Born–Oppenheimer approximation in EFT and quarkonium hybrids

Jaume Tarrús Castellà

Technische Universität München, T30f with: M. Berwein, N. Brambilla, and A. Vairo

XIIth Quark Confinement and the Hadron Spectrum, Thessaloniki, August 2016.

Physik-Department T30f

1/16

Exotic Quarkonium

 In the last decade many new unexpected states have been found close or above threshold.

Voloshin 2008

- The states that do not fit Quarkonium potential models are called Exotics and labeled Xs, Ys and Zs.
- This states are candidates for non traditional hadronic states, including four constituent quark or an excited gluon constituent.
- Large experimental effort to study normal and Exotic quarkonium: BaBar, Belle2, BESIII, LHCb and Panda (under construction).

Quarkonium Hybrids

What are quarkonium Hybrids?

• A quarkonium hybrid consists of Q, \overline{Q} in a color octet configuration and a gluonic excitation g.

Quarkonium Hybrids

What are quarkonium Hybrids?

A quarkonium hybrid consists of Q, \overline{Q} in a color octet configuration and a gluonic excitation g.

Key Characteristics

- Heavy quarks are non-relativistic, dynamical time-scale set by the heavy quarks mass.
- Gluons are fast, dynamical time-scale set by Λ_{QCD} .
- The hierarchy between dynamical time-scales can be exploited to describe the system.

Quarkonium hybrids are a similar system to diatomic molecules

- ▶ Slow degree–of–freedom: Nuclei \rightarrow Heavy Quark
- \blacktriangleright Fast degree–of–freedom: Electrons \rightarrow Gluons

Quarkonium hybrids are a similar system to diatomic molecules

- ▶ Slow degree–of–freedom: Nuclei \rightarrow Heavy Quark
- ▶ Fast degree–of–freedom: Electrons \rightarrow Gluons

Born-Oppenheimer approximation

- 1. Solve the Schrödinger equation for the electrons with static nuclei. The electronic energy levels depend on the nuclei positions and are called **static energies**.
- 2. The molecular energy levels are obtained solving the Schrödinger equation for the nuclei with the **static energies** as background potential.

Quarkonium hybrids are a similar system to diatomic molecules

- ▶ Slow degree–of–freedom: Nuclei \rightarrow Heavy Quark
- ▶ Fast degree–of–freedom: Electrons \rightarrow Gluons

Born-Oppenheimer approximation

- 1. Solve the Schrödinger equation for the electrons with static nuclei. The electronic energy levels depend on the nuclei positions and are called **static energies**.
- 2. The molecular energy levels are obtained solving the Schrödinger equation for the nuclei with the **static energies** as background potential.

Our Aim

• Systematize the ideas behind the Born–Oppenheimer approximation for Quarkonium hybrids using EFT techniques.

Potential Non–Relativistic QCD

Motivation

- Quarkonium systems are non-relativistic bound states.
- Multiscale system: $m \gg mv \gg mv^2$, and Λ_{QCD} . *m* is the heavy-quark mass, $v \ll 1$ the heavy quark velocity.
- ▶ We can exploit the scale hierarchies by building an Effective Field Theory (EFT).

Matching procedure

- Integrating out the *m* scale leads to the well known NRQCD. Caswell, Lepage 1986; Bodwin, Braaten and Lepage 1995. Since $m \gg \Lambda_{QCD}$ the matching is perturbative.
- ▶ The degrees of freedom in pNRQCD are a color singlet (S) and octet fields (O^a) and the ultrasoft gluons.
- **R** is the CoM coordinate and **r** the relative coordinate of the quark pair.

Let us start from weakly-coupled pNRQCD:

pNRQCD Lagrangian

$$\begin{split} \mathcal{L}_{\text{pNRQCD}} &= \int d^3 r \, \text{Tr} \left[S^{\dagger} \left(i \partial_0 + \frac{\boldsymbol{\nabla}_r^2}{M} - V_s(r) \right) S + O^{\dagger} \left(i D_0 + \frac{\boldsymbol{\nabla}_r^2}{M} - V_o(r) \right) O \right] \\ &+ g V_A(r) \text{Tr} \left[O^{\dagger} \boldsymbol{r} \cdot \boldsymbol{E} S + S^{\dagger} \boldsymbol{r} \cdot \boldsymbol{E} O \right] + \frac{g}{2} V_B(r) \text{Tr} \left[O^{\dagger} \boldsymbol{r} \cdot \boldsymbol{E} O + O^{\dagger} O \boldsymbol{r} \cdot \boldsymbol{E} \right] \\ &- \frac{1}{4} G^a_{\mu\nu} G^{\mu\nu a} \end{split}$$

- Hierarchy of scales:
 - ▶ Weakly-coupled pNRQCD is valid for short distances: $mv \sim 1/r \gg \Lambda_{QCD}$.
 - Heavy quarks being slower than gluons implies $\Lambda_{QCD} \gg mv^2$.
- Work plan:
 - Integrate out the light d.o.f.

