pNRQCD at N^3LO: the potential for unequal masses and the Bc spectrum

Clara Peset
September 1, 2016

XIIth Quark Confinement and the Hadron Spectrum, Thessaloniki

Based on the work in collaboration with A. Pineda and M. Stahlhofen:
arxiv:1511.08210
Outline

1. Introduction

2. Heavy quarkonium with different masses
 The NRQCD potential
 The N^3LO spectrum

3. Final remarks
Introduction
EFTs for bound states: NR systems

Non-relativistic systems fulfil the relation: $m_r \gg |p| \gg E$

when bounded by QCD, we need to take into account the relation of the scales to Λ_{QCD}

- **NR limit:** $m_r \gg \Lambda_{QCD}$

 Strong coupling regime: $|p| \gg E \sim \Lambda_{QCD}$

 Weak coupling regime: $|p| \gg E \gg \Lambda_{QCD}$
EFTs for bound states: NR systems

Non-relativistic systems fulfil the relation: \(m_r \gg |p| \gg E \)

When bounded by QCD in the weak coupling regime \(\alpha_s \sim \sqrt{s} \)

<table>
<thead>
<tr>
<th>Scales in bound state</th>
<th>Coulomb interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard scale: (m_r)</td>
<td>(m_r)</td>
</tr>
<tr>
<td>Soft scale: (</td>
<td>p</td>
</tr>
<tr>
<td>Ultrasoft scale: (E)</td>
<td>(m_r \alpha_s^2)</td>
</tr>
</tbody>
</table>

Scales are well separated

We can integrate out the hard and soft scales to obtain pNRQCD

It describes systems such as: \(J/\psi, \Upsilon, \bar{t}t \) near threshold, \(B_c \), etc.
Heavy quarkonium with different masses
The physics of heavy quarks

- Bound states of heavy quarks are naturally NR systems
- We focus in the situation $m_1 \sim m_2 \sim m_r$

Extreme weak coupling regime $mv^2 \gg \Lambda_{QCD}$

\[
\left(i\partial_0 - \frac{p^2}{2m_r} - V^{(0)}(r) \right) \phi(r) = 0
\]

+ corrections to the potential
+ interaction with other low-energy degrees of freedom

- The potentials depend on the matching procedure: on-shell, off-shell in Coulomb and Feynman gauges, with Wilson loops
Heavy quarkonium with different masses: Introduction

The physics of heavy quarks

- Bound states of heavy quarks are naturally NR systems
- We focus in the situation $m_1 \sim m_2 \sim m_r$

Extreme weak coupling regime $mv^2 \gg \Lambda_{\text{QCD}}$

\[
\left(i\partial_0 - \frac{p^2}{2m_r} - V^{(0)}(r) \right) \phi(r) = 0
\]
+ corrections to the potential
+ interaction with other low-energy degrees of freedom

\[
\begin{align*}
pNRQCD. \\
V_s &= V^{(0)} + \frac{V^{(1,0)}}{m_1} + \frac{V^{(0,1)}}{m_2} + \frac{V^{(2,0)}}{m_1^2} + \frac{V^{(0,2)}}{m_2^2} + \frac{V^{(1,1)}}{m_1 m_2} + \cdots
\end{align*}
\]

- The singlet potential: $h_s(r, p, p_R, S_1, S_2) = \frac{p^2}{2m_r} + \frac{p_R^2}{2M} + V_s(r, p, p_R, S_1, S_2)$
Heavy quarkonium with different masses

The NRQCD potential
The NRQCD potential: theoretical setup

The potential

Basis for the potential \((P_R = 0)\):

- static and \(1/m\) potentials: \(V^{(a,b)} = V^{(a,b)}(r)\)
- the \(1/m^2\) potential: \(V^{(a,b)} = V_{SD}^{(a,b)} + V_{SI}^{(a,b)}\)

\[
V_{SI}^{(a,b)} = \frac{1}{2} \left\{ p^2, V_{p^2}^{(a,b)}(r) \right\} + V_{L^2}^{(a,b)}(r) \frac{L^2}{r^2} + V_r^{(a,b)}(r)
\]

The potentials are invariant under:

- charge conjugation: \(\psi \leftrightarrow \chi_c\)
- mass exchange: \(m_1 \leftrightarrow m_2\)
The NRQCD potential: theoretical setup

