

pNRQCD at N³LO: the potential for unequal masses and the Bc spectrum

Clara Peset September 1, 2016

XIIth Quark Confinement and the Hadron Spectrum, Thessaloniki

Based on the work in collaboration with A. Pineda and M. Stahlhofen: $\ensuremath{\mathsf{arxiv:}1511.08210}$

- 1. Introduction
- 2. Heavy quarkonium with different masses

The NRQCD potential The N 3 LO spectrum

3. Final remarks

Introduction

EFTs for bound states: NR systems

Non-relativistic systems fulfil the relation: $m_r \gg |\mathbf{p}| \gg E$ when bounded by QCD, we need to take into account the relation of the scales to Λ_{QCD}

• NR limit: $m_r \gg \Lambda_{QCD}$

Strong coupling regime: $|\mathbf{p}| \gg E \sim \Lambda_{QCD}$ Weak coupling regime: $|\mathbf{p}| \gg E \gg \Lambda_{QCD}$

EFTs for bound states: NR systems

Non-relativistic systems fulfil the relation: $m_r \gg |\mathbf{p}| \gg E$

When bounded by QCD in the weak coupling regime $\alpha_s \sim v$

Scales in bound state	Coulomb interaction	
Hard scale: m _r	\longrightarrow	m _r
Soft scale: p	\longrightarrow	$m_r \alpha_s$
Ultrasoft scale: E	\longrightarrow	$m_r \alpha_s^2$

Scales are well separated

We can integrate out the hard and soft scales to obtain **pNRQCD**

It describes systems such as: J/ψ , Υ , $\overline{t}t$ near threshold, B_c , etc.

Heavy quarkonium with different masses

The physics of heavy quarks

- Bound states of heavy quarks are naturally NR systems
- We focus in the situation $m_1 \sim m_2 \sim m_r$

Extreme weak coupling regime $mv^2 \gg \Lambda_{QCD}$ $\left(i\partial_0 - \frac{\mathbf{p}^2}{2m_r} - V^{(0)}(r)\right)\phi(\mathbf{r}) = 0$ + corrections to the potential

+ interaction with other low-energy degrees of freedom

pNRQCD.

• The potentials depend on the matching procedure: on-shell, off-shell in Coulomb and Feynman gauges, with Wilson loops

The physics of heavy quarks

- Bound states of heavy quarks are naturally NR systems
- We focus in the situation $m_1 \sim m_2 \sim m_r$

Extreme weak coupling regime $mv^2 \gg \Lambda_{QCD}$

$$\left(i\partial_0 - \frac{\mathbf{p}^2}{2m_r} - V^{(0)}(r)\right)\phi(\mathbf{r}) = 0$$

+ corrections to the potential
+ interaction with other low-energy degrees of freedom

PNRQCD.

• The singlet potential: $h_s(\mathbf{r}, \mathbf{p}, \mathbf{P}_{\mathbf{R}}, \mathbf{S}_1, \mathbf{S}_2) = \frac{\mathbf{p}^2}{2m_r} + \frac{\mathbf{P}_{\mathbf{R}}^2}{2M} + V_s(\mathbf{r}, \mathbf{p}, \mathbf{P}_{\mathbf{R}}, \mathbf{S}_1, \mathbf{S}_2)$

$$V_s = V^{(0)} + rac{V^{(1,0)}}{m_1} + rac{V^{(0,1)}}{m_2} + rac{V^{(2,0)}}{m_1^2} + rac{V^{(0,2)}}{m_2^2} + rac{V^{(1,1)}}{m_1m_2} + \cdots$$

Heavy quarkonium with different masses

The NRQCD potential

The potential

Basis for the potential $(P_R = 0)$:

• static and 1/m potentials: $V^{(a,b)} = V^{(a,b)}(r)$

• the
$$1/m^2$$
 potential: $V^{(a,b)} = V^{(a,b)}_{SD} + V^{(a,b)}_{SI}$
 $V^{(a,b)}_{SI} = \frac{1}{2} \left\{ \mathbf{p}^2, V^{(a,b)}_{\mathbf{r}^2}(r) \right\} + V^{(a,b)}_{\mathbf{L}^2}(r) \frac{\mathbf{L}^2}{r^2} + V^{(a,b)}_{\mathbf{r}}(r)$

The potentials are invariant under:

- charge conjugation: $\psi \leftrightarrow \chi_c$
- mass exchange: $m_1 \leftrightarrow m_2$

The potential in momentum space

$$ilde{V}_{s}\equiv \langle {f p}'|V_{s}|{f p}
angle$$

• Static potential and 1/m potentials: $\tilde{V}^{(0)} = -\frac{1}{k^2}\tilde{D}^{(0)}(k), \qquad \tilde{V}^{(1,0)} \equiv \frac{1}{k}\tilde{D}^{(1,0)}(k)$

• $1/m^2$ (spin-independent) potential: $\tilde{V}_{Sl}^{(2,0)} = \frac{\mathbf{p}^2 + \mathbf{p}'^2}{2\mathbf{k}^2} \tilde{D}_{\mathbf{p}^2}^{(2,0)}(k) + \tilde{D}_r^{(2,0)}(k) + \frac{(\mathbf{p}'^2 - \mathbf{p}^2)^2}{\mathbf{k}^4} \tilde{D}_{off}^{(2,0)}(k)$

The \tilde{D} -coefficients have $D = d + 1 = 4 + 2\epsilon$ dimensions It is the \tilde{D}_{off} -coefficients that are *scheme-dependent*

The NRQCD potential: theoretical setup

Momentum vs. position space

We can relate both bases in terms of the \tilde{D} coefficients.

Example

$$V^{(0)} = \int \frac{d^d q}{(2\pi)^d} e^{-i\mathbf{q}\cdot\mathbf{r}} \tilde{V}^{(0)}(\mathbf{q}) = -C_F \sum_{n=0}^{\infty} \frac{g_B^{2n+2}}{(4\pi)^{2n}} \mathcal{F}_{2-2n\epsilon}(r) \tilde{D}_{n+1}^{(0)}(\epsilon)$$

The L^2 operator in *d*-dimensions

$$\frac{\mathbf{L}^2}{\mathbf{r}^2} \equiv p^i (\delta^{ij} - \frac{r^i r^j}{\mathbf{r}^2}) p^j$$

which is the usual L^2 in 3-dimensions

The transform of the off-shell potential

it contributes to the three position space structures

$$V_{\text{off}}^{(2,0)} = 4\left(\frac{d^2g_{\text{off}}^{(2,0)}}{dr^2} - \frac{1}{r}\frac{dg_{\text{off}}^{(2,0)}}{dr}\right)\frac{\mathsf{L}^2}{r^2} - 2\left\{\frac{d^2g_{\text{off}}^{(2,0)}}{dr^2}, \mathsf{p}^2\right\} + 2[p^i, [p^i, \frac{d^2g_{\text{off}}^{(2,0)}}{dr^2}]] + h_{\text{off}}(r)$$

pNRQCD at N^3LO : the potential for unequal masses and the Bc spectrum 6 / 19

Field redefinition

 V_1 and V_{off} are related by a field redefinition: mixing $h_s = \frac{\mathbf{p}^2}{2m} + V^{(0)}(r) + \frac{\delta V_1(r)}{m} + \cdots$ \Downarrow unitary transformation $h'_{s} = \frac{\mathbf{p}^{2}}{2m_{r}} + V^{(0)} + \delta \tilde{V}_{\mathrm{FR}} + \cdots$ $\delta \tilde{V}_{\mathrm{FR}} = \langle \mathbf{p}' | \delta V_{\mathrm{FR}} | \mathbf{p} \rangle = \frac{1}{2m^{2}} \frac{(\mathbf{p}'^{2} - \mathbf{p}^{2})^{2}}{\mathbf{k}^{4}} \tilde{g}(k),$ where $\tilde{g}(k) \sim \tilde{g}(k, V_0, \delta V_1)$

we can exchange $1/m_r$ terms by $1/m_r^2$ off-shell contributions

Matching with on-shell Green functions

- on-shell Green functions \equiv S-matrix elements
- asymptotic quarks fulfilling the free EOM order by order