The Hamiltonian density corresponding to the light d.o.f at leading order in the multipole expansion is

$$\hat{h}_0(oldsymbol{R}) = rac{1}{2} \left(oldsymbol{E}^a oldsymbol{E}^a - oldsymbol{B}^a oldsymbol{B}^a
ight)$$

Gluelump operators G^a

• G^a are a basis of color-octet eigenstates of $\hat{h}_0(\mathbf{R})$ with eigenvalues Λ_{κ} .

$$\hat{h}_0(m{R})G^a_{i\kappa}(m{R})|0
angle=\Lambda_\kappa G^a_{i\kappa}(m{R})|0
angle$$

- Λ_{κ} is called the gluelump mass and it is a nonperturbative quantity. Foster, Michael 1999; Bali, Pineda 2004
- κ labels the $O(3) \times C$ representation (K^{PC} quantum numbers).

The eigenstates of the octet sector Hamiltonian are

$$\ket{\kappa} = O^a\left(\pmb{r}, \pmb{R}
ight) G^a_{i\kappa}(\pmb{R}) \ket{0},$$

We can expand the Lagrangian this basis by projecting into the subspace spanned by

$$\int d^3r \, d^3R \sum_{\kappa} |\kappa\rangle \, \Psi_{i\kappa}(t, \, r, \, R)$$

7/16

After projecting and integrating out Λ_{QCD}:

$$\mathcal{L}^{o}_{BO} = \int d^{3}r \sum_{\kappa} \Psi^{\dagger}_{i\kappa}(t, \mathbf{r}, \mathbf{R}) \Big[\Big(i\partial_{t} + \frac{\nabla^{2}_{r}}{M} - V_{o}(r) - \Lambda_{\kappa} \Big) \, \delta^{ij} \\ - \sum_{\lambda} P^{i}_{\kappa\lambda} b_{\kappa\lambda} r^{2} P^{j}_{\kappa\lambda} + \cdots \Big] \Psi_{j\kappa}(t, \mathbf{r}, \mathbf{R}) + \dots$$

The $P^i_{\kappa\lambda}$ are projectors that select different polarizations of $\Psi_{i\kappa}$.

NLO term: $b_{\kappa\lambda}$

- At finite r the eigenstates must be organized in representations of $D_{\infty h}$.
- Proportional to r^2 due to the multipole expansion.

- $b_{\kappa\lambda}$ is a non-perturbative quantity.
- We obtain it from a fit to the lattice data.
- Breaks the $O(3) \times C \rightarrow D_{\infty h}, b_{\kappa \lambda} = b_{\kappa \lambda}$.
- Responsible for the attractive part of the potential.

Defining the projected wavefunction as $\Psi_{\kappa\lambda} = P^i_{\kappa\lambda}\Psi_{i\kappa}$ and $\Psi_{i\kappa} = \sum_{\lambda} P_{i\kappa\lambda}\Psi_{\kappa\lambda}$:

$$\mathcal{L}_{BO}^{o} = \int d^{3}r \sum_{\kappa} \sum_{\lambda\lambda'} \Psi_{\kappa\lambda}^{\dagger}(t, \mathbf{r}, \mathbf{R}) \Big\{ \Big[i\partial_{t} - V_{o}(\mathbf{r}) - \Lambda_{\kappa} \\ - b_{\kappa\lambda}r^{2} + \cdots \Big] \delta_{\lambda\lambda'} - P_{\kappa\lambda}^{i} \frac{\nabla_{r}^{2}}{M} P_{i\kappa\lambda'} \Big\} \Psi_{\kappa\lambda'}(t, \mathbf{r}, \mathbf{R})$$

Nonadiabatic coupling

We have splitted the kinetic operator acting and the nonadiavatic coupling

$$P^{i}_{\kappa\lambda}\frac{\boldsymbol{\nabla}^{2}_{r}}{M}P_{i\kappa\lambda'}=\frac{\boldsymbol{\nabla}^{2}_{r}}{M}+C_{\kappa\lambda\lambda'}$$

with

$$C_{\kappa\lambda\lambda'} = P^{i}_{\kappa\lambda} \left[\frac{\boldsymbol{\nabla}^{2}_{r}}{M}, P_{i\kappa\lambda'} \right]$$

- The nonadiabatic coupling mixes states which are different projections of the same gluelump.
- ▶ States which are different projections of the same gluelump are degenerate in the limit $r \rightarrow 0$.

