CS contributions for the total cross section,

 (ii) the dominance of α_s^5 (NLO) CS contributions at mid and large $P_T^{\psi\psi}$,

 (iii) the dominance of DPS contributions at large Δy and at large $M_{\psi\psi}$.

- We have also derived generic formulae predicting feed-down contributions or, equally speaking, charmonium-pair-production rates involving excited states, in case DPSs dominate. **These do not depend on σ_{eff}.**

- \Rightarrow **CHECK** by measuring $J/\psi + \psi'$ or $J/\psi + \chi_c$ production.

- The relatively small value of σ_{eff} (vs jet-related extractions) obtained from fitting the CMS data may be a first hint at its flavour dependence.

 [This however relies on the validity of the pocket formula]
Conclusion

- For the first time, our study shows that both DPSs and the NLO QCD corrections to SPSs are crucial to account for the existing di-J/ψ data

 ICHEP NEWS: Confirmation by the recent ATLAS study using our predictions: ATLAS-CONF-2016-047

- Still for di-J/ψ, this provide evidence for

 1. the dominance of α_s^4 (LO) CS contributions for the total cross section,
 2. the dominance of α_s^5 (NLO) CS contributions at mid and large $P_T^{\psi\psi}$,
 3. the dominance of DPS contributions at large Δy and at large $M_{\psi\psi}$.

- We have also derived generic formulae predicting feed-down contributions or, equally speaking, charmonium-pair-production rates involving excited states, in case DPSs dominate. These do not depend on σ_{eff}.

 => CHECK by measuring $J/\psi + \psi'$ or $J/\psi + \chi_c$ production.

- The relatively small value of σ_{eff} (vs jet-related extractions) obtained from fitting the CMS data may be a first hint at its flavour dependence.

 [This however relies on the validity of the pocket formula]

- Impact of colour-octet channels not clear; waiting for NLO
Conclusion

- For the first time, our study shows that both DPSs and the NLO QCD corrections to SPSs are crucial to account for the existing di-J/ψ data.

 ICHEP NEWS: Confirmation by the recent ATLAS study using our predictions: ATLAS-CONF-2016-047

- Still for di-J/ψ, this provide evidence for:
 1. The dominance of α_s^4 (LO) CS contributions for the total cross section,
 2. The dominance of α_s^5 (NLO) CS contributions at mid and large $P_T^{\psi\psi}$,
 3. The dominance of DPS contributions at large Δy and at large $M_{\psi\psi}$.

- We have also derived generic formulae predicting feed-down contributions or, equally speaking, charmonium-pair-production rates involving excited states, in case DPSs dominate. These do not depend on σ_{eff}.

 \Rightarrow **CHECK** by measuring $J/\psi + \psi'$ or $J/\psi + \chi_c$ production.

- The relatively small value of σ_{eff} (vs jet-related extractions) obtained from fitting the CMS data may be a first hint at its flavour dependence.

 [This however relies on the validity of the pocket formula]

- Impact of colour-octet channels not clear; waiting for NLO

- A small σ_{eff}, i.e. large DPS, is also required to describe $J/\psi + Z$, but also $\Upsilon + J/\psi$.

D0 PRL 116 (2016) 082002 + H.S. Shao - Y. J. Zhang PRL 117 (2016) 062001
Part IV

Back-up slides
Comparison between the ATLAS data (EPJC 76 (2016) 283) and the CEM results for $d\sigma/dy/dp_T$ of $J/\psi +$ a recoiling parton at (left) LO and (right) NLO at $\sqrt{s} = 8$ TeV. [The theoretical uncertainty band is from the scale variation.]
On the (non-)importance of CO channels for di-J/ψ
On the (non-)importance of CO channels for di-J/ψ

![Graph showing differential cross section $d\sigma/dP_T^{\psi\psi}$ for di-J/ψ production at 7 TeV LHC. The graph compares different theoretical calculations including LO CO+sm, LO NRQCD+sm, and NLO* CS+LO CO. The CMS acceptance threshold is indicated as 7 TeV@LHC SPS only, and the arXiv reference is arXiv:1105.0820.]