The potential in momentum space

\[\tilde{V}_s \equiv \langle p' | V_s | p \rangle \]

- **Static potential and \(1/m\) potentials:**
 \[\tilde{V}^{(0)} = -\frac{1}{k^2} \tilde{D}^{(0)}(k), \quad \tilde{V}^{(1,0)} = \frac{1}{k} \tilde{D}^{(1,0)}(k) \]

- **\(1/m^2\) (spin-independent) potential:**
 \[\tilde{V}^{(2,0)}_{SI} = \frac{p^2 + p'^2}{2k^2} \tilde{D}^{(2,0)}_{p^2}(k) + \tilde{D}^{(2,0)}_r(k) + \frac{(p'^2 - p^2)^2}{k^4} \tilde{D}^{(2,0)}_{\text{off}}(k) \]

The \(\tilde{D}\)-coefficients have \(D = d + 1 = 4 + 2\epsilon\) dimensions. It is the \(\tilde{D}_{\text{off}}\)-coefficients that are scheme-dependent.
The NRQCD potential: theoretical setup

Momentum vs. position space

We can relate both bases in terms of the \tilde{D} coefficients.

Example

$$V^{(0)}(0) = \int \frac{d^d q}{(2\pi)^d} e^{-i q \cdot r} \tilde{V}^{(0)}(q) = -C_F \sum_{n=0}^{\infty} \frac{g_B^{2n+2}}{(4\pi)^{2n}} F_{2-2n}(r) \tilde{D}_{n+1}(\epsilon)$$

The L^2 operator in d-dimensions

$$\frac{L^2}{r^2} \equiv p^i (\delta^{ij} - \frac{r_i r^j}{r^2}) p^j$$

which is the usual L^2 in 3-dimensions

The transform of the off-shell potential

it contributes to the three position space structures

$$V^{(2,0)}_{\text{off}} = 4 \left(\frac{d^2 g^{(2,0)}_{\text{off}}}{dr^2} - \frac{1}{r} \frac{dg^{(2,0)}_{\text{off}}}{dr} \right) \frac{L^2}{r^2} - 2 \left\{ \frac{d^2 g^{(2,0)}_{\text{off}}}{dr^2}, p^2 \right\} + 2[p^i, [p^i, \frac{d^2 g^{(2,0)}_{\text{off}}}{dr^2}]] + h_{\text{off}}(r)$$
The NRQCD potential: theoretical setup

Field redefinition

\(\tilde{V}_1 \) and \(\tilde{V}_{\text{off}} \) are related by a field redefinition: mixing

\[
\begin{align*}
 h_s &= \frac{p^2}{2m_r} + V^{(0)}(r) + \frac{\delta V_1(r)}{m_r} + \cdots \\
 \downarrow \text{unitary transformation} \\
 h'_s &= \frac{p^2}{2m_r} + V^{(0)} + \delta \tilde{V}_{\text{FR}} + \cdots \\
 \delta \tilde{V}_{\text{FR}} &= \langle p' | \delta V_{\text{FR}} | p \rangle = \frac{1}{2m_r^2} \frac{(p'^2 - p^2)^2}{k^4} \tilde{g}(k),
\end{align*}
\]

where \(\tilde{g}(k) \sim \tilde{g}(k, V_0, \delta V_1) \)

we can exchange \(1/m_r \) terms by \(1/m_r^2 \) off-shell contributions
The NRQCD potential: computation

Matching with on-shell Green functions

- on-shell Green functions \equiv S-matrix elements
- asymptotic quarks fulfilling the free EOM order by order

Imperfect cancellation between NRQCD and pNRQCD potential loops

$\tilde{V}_C \sim \tilde{V}_{\text{off}} \Rightarrow$ Nontrivial mass dependence in the $1/m$ potential: $\sim \frac{1}{m_1 + m_2} = \frac{m_r}{m_1 m_2}$

As expected: $\tilde{D}_{\text{off}}^{(a,b)}(k) = 0$
Matching with off-shell Green functions

- **Gauge dependent**: Coulomb and Feynman gauges
- **Freedom treating energy dependence**: different choices affect the $1/m$ and $1/m^2$ potentials