Lattice data on hybrid static energies

- The gluonic static energies are are the eigenvalues of the NRQCD Hamiltonian in the static limit.
- The most recent data by Juge, Kuti, Morningstar, 2002 and Bali and Pineda 2003.
- Σ⁺_g is the ground state potential that generates the standard quarkonium states.
- The rest of the static energies correspond to excited gluonic states that generate hybrids.
- The two lowest hybrid static energies are Π_u and Σ_u⁻, they are nearly degenerate at short distances.

Lowest energy multiplet $\Sigma_u^- - \Pi_u$

- \blacktriangleright The lowest mass gluelump has quantum numbers 1^{+-} and $\Lambda^{RS}_{1+-}=0.87\pm0.15$ GeV. Bali, Pineda 2004
- It generates the two lowest laying hybrid static energies Π_u and Σ⁻_u which are degenerate at short distances.
- The nonadiavatic coupling mixes these two static energies.

Coupled radial equations for $\Sigma_u^- - \Pi_u$

$$\begin{bmatrix} -\frac{\partial_r^2}{m} + \frac{1}{mr^2} \begin{pmatrix} l(l+1)+2 & 2\sqrt{l(l+1)} \\ 2\sqrt{l(l+1)} & l(l+1) \end{pmatrix} + \begin{pmatrix} E_{\Sigma}^{\text{light}} & 0 \\ 0 & E_{\Pi}^{\text{light}} \end{pmatrix} \end{bmatrix} \begin{pmatrix} \Psi_{\epsilon,\Sigma}^N \\ \Psi_{\epsilon,\Pi}^N \end{pmatrix} = \mathcal{E}_N \begin{pmatrix} \Psi_{\epsilon,\Sigma}^N \\ \Psi_{\epsilon,\Pi}^N \end{pmatrix} \\ \begin{bmatrix} -\frac{\partial_r^2}{m} + \frac{l(l+1)}{mr^2} + E_{\Pi}^{\text{light}} \end{bmatrix} \psi_{-\epsilon,\Pi}^N = \mathcal{E}_N \psi_{-\epsilon,\Pi}^N .$$

The coupled Schrödinger equations can be solved numerically.

Hybrid state masses from $V^{(0.25)}$

M. Berwein, N. Brambilla, J.T., A. Vairo. arXiv:1510.04299 Phys.Rev. D92 (2015) 11, 114019

GeV	cē			bc				ЬБ				
	m _H	$\langle 1/r \rangle$	E _{kin}	P _Π	m _H	$\langle 1/r \rangle$	E _{kin}	PΠ	m _H	$\langle 1/r \rangle$	Ekin	P _Π
H_1	4.15	0.42	0.16	0.82	7.48	0.46	0.13	0.83	10.79	0.53	0.09	0.86
H_1'	4.51	0.34	0.34	0.87	7.76	0.38	0.27	0.87	10.98	0.47	0.19	0.87
H_2	4.28	0.28	0.24	1.00	7.58	0.31	0.19	1.00	10.84	0.37	0.13	1.00
H'_2	4.67	0.25	0.42	1.00	7.89	0.28	0.34	1.00	11.06	0.34	0.23	1.00
H ₃	4.59	0.32	0.32	0.00	7.85	0.37	0.27	0.00	11.06	0.46	0.19	0.00
H_4	4.37	0.28	0.27	0.83	7.65	0.31	0.22	0.84	10.90	0.37	0.15	0.87
H_5	4.48	0.23	0.33	1.00	7.73	0.25	0.27	1.00	10.95	0.30	0.18	1.00
H_6	4.57	0.22	0.37	0.85	7.82	0.25	0.30	0.87	11.01	0.30	0.20	0.89
H ₇	4.67	0.19	0.43	1.00	7.89	0.22	0.35	1.00	11.05	0.26	0.24	1.00

Solving the coupled Schrödinger equations we obtain

Consistency test:

1. The multipole expansion requires $\langle 1/r \rangle \gtrsim E_{kin}$.

Conclusion:

 As expected the our approach works better in bottomonium than charmonium Spin symmetry multiplets

H_1	$\{1^{}, (0, 1, 2)^{-+}\}$	Σ_u^- , Π_u
H_2	$\{1^{++}, (0, 1, 2)^{+-}\}$	Π_u
H_3	$\{0^{++},1^{+-}\}$	Σ_u^-
H_4	$\{2^{++}, (1, 2, 3)^{+-}\}$	Σ_u^- , Π_u
H_5	$\{2^{},(1,2,3)^{-+}\}$	Π_u
H_6	$\{3^{},(2,3,4)^{-+}\}$	Σ_u^- , Π_u
H_7	$\{3^{++}, (2, 3, 4)^{+-}\}$	Π

∧-doubling effect

- In Braaten et al 2014 a similar procedure was followed to obtain the hybrid masses.
- No Λ-doubling effect mixing terms where included, and phenomenological potentials fitting the lattice data.
- We can compare the results to estimate the size of the Λ -doubling effect.