Imperfect cancellation between NRQCD and pNRQCD potential loops

 \Rightarrow Nontrivial mass dependence in the 1/m potential: $\sim \frac{1}{m_1+m_2} = \frac{m_r}{m_1m_2}$

• As expected:
$$\tilde{D}_{off}^{(a,b)}(k) = 0$$

Clara Peset

pNRQCD at N^3LO : the potential for unequal masses and the Bc spectrum 8 / 19

Matching with off-shell Green functions

- Gauge dependent: Coulomb and Feynman gauges
- Freedom treating energy dependence: different choices affect the 1/m and $1/m^2$ potentials

Our choice: the one that exhibits the divergence structure of the on-shell potential most "naturally"

Matching with off-shell Green functions

The $1/m^2$ potential in the Coulomb gauge:

- Less diagrams
- Efficient way to perform the computation
- Natural choice of treating energies

Matching with off-shell Green functions

The $1/m^2$ potential in the Feynman gauge:

- More diagrams
- Heavy dependence on the energies
- Computations are easily automated

Matching with Wilson loops

$$W_{\Box} \equiv \mathrm{P} \exp \left\{ -ig \oint_{r imes T_W} dz^{\mu} A_{\mu}(z)
ight\}$$

• Green functions in **position space** and setting the **time** of the quark and anti-quark **equal**

• Gauge independent

The "quasi-static" energy E_s $\frac{\mathbf{p}^2}{2 \, m_{\rm r}} + \frac{\mathbf{P}_{\mathsf{R}}^2}{2 \, M} + E^{(0)} + \frac{E^{(1,0)}}{m_1} + \frac{E^{(0,1)}}{m_2} + \frac{E^{(2,0)}}{m_1^2} + \frac{E^{(0,2)}}{m_2^2} + \frac{E^{(1,1)}}{m_1 m_2} + \cdots$

Example

$$E_{L^{2}}^{(1,1)}(r) = \frac{i}{d-1} \left(\delta^{ij} - d \frac{r^{i} r^{j}}{r^{2}} \right) \lim_{T \to \infty} \int_{0}^{T} dt \, t^{2} \langle \langle g \mathbf{E}_{1}^{i}(t) g \mathbf{E}_{2}^{j}(0) \rangle \rangle_{c}$$

where $\langle\!\langle \dots \rangle\!\rangle \equiv \langle \dots W_{\Box} \rangle / \langle W_{\Box} \rangle$

The $1/m^2$ potential with Wilson loops

- We obtain: $V_{s,W}(r) = E_s(r)|_{\text{soft}}$
- Feynman rules for chromoelectric insertions

The $1/m^2$ potential with Wilson loops

• We obtain: $V_{s,W}(r) = E_s(r)|_{\text{soft}}$

The 1/m potential

- \bullet Profit from previous computation: on-shell, for equal masses and to $\mathcal{O}(\epsilon)$ (Kniehl et al.)
- The $\mathcal{O}(\frac{1}{m^2})$ scheme difference is off-shell: $\tilde{V}_{s,X} = \tilde{V}_{s,\text{on-shell}} + \delta \tilde{V}_X^{(2)}$

We exploit the relation: $\frac{\tilde{V}_{X}^{(1,0)}}{m} + \frac{\tilde{V}_{X}^{(0,1)}}{m} + \delta \tilde{V}_{X}^{(1)}\Big|_{m=m_{1}=m_{2}} = \left[\frac{\tilde{V}_{\text{on-shell}}^{(1,0)}}{m} + \frac{\tilde{V}_{\text{on-shell}}^{(0,1)}}{m}\right]$