On the (non-)importance of CO channels for di-J/ψ

Adding CO using NLO LDMEs of the Hamburg group has no impact
On the (non-)importance of CO channels for di-J/ψ

- Adding CO using NLO LDMEs of the Hamburg group has no impact

On the (non-)importance of CO channels for di-J/ψ

Adding CO using NLO LDMEs of the Hamburg group has no impact

- Same with other NLO LDMEs, by the PKU group (incl. my co-author), by the IHEP group as well as by Bodwin et al.

On the (non-)importance of CO channels for di-\(J/\psi\)

- Adding CO using NLO LDMEs of the Hamburg group has no impact
- Same with other NLO LDMEs, by the PKU group (incl. my co-author), by the IHEP group as well as by Bodwin et al.
- We disagree “that their inclusion nearly fills the large gap”

Z. He, B. Kniehl PRL 115, 022002 (2015)
On the (non-)importance of CO channels for di-\(J/\psi\)

- **Adding CO** using NLO LDMEs of the Hamburg group has no impact
- Same with other NLO LDMEs, by the PKU group (incl. my co-author), by the IHEP group as well as by Bodwin et al.
- We disagree “that their inclusion nearly fills the large gap”
- In terms of \(\chi^2_{d.o.f}\):

<table>
<thead>
<tr>
<th></th>
<th>LO CO + NLO* CSM w/o DPS</th>
<th>NLO* CSM w DPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\chi^2_{d.o.f})</td>
<td>3.0</td>
<td>1.9</td>
</tr>
</tbody>
</table>

Z. He, B. Kniehl PRL 115, 022002 (2015)

J.P. Lansberg (IPNO)
New observables in quarkonium production
September 1, 2016
23 / 20
Another way to see this with 2 CO channels
Another way to see this with 2 CO channels

- Using for the upper bound: \(\langle O^{J/\psi} (3S_1^{[8]}) \rangle < 2.8 \times 10^{-3} \text{ GeV}^3 \) & \(\langle O^{J/\psi} (1S_0^{[8]}) \rangle < 5.4 \times 10^{-2} \text{ GeV}^3 \)

[see the solid and dashed black lines]
Another way to see this with 2 CO channels

Using for the upper bound: $\left\langle O^J/\psi \left(^3S_1^{[8]} \right) \right\rangle < 2.8 \times 10^{-3} \text{ GeV}^3$ & $\left\langle O^J/\psi \left(^1S_0^{[8]} \right) \right\rangle < 5.4 \times 10^{-2} \text{ GeV}^3$

[see the solid and dashed black lines]

Nota: η_c data : $\left\langle O^J/\psi \left(^1S_0^{[8]} \right) \right\rangle = \left\langle \eta_c \left(^3S_1^{[8]} \right) \right\rangle < 1.46 \times 10^{-2} \text{ GeV}^3$

J.P. Lansberg (IPNO)
New observables in quarkonium production
September 1, 2016
24 / 20
Another way to see this with 2 CO channels

- Using for the upper bound: $\langle O^{J/\psi}(3S_1^{[8]}) \rangle < 2.8 \times 10^{-3}$ GeV3 & $\langle O^{J/\psi}(1S_0^{[8]}) \rangle < 5.4 \times 10^{-2}$ GeV3
 [see the solid and dashed black lines]

- Nota: η_c data: $\langle J/\psi(1S_0^{[8]}) \rangle = \langle \eta_c(3S_1^{[8]}) \rangle < 1.46 \times 10^{-2}$ GeV3

- Ignoring all previous constraints and fitting (one channel at a time) the LDME on the CMS data one gets irrealistically large values:
 $\langle O^{J/\psi}(3S_1^{[8]}) \rangle = 0.42 \pm 0.12$ GeV3 & $\langle O^{J/\psi}(1S_0^{[8]}) \rangle = 0.91 \pm 0.22$ GeV3 !!!