Charmonium sector

Braaten et al 2014 results plotted in dashed lines.

• The mixing lower the mass of the $H_1(H_4)$ multiplet with respect to $H_2(H_4)$.

Comparison with direct lattice computations

Charmonium sector

- Calculations done by the Hadron Spectrum Collaboration using unquenched lattice QCD with a pion mass of 400 MeV. Liu et all 2012
- They worked in the constituent gluon picture, which consider the multiplets H_2 , H_3 , H_4 as part of the same multiplet.
- Their results are given with the η_c mass subtracted.

Error bands take into account the uncertainty on the gluelump mass $\pm 0.15~\text{GeV}$

Split (GeV)	Liu	$V^{(0.25)}$
$\delta m_{H_2-H_1}$	0.10	0.13
$\delta m_{H_4-H_1}$	0.24	0.22
$\delta m_{H_4-H_2}$	0.13	0.09
$\delta m_{H_3-H_1}$	0.20	0.44
$\delta m_{H_3-H_2}$	0.09	0.31

- ► Our masses are 0.1 0.14 GeV lower except the for the H₃ multiplet, which is the only one dominated by Σ_u⁻.
- ► Good agreement with the mass gaps between multiplets, in particular the Λ -doubling effect $(\delta m_{H_2-H_1})$.

Identification with experimental states

Most of the candidates have 1^{--} or $0^{++}/2^{++}$ since the main observation channels are production by e^+e^- or $\gamma\gamma$ annihilation respectively.

Charmonium states (Belle, CDF, BESIII, Babar):

▶ Bottomonium states: $Y_b(10890)[1^{--}]$, $m = 10.8884 \pm 3.0$ (Belle). Possible H_1 candidate, $m_{H_1} = 10.79 \pm 0.15$.

However, some of the candidates decay modes violate Heavy Quark Spin Symmetry.

Conclusions

- We have obtained an EFT formulation of the Born-Oppenheimer approximation for quarkonium hybrids.
- The potential is obtained by matching to the static energies computed in Lattice NRQCD.
- The nonadiavatic coupling mixing terms are important due to the short range degeneracy of the static energies.
- There are several experimental candidates for charmonium hybrids and one candidate for bottomonium hybrids.

Thank you for your attention

- ▶ For the H₁ multiplet they are about 300 MeV higher, and for the H₂, H₃ and H₄, (degenerate in the constituent gluon picture) they are 100 − 400 MeV higher depending on the multiplet.
- Different multiplet structure (constituent gluon vs Born-Oppenheimer pictures).
- Overall mass shift due to the different origin of the potential.

Comparison with direct lattice computations Bottomonium sector

- Calculations done by Juge, Kuti, Morningstar 1999 and Liao, Manke 2002 using quenched lattice QCD.
- ▶ Juge, Kuti, Morningstar 1999 included no spin or relativistic effects.
- Liao, Manke 2002 calculations are fully relativistic.

Error bands take into account the uncertainty on the gluelump mass $\pm 0.15~\text{GeV}$

Split (GeV)	JKM	$V^{(0.25)}$
$\delta m_{H_2-H_1}$	0.04	0.05
$\delta m_{H_3-H_1}$	0.33	0.27
$\delta m_{H_3-H_2}$	0.30	0.22
$\delta m_{H_1'-H_1}$	0.42	0.19

- Our masses are 0.15 0.25 GeV lower except the for the H₁' multiplet, which is larger by 0.36 GeV.
- ► Good agreement with the mass gaps between multiplets, in particular the Λ-doubling effect $(\delta m_{H_2-H_1})$.

Comparison with QCD sum rules

- ► A recent analysis of QCD sum rules for hybrid operators has been performed by Chen *et al* 2013, 2014 for bb and cc hybrids, and bc hybrids respectively.
- Correlation functions and spectral functions were computed up to dimension six condensates which stabilized the mass predictions compared to previous calculations which only included up to dimension 4 condensates.

Charmonium sector Chen et al 2013

Error bands take into account the uncertainty on the gluelump mass ± 0.15 GeV

- The spin average of the H_1 multiplet is 0.4 GeV lower than our mass.
- H_2 , H_3 and H_4 multiplets are incomplete.
- Large uncertainties compared to direct lattice calculations.

Comparison with QCD sum rules

Error bands take into account the uncertainty on the gluelump mass $\pm 0.15~\text{GeV}$

- The spin average of the H_1 multiplet is 0.98 GeV lower than our mass.
- H_2 , H_3 and H_4 multiplets are incomplete.
- Large uncertainties compared to direct lattice calculations.