• We compute the $\mathcal{O}(\alpha_s^3/m)$ potential for different masses in **all** previous schemes to $\mathcal{O}(\epsilon)$

The renormalised potential

The (singlet) heavy quarkonium self-energy

$$\Sigma_{B}(1 - \operatorname{loop}) = -g_{B}^{2}C_{F}V_{A}^{2}(1 + \epsilon)\frac{\Gamma(2 + \epsilon)\Gamma(-3 - 2\epsilon)}{\pi^{2 + \epsilon}}\mathbf{r}\left(\mathbf{h}_{s} - \mathbf{E} + \Delta \mathbf{V}\right)^{3 + 2\epsilon}\mathbf{r}$$
where $\Delta \mathbf{V} \equiv V_{o}^{(0)} - \mathbf{V}^{(0)}$

• Its UV divergences (δV_s) cancel the US divegrences of the soft potential:

$$V_s^{\overline{\mathrm{MS}}} + \delta V_s = V_s$$

• $V_s^{\overline{\text{MS}}}$ produces finite physical results

• δV_s is ambiguous: we choose it so that the 4-dimensional potentials are finite

Clara Peset

pNRQCD at N^3LO : the potential for unequal masses and the Bc spectrum 14 / 19

Poincaré invariance

Poincaré invariance constrains

for potentials with an exact expansion on the masses:

$$2V_{L^{2}}^{(2,0)} - V_{L^{2}}^{(1,1)} + \frac{r}{2}\frac{dV^{(0)}(r)}{dr} = 0$$
$$-4V_{p^{2}}^{(2,0)} + 2V_{p^{2}}^{(1,1)} - V^{(0)}(r) + r\frac{dV^{(0)}(r)}{dr} = 0$$

• Our bare and renormalized potentials fulfil them

• They are **not affected by field redefinitions**: they produce $\delta V_{L^2}^{(1,1)} = 2\delta V_{L^2}^{(2,0)}$, $\delta V_{p^2}^{(1,1)} = 2\delta V_{p^2}^{(2,0)}$

Example of potential result

The $1/m_1^2$ renormalized potential with Wilson loops :

$$\begin{split} V_{r,W}^{(2,0),\overline{\mathrm{MS}}}(r) &= \frac{C_F \alpha_s}{8} \left(c_D^{(1)} + \frac{\alpha_s}{\pi} \left\{ -\frac{5}{9} \left(c_D^{(1)} + c_1^{h/(1)} \right) T_F n_f + \left(\frac{13}{36} c_F^{(1)\,2} + \frac{8}{3} \right) C_A \right. \\ &+ \left(\left(\frac{4}{3} + \frac{5}{6} c_F^{(1)\,2} \right) C_A - \frac{2}{3} \left(c_D^{(1)} + c_1^{h/(1)} \right) T_F n_f \right) \ln(\nu) \right\} \right) 4\pi \delta^{(3)}(\mathbf{r}) \\ &+ \frac{C_F \alpha_s^2}{8\pi} \left\{ \left(\frac{4}{3} + \frac{5}{6} c_F^{(1)\,2} \right) C_A - \frac{2}{3} \left(c_D^{(1)} + c_1^{h/(1)} \right) T_F n_f \right\} \operatorname{reg} \frac{1}{r^3}, \\ V_{\mathbf{L}^2,W}^{(2,0),\overline{\mathrm{MS}}}(r) &= \frac{C_A C_F \alpha_s^2}{4\pi r} \left(\frac{11}{3} - \frac{8}{3} \ln \left(r \nu e^{\gamma_E} \right) \right), \\ V_{\mathbf{p}^2,W}^{(2,0),\overline{\mathrm{MS}}}(r) &= -\frac{C_A C_F \alpha_s^2}{\pi r} \left(\frac{2}{3} + \frac{1}{3} \ln \left(r \nu e^{\gamma_E} \right) \right) \end{split}$$