Our choice: the one that exhibits the divergence structure of the on-shell potential most “naturally”
The NRQCD potential: computation

Matching with off-shell Green functions

The $1/m^2$ potential in the Coulomb gauge:

- Less diagrams
- Efficient way to perform the computation
- Natural choice of treating energies
The NRQCD potential: computation

Matching with off-shell Green functions

The $1/m^2$ potential in the Feynman gauge:

- More diagrams
- Heavy dependence on the energies
- Computations are easily automated
The NRQCD potential: computation

Matching with Wilson loops

\[W_\Box \equiv \text{P} \exp \left\{ -ig \oint_{r \times T_W} dz^\mu A_\mu(z) \right\} \]

- Green functions in position space and setting the time of the quark and anti-quark equal
- Gauge independent

The "quasi-static" energy \(E_s \)

\[
\frac{p^2}{2m_r} + \frac{P_R^2}{2M} + E^{(0)} + E^{(1,0)}_{m_1} + E^{(0,1)}_{m_2} + E^{(2,0)}_{m_1} + E^{(0,2)}_{m_2} + E^{(1,1)}_{m_1 m_2} + \cdots
\]

Example

\[
E^{(1,1)}_{L^2}(r) = \frac{i}{d-1} \left(\delta^{ij} - d \frac{r^i r^j}{r^2} \right) \lim_{T \to \infty} \int_0^T dt \, t^2 \langle \langle g E^i_1(t) g E^j_2(0) \rangle \rangle_c
\]

where \(\langle \ldots \rangle \equiv \langle \ldots W_\Box \rangle / \langle W_\Box \rangle \)
The NRQCD potential: computation

The $1/m^2$ potential with Wilson loops

- We obtain: $V_{s,W}(r) = E_s(r)|_{\text{soft}}$

- Feynman rules for chromoelectric insertions

Example:

$$V_{L^2,W}^{(1,1)}(r) = \frac{ig_0^2 C_F}{(d-1)} \left(\delta^{ij} - \frac{d \cdot r^i r^j}{r^2} \right) \lim_{T \to \infty} \int_0^T dt \ t^2 \int \frac{d^D k}{(2\pi)^D} e^{i(k_0 t - kr)} \frac{ik_0^2}{k^2 + i0} P_{ij}(k)$$
The NRQCD potential: computation

The $1/m^2$ potential with Wilson loops

- We obtain: $V_{s,W}(r) = E_s(r)|_{\text{soft}}$

Only need compute off-shell potential

- Diagrams showing various contributions to the potential

Clara Peset

pNRQCD at N^3LO: the potential for unequal masses and the Bc spectrum
The NRQCD potential: computation

The $1/m$ potential

- Profit from previous computation: on-shell, for equal masses and to $O(\epsilon)$ (Kniehl et al.)
- The $O(1/m^2)$ scheme difference is off-shell: $\tilde{V}_{s,X} = \tilde{V}_{s,\text{on-shell}} + \delta\tilde{V}_X^{(2)}$

We exploit the relation:

\[
\left. \frac{\tilde{V}_X^{(1,0)}}{m} + \frac{\tilde{V}_X^{(0,1)}}{m} + \delta \tilde{V}_X^{(1)} \right|_{m=m_1=m_2} = \left[\frac{\tilde{V}_{\text{on-shell}}^{(1,0)}}{m} + \frac{\tilde{V}_{\text{on-shell}}^{(0,1)}}{m} \right]_{m=m_1=m_2}
\]

- We compute the $O(\alpha_s^3/m)$ potential for different masses in all previous schemes to $O(\epsilon)$
The NRQCD potential: computation

The renormalised potential

The (singlet) heavy quarkonium self-energy

$$\Sigma_B(1 - \text{loop}) = -g_B^2 C_F V_A^2(1 + \epsilon) \frac{\Gamma(2 + \epsilon) \Gamma(-3 - 2\epsilon)}{\pi^{2+\epsilon}} r \left(h_s - E + \Delta V \right)^{3+2\epsilon} r$$

where $\Delta V \equiv V_o^{(0)} - V^{(0)}$

- Its UV divergences (δV_s) **cancel** the US divergences of the soft potential:
 $$V_s^{\overline{\text{MS}}} + \delta V_s = V_s$$

