Scattering of Charmed Mesons from Lattice QCD

Graham Moir

(graham.moir@damtp.cam.ac.uk)

Hadron Spectrum Collaboration

University of Cambridge

29th August 2016

XIIth Quark Confinement and the Hadron Spectrum Thessaloniki, Greece

Open-Charm Mesons

(Taken from the PDG)

• First principles \Rightarrow lattice QCD

Meson	J^P	Mass (MeV)	Width (MeV)
$D_0^*(2400)$	0+	2318(29)	267(40)
$D_{s0}^{*}(2317)$	0+	2317.6(6)	< 3.8

• First principles \Rightarrow lattice $D_0^*(i)$

Meson	J^P	Mass (MeV)	Width (MeV)
$D_0^*(2400)$	0+	2318(29)	267(40)
$D_{s0}^{*}(2317)$	0+	2317.6(6)	< 3.8

This talk

- Coupled-channel $D\pi$, $D\eta$ and $D_s\bar{K}$ scattering (I = 1/2) [arXiv:1607.07093]
- *DK* scattering (I = 0) (Preliminary)

Discrete finite-volume spectrum is given by energies solving

$$\det\left[t_{ij}^{-1}(E)+\mathcal{M}_{ij}(E,L)\right]=0$$

- *i*, *j* label channels
- $t_{ij}(E)$ is the infinite-volume scattering *t*-matrix ... mixes channels
- $\mathcal{M}_{ij}(E, L)$ are known finite-volume functions ... mixes partial waves

Discrete finite-volume spectrum is given by energies solving

$$\det\left[t_{ij}^{-1}(E)+\mathcal{M}_{ij}(E,L)\right]=0$$

- *i*, *j* label channels
- $t_{ij}(E)$ is the infinite-volume scattering *t*-matrix ... mixes channels
- $\mathcal{M}_{ij}(E, L)$ are known finite-volume functions ... mixes partial waves

Lattice QCD spectrum \Rightarrow infinite volume *t*-matrix

Discrete finite-volume spectrum is given by energies solving

$$\det\left[t_{ij}^{-1}(E)+\mathcal{M}_{ij}(E,L)\right]=0$$

- *i*, *j* label channels
- $t_{ij}(E)$ is the infinite-volume scattering *t*-matrix ... mixes channels
- $\mathcal{M}_{ij}(E, L)$ are known finite-volume functions ... mixes partial waves

Lattice QCD spectrum \Rightarrow infinite volume *t*-matrix

The bad news

• *N* coupled-channels \Rightarrow *t*-matrix has $(N^2 + N)/2$ unknowns (per energy level)

 \Rightarrow very under-constrained

Graham Moir

A work-around

- Parametrise the *t*-matrix using a "few" free parameters
- Use many more than a "few" lattice QCD energy levels to constrain t(E)

We want to

- Preserve *S*-matrix unitarity
- Analytically continue into the complex $s = E_{cm}^2$ plane
- Examine the pole content of the parametrised *t*-matrix

Make use of many parametrisations

- \mathcal{K} -matrix
- Breit-Wigner
- Effective Range Expansion

^{• ...}

Coupled-channel $D\pi$, $D\eta$ and $D_s\bar{K}$ Scattering (I = 1/2) [arXiv:1607.07093]

Finite-Volume Energy Levels

Reduced rotational symmetry

- Partial waves mix in each lattice irrep $[\vec{P}]\Lambda$
- $[000]A_1^+: \ell = 0, 4, \ldots$

Finite-volume energies

- $C_{ij}(t) = \left\langle 0 \left| \mathcal{O}_i(t) \mathcal{O}_j^{\dagger}(0) \right| 0 \right\rangle$
- Large basis of "single" and "two-meson" operators for each lattice irrep
- $D\pi(I = 1/2)$ [000] A_1^+ : $D\pi(4)$, $D\eta(3)$, $D_{s}\bar{K}(3), D(11)$

Note

- $M_{\pi} \approx 391 \text{ MeV}$
- $M_D \approx 1885 \text{ MeV}$
- $M_{D_c} \approx 1950 \text{ MeV}$

Graham Moir

Elastic $D\pi$ *Scattering*

All irreps with $\ell = 0, 1$

Graham Moir

ы

SCATTERING OF CHARMED MESONS FROM LATTICE QCD

• Near-threshold *S*-wave pole on the real-axis

$$t_{ij} \sim c_i c_j / (s_{pole} - s)$$

• Couplings: $c_{D\pi} = 549(158) \text{ MeV}$; $c_{D\eta} = 436(130) \text{ MeV}$; $c_{D_s\bar{K}} = 221(85) \text{ MeV}$.