Heavy quarkonium with different masses

The N³LO spectrum

The N³LO spectrum

The B_c spectrum

US energy correction

$$\begin{split} \delta E_{nl}^{US} &= -E_n^C \frac{\alpha_s^3}{\pi} \left[\frac{2}{3} C_F^3 L_{nl}^E + \frac{1}{3} C_A \left(L_\nu - L_{US} + \frac{5}{6} \right) \left(\frac{C_A^2}{2} + \frac{4C_A C_F}{(2l+1)n} \right. \\ &+ \left. 2C_F^2 \left(\frac{8}{(2l+1)n} - \frac{1}{n^2} \right) \right) + \frac{8\delta_{l0}}{3n} C_F^2 \left(C_F - \frac{C_A}{2} \right) \left(L_\nu - L_{US} + \frac{5}{6} \right) \right], \end{split}$$

where L_n^E is the Bethe logarithm

Energy correction associated to the static potential

$$\delta E(n,l,s,j)\Big|_{V^{(0)}} = E_n^C \left(1 + \frac{\alpha_s}{\pi} P_1(L_\nu) + \left(\frac{\alpha_s}{\pi}\right)^2 P_2^c(L_\nu) + \left(\frac{\alpha_s}{\pi}\right)^3 P_3^c(L_\nu)\right),$$

(Kiyo, Sumino)

The B_c spectrum

Energy correction associated to the relativistic potentials

$$\delta E(n, l, s, j) = E_n^C \left[\left(\frac{\alpha_s}{\pi} \right)^2 c_2^{\rm nc} + \left(\frac{\alpha_s}{\pi} \right)^3 c_3^{\rm nc} \right]$$

• $c_3^{\rm nc}$ involves the use of perturbation theory

$$\frac{V}{|\mathbf{x}||} = \langle \psi_{nlj} | V \frac{1}{(E_n^C - h)'} V | \psi_{nlj} \rangle$$
$$= \int d\mathbf{r}_2 d\mathbf{r}_1 \psi_{nlj}^*(\mathbf{r}_2) V(\mathbf{r}_2) G_{nl}'(\mathbf{r}_1, \mathbf{r}_2) V(\mathbf{r}_1) \psi_{nlj}(\mathbf{r}_1)$$

The B_c spectrum

Complete N^3LO spectrum for the B_c

$$E(n,l,s,j) = E_n^C \left(1 + \frac{\alpha_s}{\pi} P_1(L_\nu) + \left(\frac{\alpha_s}{\pi}\right)^2 P_2(L_\nu) + \left(\frac{\alpha_s}{\pi}\right)^3 P_3(L_\nu) \right),$$

Final remarks

Heavy quarkonium for different masses: conclusions

Summary of the results

- \bullet we develop the N^3LO potential in pNRQCD for different masses
- \bullet The potentials obtained are valid for $mv\gg\Lambda_{\text{QCD}}$
- The $\mathcal{O}(\alpha_s/m^2)$ potential in different matching schemes
- all schemes are feasible
- they are related by a field redefinition

The $\mathcal{O}(\alpha_s^3/m)$ potential in different matching schemes

- no $C_F^2 T_F n_F$ in off-shell scheme
- no $C_F^2 T_F n_F$ or $C_F^2 C_A$ in Wilson loop scheme
- \bullet The US contribution is valid for $mv^2 \gg \Lambda_{\text{QCD}}$
- We computed the full N³LO spectrum for different masses

Future perspectives

- Study the *B_c* spectrum and decays -obtain the charm mass
- Compute US contribution with Wilson loops -comparison with lattice predictions
- Explicitly compute 1/m potential with Wilson loops

 -few color structures
 -check on previous computations
- Compute higher order contributions: $\mathcal{O}(m_r \alpha_s^6 \ln(\alpha_s))$

Thank you!