- $V_s^{\overline{\text{MS}}}$ produces **finite physical results**

- δV_s is **ambiguous**: we choose it so that the 4-dimensional potentials are finite
Poincaré invariance

Poincaré invariance constrains for potentials with an exact expansion on the masses:

\[2V_{L^2}^{(2,0)} - V_{L^2}^{(1,1)} + \frac{r}{2} \frac{dV^{(0)}(r)}{dr} = 0 \]
\[-4V_{p^2}^{(2,0)} + 2V_{p^2}^{(1,1)} - V^{(0)}(r) + r \frac{dV^{(0)}(r)}{dr} = 0 \]

- Our bare and renormalized potentials fulfil them
- They are **not affected by field redefinitions**: they produce
 \[\delta V_{L^2}^{(1,1)} = 2\delta V_{L^2}^{(2,0)}, \quad \delta V_{p^2}^{(1,1)} = 2\delta V_{p^2}^{(2,0)} \]
Example of potential result

The $1/m_1^2$ renormalized potential with Wilson loops:

$$V^{(2,0),\overline{\text{MS}}}_{r, W}(r) = \frac{C_F \alpha_s}{8} \left(c_D^{(1)} + \frac{\alpha_s}{\pi} \left\{ -\frac{5}{9} \left(c_D^{(1)} + c_1^{hl(1)} \right) T_F n_f + \left(\frac{13}{36} c_F^{(1)\ 2} + \frac{8}{3} \right) C_A + \left(\left(\frac{4}{3} + \frac{5}{6} c_F^{(1)\ 2} \right) C_A - \frac{2}{3} \left(c_D^{(1)} + c_1^{hl(1)} \right) T_F n_f \right) \ln(\nu) \right\} \right) 4\pi\delta^{(3)}(r)$$

$$+ \frac{C_F \alpha_s^2}{8\pi} \left\{ \left(\frac{4}{3} + \frac{5}{6} c_F^{(1)\ 2} \right) C_A - \frac{2}{3} \left(c_D^{(1)} + c_1^{hl(1)} \right) T_F n_f \right\} \text{reg} \frac{1}{r^3},$$

$$V^{(2,0),\overline{\text{MS}}}_{L^2, W}(r) = \frac{C_A C_F \alpha_s^2}{4\pi r} \left(\frac{11}{3} - \frac{8}{3} \ln(r \nu e^{\gamma_E}) \right),$$

$$V^{(2,0),\overline{\text{MS}}}_{p^2, W}(r) = -\frac{C_A C_F \alpha_s^2}{\pi r} \left(\frac{2}{3} + \frac{1}{3} \ln(r \nu e^{\gamma_E}) \right).$$
Heavy quarkonium with different masses

The N³LO spectrum
The N3LO spectrum

The B_c spectrum

US energy correction

\[
\delta E_{n\ell}^{US} = -E_n^C \frac{\alpha_s^3}{\pi} \left[\frac{2}{3} C_F L_{n\ell}^E + \frac{1}{3} C_A \left(L_\nu - L_{US} + \frac{5}{6} \right) \left(\frac{C_A^2}{2} + \frac{4 C_A C_F}{(2\ell + 1)n} \right)
+ 2 C_F^2 \left(\frac{8}{(2\ell + 1)n} - \frac{1}{n^2} \right) \right] + \frac{8\delta l_0}{3n} C_F^2 \left(C_F - \frac{C_A}{2} \right) \left(L_\nu - L_{US} + \frac{5}{6} \right),
\]

where $L_{n\ell}^E$ is the Bethe logarithm

Energy correction associated to the static potential

\[
\left. \delta E(n, l, s, j) \right|_{V(0)} = E_n^C \left(1 + \frac{\alpha_s}{\pi} P_1(L_\nu) + \left(\frac{\alpha_s}{\pi} \right)^2 P_2^c(L_\nu) + \left(\frac{\alpha_s}{\pi} \right)^3 P_3^c(L_\nu) \right),
\]

(Kiyo, Sumino)
The N^3LO spectrum

The B_c spectrum

Energy correction associated to the relativistic potentials

$$\delta E(n, l, s, j) = E_n^C \left[\left(\frac{\alpha_s}{\pi} \right)^2 c_{2n}^{nc} + \left(\frac{\alpha_s}{\pi} \right)^3 c_{3n}^{nc} \right]$$