Graham Moir

• Resonance pole on all sheets with $\text{Im}[k_{D\pi}] < 0$

Graham Moir

S-wave

• Bound-state pole: 2275.9 ± 0.9 MeV c.f. $D_0^*(2400)$: 2318 ± 29 MeV

P-wave

• Bound-state pole: 2009 ± 2 MeV c.f. $D^*(2007)$: 2006.9 ± 0.08 MeV

D-wave

- **Resonance** pole: $m = 2527 \pm 3 \text{ MeV}$; $\Gamma = 8.2 \pm 0.7 \text{ MeV}$
 - c.f. D_2^* (2460): $m = 2462.6 \pm 0.6 \text{ MeV}$; $\Gamma = 49.0 \pm 1.3 \text{ MeV}$

DK Scattering (I = 0) (Preliminary)

DK Scattering (Preliminary)

S-wave

- Bound-state pole \approx 2380 MeV ; \approx 55 MeV below *DK* threshold (at m_{π} = 391)
- Expt. $D_{s0}^{*}(2317)$: 2317.7 \pm 0.6 MeV ; \approx 45 MeV below *DK* threshold

DK Scattering (Preliminary)

S-wave

- Bound-state pole \approx 2380 MeV ; \approx 55 MeV below *DK* threshold (at m_{π} = 391)
- Expt. $D_{s0}^*(2317)$: 2317.7 \pm 0.6 MeV ; \approx 45 MeV below *DK* threshold
- c.f. S-wave pole in $D\pi$ channel: ≈ 1 MeV below threshold

Summary and Outlook

Summary:

First lattice QCD calculation of coupled-channel scattering including heavy quarks

- $D\pi$ (I = 1/2) channel (at $m_{\pi} = 391$ MeV)
 - 0⁺: near-threshold bound-state pole c.f. $D_0^*(2400)$
 - 1⁻: deeply-bound pole c.f. $D^*(2007)$
 - 2^+ : narrow resonance c.f. $D_2^*(2460)$

DK (I = 0) channel (at $m_{\pi} = 391$ MeV)

• 0⁺: bound-state pole c.f. $D_{s0}^{*}(2317)$

Outlook:

- Pole dependence on m_{π} under-way
- Address X,Y,Z's ?

Extra Slides

Isospin-3/2: Finite-Volume Energy Levels

Isospin-3/2: $D\pi$ *Phase-Shift*

K-Matrix Parametrisation

A convenient choice is given by a \mathcal{K} -matrix description

$$t_{ij}^{-1}(s)=\mathcal{K}_{ij}^{-1}(s)+\mathcal{I}_{ij}(s)$$

Preservation of unitarity

- Above kinematic threshold: $\text{Im}[\mathcal{I}_{ij}(s)] = -\delta_{ij}\rho_i(s)$
- Below kinematic threshold: $\text{Im}[\mathcal{I}_{ij}(s)] = 0$

Flexibility in $\operatorname{Re}[\mathcal{I}_{ij}(s)]$

- Zero above kinematic threshold
- Chew-Mandelstam prescription

Most freedom comes from parametrising $\mathcal{K}_{ij}(s)$, for example,

$$\mathcal{K}_{ij}(s) = \sum_{p} \frac{g_i^{(p)} g_j^{(p)}}{m_p^s - s} + \sum_{n} \gamma_{ij}^{(n)} s^n$$

Extracting Finite-Volume Energy Levels

Solve a GEVP for a matrix of 2-pt functions constructed using

- Ø Distillation
 - Improves overlap with low-lying states
 - Efficient re-use of perambulators
- **2** Large bases of interpolating operators for each irrep $[\vec{P}]\Lambda$
 - "Single-meson" ~ $\bar{\psi}\Gamma D \dots \psi$ with up to 3 derivatives for $\vec{P} = 0$ (2 for $\vec{P} \neq 0$)
 - "Two-meson" ~ $\Omega_{\vec{p_1}}^{(1)\dagger} \Omega_{\vec{p_2}}^{(2)\dagger}$ for variationally optimised "single-mesons" $\Omega_{\vec{p}}^{(i)\dagger}$