The spin-dependent and the static potentials

The static potential

- gauge independent order-by-order
- already computed to $\mathcal{O}(\alpha^4)$

The spin-dependent potential

• renormalized result for different masses computed in 1986 by Pantaleone et al.

• bare potential needs prescription for the *D*-dimensional Levi-Civita symbol

• the renormalized potential is enough to compute the spectrum

The problematic of QCD

Quantum Chromodynamics describes the interaction of quarks and gluons

- It is asymptotically free: predictions can be made at high energies
- The strong interaction grows at long distances: quarks are confined in hadrons at low energies

The problematic of QCD

Quantum Chromodynamics describes the interaction of quarks and gluons

- It is asymptotically free: predictions can be made at high energies
- The strong interaction grows at long distances: quarks are confined in hadrons at low energies

We exploit the EFT tools to overcome our limitation to describe low energy QCD

The spectrum functions

$$\begin{split} \xi_{\rm FFF}^{\rm SD} &= \frac{2}{3n} \frac{m_r^2}{m_1 m_2} \left\{ \frac{-3(1-\delta_{l0})}{l(l+1)(2l+1)} \left(D_S + X_{\rm LS} + \frac{m_1}{m_2} X_{\rm LS_2} + \frac{m_2}{m_1} X_{\rm LS_1} \right) \\ &\quad - 4S_{12}\delta_{l0} \left[2 + 3\frac{m_1 m_2}{m_2^2 - m_1^2} \ln \left(\frac{m_1^2}{m_2^2} \right) \right] \right\}, \\ \xi_{\rm FFnf}^{\rm SD} &= \frac{2m_r^2}{9n^2 m_1 m_2} \left\{ \frac{1-\delta_{l0}}{l(l+1)(2l+1)} \left[2n(4S_{12} - D_S) \right. \\ &\quad + 6 \left(D_S + \frac{m_2}{m_1} X_{\rm LS_1} + \frac{m_1}{m_2} X_{\rm LS_2} + 2X_{\rm LS} \right) \left(\frac{3n}{2l+1} + \frac{n}{2l(l+1)(2l+1)} + l + \frac{1}{2} \right. \\ &\quad + 2n \left\{ S_1(l+n) + S_1(2l-1) - 2S_1(2l+1) - l(\Sigma_1^{(k)} + \Sigma_1^{(m)}) + n\Sigma_b - \Sigma_1^{(m)} + \frac{1}{6} \right\} \right) \right] \\ &\quad + 8\delta_{l0}S_{12} \left[1 + 4n \left(\frac{11}{12} - \frac{1}{n} - S_1(n-1) - S_1(n) + nS_2(n) \right) \right] \Big\}, \end{split}$$

Logarithmic functions

$$E_n^C = -\frac{C_F^2 \alpha_s^2 m_r}{2n^2}$$

$$L_{\nu} = \ln\left(\frac{n\nu}{2m_r C_F \alpha_s}\right) + S_1(n+l) \ L_{US} = \ln\left(\frac{C_F \alpha_s n}{2}\right) + S_1(n+l)$$

$$L_H = \ln\left(\frac{n}{C_F \alpha_s}\right) + S_1(n+l)$$

The Bethe logarithm is defined as

$$L_{n}^{E} = \frac{1}{(C_{F}\alpha_{s})^{2}E_{n}^{C}} \int_{0}^{\infty} \frac{d^{3}k}{(2\pi)^{3}} |\langle \mathbf{r} \rangle_{\mathbf{k}n}|^{2} \left(E_{n}^{C} - \frac{k^{2}}{2m_{r}}\right)^{3} \ln \frac{E_{1}^{C}}{E_{n}^{C} - \frac{k^{2}}{2m_{r}}}$$

Energy dependence in the Coulomb gauge