- c_{3n}^{nc} involves the use of perturbation theory

$$\delta E_{nlj}^{V \times V} = \langle \psi_{nlj} | V \frac{1}{(E_n^C - h)^'} V | \psi_{nlj} \rangle$$

$$= \int dr_2 dr_1 \psi_{nlj}^*(r_2) V(r_2) G_{nl}(r_1, r_2) V(r_1) \psi_{nlj}(r_1)$$
The N^3LO spectrum

The B_c spectrum

Complete N^3LO spectrum for the B_c

\[E(n, l, s, j) = E_n^C \left(1 + \frac{\alpha_s}{\pi} P_1(L_\nu) + \left(\frac{\alpha_s}{\pi} \right)^2 P_2(L_\nu) + \left(\frac{\alpha_s}{\pi} \right)^3 P_3(L_\nu) \right), \]

\[P_1(L_\nu) = \beta_0 L_\nu + \frac{a_1}{2}, \]

\[P_2(L_\nu) = \frac{3}{4} \beta_0^2 L_\nu^2 + \left(-\frac{\beta_0^2}{2} + \frac{\beta_1}{4} + \frac{3\beta_0 a_1}{4} \right) L_\nu + c_2, \]

\[P_3(L_\nu) = \frac{1}{2} \beta_0^3 L_\nu^3 + \left(-\frac{7\beta_0^3}{8} + \frac{7\beta_0 \beta_1}{16} + \frac{3}{4} \beta_0^2 a_1 \right) L_\nu^2 \]

\[+ \left(\frac{\beta_0^3}{4} - \frac{\beta_0 \beta_1}{4} + \frac{\beta_2}{16} - \frac{3}{8} \beta_0^2 a_1 + 2\beta_0 c_2 + \frac{3\beta_1 a_1}{16} \right) L_\nu + c_3 \]

where $c_i = c_i^c + c_i^{nc}$
Final remarks
Heavy quarkonium for different masses: conclusions

Summary of the results

- we develop the $N^3\text{LO}$ potential in pNRQCD for different masses
- The potentials obtained are valid for $mv \gg \Lambda_{\text{QCD}}$

The $O(\alpha_s/m^2)$ potential in different matching schemes
- all schemes are feasible
- they are related by a field redefinition

The $O(\alpha_s^3/m)$ potential in different matching schemes
- no $C_F^2 T_F n_F$ in off-shell scheme
- no $C_F^2 T_F n_F$ or $C_F^2 C_A$ in Wilson loop scheme
- The US contribution is valid for $mv^2 \gg \Lambda_{\text{QCD}}$

- We computed the full $N^3\text{LO}$ spectrum for different masses
Heavy quarkonium for different masses: conclusions

Future perspectives

- Study the B_c spectrum and decays
 - obtain the charm mass
- Compute **US contribution with Wilson loops**
 - comparison with lattice predictions
- Explicitly compute $1/m$ potential with **Wilson loops**
 - few color structures
 - check on previous computations
- Compute higher order contributions: $\mathcal{O}(m_r \alpha_s^6 \ln(\alpha_s))$
Thank you!
The spin-dependent and the static potentials

<table>
<thead>
<tr>
<th>The static potential</th>
</tr>
</thead>
<tbody>
<tr>
<td>• gauge independent order-by-order</td>
</tr>
<tr>
<td>• already computed to $\mathcal{O}(\alpha^4)$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>The spin-dependent potential</th>
</tr>
</thead>
<tbody>
<tr>
<td>• renormalized result for different masses computed in 1986 by Pantaleone et al.</td>
</tr>
<tr>
<td>• bare potential needs prescription for the D-dimensional Levi-Civita symbol</td>
</tr>
<tr>
<td>• the renormalized potential is enough to compute the spectrum</td>
</tr>
</tbody>
</table>
The problematic of QCD

Quantum Chromodynamics describes the interaction of quarks and gluons

- It is asymptotically free: predictions can be made at high energies
- The strong interaction grows at long distances: quarks are confined in hadrons at low energies
The problematic of QCD