$[000]A_1^+$	[001]A ₁	[011]A ₁	[111]A ₁
$\begin{array}{c} D_{000} \pi_{000} \\ D_{001} \pi_{00-1} \\ D_{011} \pi_{0-1-1} \\ * D_{111} \pi_{-1-1-1} \\ D_{000} \eta_{000} \\ D_{001} \eta_{00-1} \\ * D_{011} \eta_{0-1-1} \\ D_{s} 000 K_{000} \\ D_{s} 001 K_{00-1} \\ * D_{s} 001 K_{0-1-1} \end{array}$	$\begin{array}{c} D_{001} \pi_{000} \\ D_{000} \pi_{00-1} \\ D_{011} \pi_{00-1} \\ D_{011} \pi_{0-1-1} \\ D_{011} \pi_{0-1-1} \\ D_{011} \pi_{0-1-1} \\ D_{001} \pi_{000} \\ D_{000} \eta_{00-1} \\ D_{001} \eta_{00-1} \\ D_{001} \eta_{00-1} \\ D_{001} \eta_{00-1} \\ D_{002} \eta_{00-1} \\ D_{000} \eta_{00-1} \\ D_{00$	$\begin{array}{c} D_{011}\pi_{000} \\ D_{000}\pi_{0.1.1} \\ D_{001}\pi_{0.10} \\ D_{011}\pi_{.10} \\ D_{011}\pi_{.1.1} \\ D_{001}\pi_{.1.1.1} \\ D_{001}\pi_{0.1.1} \\ D_{001}\eta_{0.1.1} \\ D_{001}\eta_{0.10} \\ D_{000}\eta_{0.1.1} \\ D_{001}\eta_{0.10} \\ D_{5}\eta_{01}\kappa_{000} \\ D_{5}\eta_{01}\kappa_{0.10} \\ D_{5}\eta_{11}\kappa_{00.1} \end{array}$	$\begin{array}{c} D_{111}\pi_{000}\\ D_{000}\pi_{.1-1.1}\\ D_{011}\pi_{.100}\\ D_{000}\pi_{.1-1.1}\\ D_{002}\pi_{.1-1.1}\\ D_{111}\pi_{00.2}\\ D_{111}\eta_{000}\\ D_{000}\eta_{.1-1.1}\\ D_{001}\eta_{.1-10}\\ D_{001}\eta_{.1-10}\\ D_{5}\eta_{.11}K_{000}\\ D_{5}\eta_{.1}K_{100}\\ D_{5}\eta_{.1}K_{.100}\\ D_{5}\eta_{.100}\\ K_{.100}\\ D_{5}\eta_{.100}\\ K_{.100}\\ D_{5}\eta_{.100}\\ K_{.100}\\ D_{5}\eta_{.100}\\ K_{.100}\\ D_{5}\eta_{.100}\\ K_{.100}\\ M_{100}\\ $
$(\bar{\psi} \Gamma \psi) \times 11$	$(\bar{\psi} \Gamma \psi) \times 32$	$(\bar{\psi} \Gamma \psi) \times 52$	$(\bar{\psi} \Gamma \psi) \times 37$

Calculations are performed on anisotropic $N_f = 2 + 1$ ensembles generated by the **Hadron Spectrum Collaboration**

Anisotropic actions

- Gauge: Symanzik-improved (tree-level tadpole improvement)
- Fermionic: Sheikholeslami-Wohlert (tree-level clover coefficients)

Anisotropy: $\xi = a_s/a_t \approx 3.5$, where $a_s \approx 0.12$ fm

Pion mass: $M_{\pi} \approx 391 \text{ MeV}$

Volumes:

•
$$L = 16^3 \times 128 \Rightarrow M_{\pi}L \approx 3.8$$
 (479 cfgs)

•
$$L = 20^3 \times 128 \Rightarrow M_{\pi}L \approx 4.8$$
 (603 cfgs)

• $L = 24^3 \times 128 \Rightarrow M_{\pi}L \approx 5.7$ (553 cfgs)

Elastic $D\pi$ **Scattering**

Parametrisation $\chi^2/N_{\rm dof}$ K-matrix with Chew-Mandelstam I(s) & $K_1 = \frac{g_1^2}{m^2 - \epsilon} + \gamma_1$ $K = \frac{g^2}{m^2 - \epsilon} + \gamma^{(0)}$ 1.64 $K = \frac{g^2}{m^2 - s} + \gamma^{(1)}s$ 1.63 $K = \frac{(g^{(1)})^2 s}{2} + \gamma^{(0)}$ 1.64 $K = \frac{(g+g^{(1)})^2 s}{m^2}$ 1.66K-matrix with Chew-Mandelstam I(s) & $K_1 = \frac{g_1^2}{m_{s-s}^2}$ $K = \frac{g^2}{m^2} + \gamma^{(0)}$ 1.82 $K = \frac{g^2}{m^2} + \gamma^{(1)}s$ 1.82 K-matrix with $I(s) = -i\rho(s)$ & $K_1 = \frac{g_1^2}{m^2 - s} + \gamma_1$ $K = -\frac{g^2}{2} + \gamma^{(0)}$ 1.61 $K = \frac{g^2}{m^2} + \gamma^{(1)}s$ 1.64K-matrix with $I(s) = -i\rho(s)$ & $K_1 = \frac{g_1^2}{m_s^2 - s}$ $K = \frac{g^2}{m^2} + \gamma^{(0)}$ 1.81 $K = -\frac{g^2}{2} + \gamma^{(1)}s$ 1.80Effective range expansion in $\ell = 0$ & $K_1 = \frac{g_1^2}{m^2 - s} + \gamma_1$ $k_{D\pi} \cot \delta_0^{D\pi} = \frac{1}{2} + \frac{1}{2}r^2k_{D\pi}^2 + P_2k_{D\pi}^4$ 1 91 $a_t \sqrt{s_{\text{pole}}}$ 0.4014 0.4016 0.4018