Quantum Chromodynamics describes the interaction of quarks and gluons

- It is asymptotically free: predictions can be made at high energies
- The strong interaction grows at long distances: quarks are confined in hadrons at low energies

We exploit the EFT tools to overcome our limitation to describe low energy QCD

Clara Peset

pNRQCD at N^3LO: the potential for unequal masses and the Bc spectrum
The spectrum functions

\[\xi_{\text{SD}} = \frac{2}{3n \ m_1 m_2} \left\{ \frac{-3(1 - \delta_{l0})}{l(l+1)(2l+1)} \left(D_S + X_{LS} + \frac{m_1}{m_2} X_{LS_2} + \frac{m_2}{m_1} X_{LS_1} \right) \right\} \]

\[- 4S_{12} \delta_{l0} \left[2 + 3 \frac{m_1 m_2}{m_2^2 - m_1^2} \ln \left(\frac{m_1^2}{m_2^2} \right) \right] \}, \]

\[\xi_{\text{FFnf}} = \frac{2m_r^2}{9n^2 m_1 m_2} \left\{ \frac{1 - \delta_{l0}}{l(l+1)(2l+1)} \left[2n(4S_{12} - D_S) \right. \right. \]

\[+ 6 \left(D_S + \frac{m_2}{m_1} X_{LS_1} + \frac{m_1}{m_2} X_{LS_2} + 2X_{LS} \right) \left(\frac{3n}{2l+1} + \frac{n}{2l(l+1)(2l+1)} + l + \frac{1}{2} \right) \]

\[+ 2n \left\{ S_1(l + n) + S_1(2l - 1) - 2S_1(2l + 1) - l(\Sigma_1^{(k)} + \Sigma_1^{(m)}) + n\Sigma_b - \Sigma_1^{(m)} + \frac{1}{6} \right\} \bigg] \]

\[+ 8\delta_{l0} S_{12} \left[1 + 4n \left(\frac{11}{12} - \frac{1}{n} - S_1(n - 1) - S_1(n) + nS_2(n) \right) \right] \bigg] } \},
Logarithmic functions

\[E_n^C = -\frac{C_F^2 \alpha_s^2 m_r}{2 n^2} \]

\[L_\nu = \ln \left(\frac{n\nu}{2 m_r C_F \alpha_s} \right) + S_1(n + l) \]

\[L_{US} = \ln \left(\frac{C_F \alpha_s n}{2} \right) + S_1(n + l) \]

\[L_H = \ln \left(\frac{n}{C_F \alpha_s} \right) + S_1(n + l) \]

The Bethe logarithm is defined as

\[L_n^E = \frac{1}{(C_F \alpha_s)^2 E_n^C} \int_0^\infty \frac{d^3 k}{(2\pi)^3} |\langle r \rangle_{kn}|^2 \left(E_n^C - \frac{k^2}{2 m_r} \right)^3 \ln \frac{E_1^C}{E_n^C - \frac{k^2}{2 m_r}} \]
Energy dependence in the Coulomb gauge

\[- \frac{i g_B^4}{3} \frac{k^2 e - 4 \csc(\pi e)}{2^4 e + 4 \pi e + \frac{1}{2} \Gamma(\epsilon + \frac{5}{2})} \left[3 C_F T_F n_f \epsilon (1 + \epsilon) \right. \\
- \frac{C_A C_F}{4} \left. ((\epsilon + 1)(\epsilon(56 \epsilon + 121) + 60) - \frac{5 \Gamma\left(\epsilon + \frac{3}{2}\right)^2}{\sqrt{\pi} \Gamma\left(2\epsilon + \frac{5}{2}\right)} 4^{\epsilon + 1}(\epsilon + 1)(2 \epsilon + 3)(4 \epsilon + 3) \right] \\
= - \frac{i g_B^4}{3 m_i} C_A C_F \frac{k^2 e - 4 (\epsilon + 1)(2 \epsilon + 1) \Gamma(1 - \epsilon) \Gamma(2 \epsilon)}{4^2 e + 1 \pi e + \frac{3}{2} \Gamma\left(2\epsilon + \frac{3}{2}\right)} \\
\left[E_i \left(k^2 - (p'^2 - p^2)^2 \right) + E'_i \left(k^2 + (p'^2 - p^2)^2 \right) \right] \]