The EOS of neutron matter, and the effect of Λ hyperons to neutron star structure

Stefano Gandolfi

Los Alamos National Laboratory (LANL)

XIIth Quark Confinement and the Hadron Spectrum 29th August to 3rd September 2016, Thessaloniki, Greece

www.computingnuclei.org

National Energy Research Scientific Computing Center

Neutron star is a wonderful natural laboratory

D. Page

- Atmosphere: atomic and plasma physics
- Crust: physics of superfluids (neutrons, vortex), solid state physics (nuclei)
- Inner crust: deformed nuclei, pasta phase
- Outer core: nuclear matter
- Inner core: hyperons? quark matter? π or K condensates?

ELE NOR

Nuclei and hypernuclei

Few thousands of binding energies for normal nuclei are known. Only few tens for hypernuclei.

ELE DOG

- The model and the method
- Equation of state of neutron matter
- Neutron star structure (I) radius
- Λ-hypernuclei and Λ-neutron matter
- Neutron star structure (II) maximum mass
- Conclusions

ELE DOG

Nuclear Hamiltonian

Model: non-relativistic nucleons interacting with an effective nucleon-nucleon force (NN) and three-nucleon interaction (TNI).

$$H = -\frac{\hbar^2}{2m} \sum_{i=1}^A \nabla_i^2 + \sum_{i < j} v_{ij} + \sum_{i < j < k} V_{ijk}$$

 v_{ij} NN (Argonne AV8') fitted on scattering data. Sum of operators:

$$\mathbf{v}_{ij} = \sum O_{ij}^{p=1,8} \mathbf{v}^p(\mathbf{r}_{ij}), \quad O_{ij}^p = (1, ec{\sigma}_i \cdot ec{\sigma}_j, S_{ij}, ec{L}_{ij} \cdot ec{S}_{ij}) imes (1, ec{ au}_i \cdot ec{ au}_j)$$

Urbana-Illinois Vijk models processes like

+ short-range correlations (spin/isospin independent).

$$H\psi(\vec{r}_1\ldots\vec{r}_N)=E\psi(\vec{r}_1\ldots\vec{r}_N)\qquad\psi(t)=e^{-(H-E_T)t}\psi(0)$$

Ground-state extracted in the limit of $t \to \infty$.

Propagation performed by

$$\psi(R,t) = \langle R | \psi(t)
angle = \int dR' G(R,R',t) \psi(R',0)$$

- Importance sampling: $G(R, R', t) \rightarrow G(R, R', t) \Psi_I(R') / \Psi_I(R)$
- Constrained-path approximation to control the sign problem. Unconstrained calculation possible in several cases (exact).

Ground–state obtained in a **non-perturbative way.** Systematic uncertainties within 1-2 %.

ELE DOG

Neutron matter equation of state

Neutron matter is an "exotic" system. Why do we care?

- EOS of neutron matter gives the symmetry energy and its slope.
- The three-neutron force (T = 3/2) very weak in light nuclei, while T = 1/2 is the dominant part. No direct T = 3/2 experiments available.
- Determines properties of neutron stars.

Assumption from experiments:

$$E_{SNM}(
ho_0) = -16 MeV \,, \quad
ho_0 = 0.16 fm^{-3} \,, \quad E_{sym} = E_{PNM}(
ho_0) + 16$$

At ρ_0 we access E_{sym} by studying PNM.

3 5

We consider different forms of three-neutron interaction by only requiring a particular value of E_{sym} at saturation.

Neutron matter

Equation of state of neutron matter using Argonne forces:

Neutron matter and symmetry energy

From the EOS, we can fit the symmetry energy around ρ_0 using

$$E_{sym}(\rho) = E_{sym} + \frac{1}{3} \frac{\rho - 0.135}{0.16} + \cdots$$

$$\int_{0}^{70} \frac{1}{66} \frac{1}{66} \frac{1}{6} \frac{1}{6}$$

Very weak dependence to the model of 3N force for a given E_{sym} . Knowing E_{sym} or L useful to constrain 3N! (within this model...)

ELE DQA

 $I_{0} = 0.16$

Neutron matter and neutron star structure

TOV equations:

$$\frac{dP}{dr} = -\frac{G[m(r) + 4\pi r^3 P/c^2][\epsilon + P/c^2]}{r[r - 2Gm(r)/c^2]},$$
$$\frac{dm(r)}{dr} = 4\pi\epsilon r^2,$$

Neutron star matter

- Neutron star radii sensitive to EOS around $ho \sim (1-2)
 ho_0$
- Maximum mass depends to higher densities

ELE DOG

Gandolfi, Carlson, Reddy, PRC (2012).

ъ.

Neutron stars

Observations of the mass-radius relation are becoming available:

Steiner, Lattimer, Brown, ApJ (2010)

Neutron star observations can be used to constrain the EOS, E_{sym} and L. (Systematic uncertainties still under debate...)

15/25

Here an 'astrophysical measurement'

 $32 < E_{sym} < 34 MeV, 43 < L < 52 MeV$ Steiner, Gandolfi, PRL (2012).

= 990

High density neutron matter

If chemical potential large enough ($\rho \sim 2 - 3\rho_0$), nucleons produce Λ , Σ , ... Non-relativistic BHF calculations suggest that available hyperon-nucleon Hamiltonians do not support an EOS with $M > 2M_{\odot}$:

Schulze and Rijken PRC (2011). Vidana, Logoteta, Providencia, Polls, Bombaci EPL (2011).

Note: (Some) other relativistic model support $2M_{\odot}$ neutron stars.

ELE DOG

Hyperon puzzle

A-hypernuclei and hypermatter

$$H = H_N + \frac{\hbar^2}{2m_\Lambda} \sum_{i=1}^A \nabla_i^2 + \sum_{i < j} v_{ij}^{\Lambda N} + \sum_{i < j < k} V_{ijk}^{\Lambda NN}$$

 Λ -binding energy calculated as the difference between the system with and without Λ .

ヨヨー わすゆ

Λ-nucleon interaction

The Λ -nucleon interaction is constructed similarly to the Argonne potentials (Usmani).

Argonne NN: $v_{ij} = \sum_{p} v_p(r_{ij}) O_{ij}^p$, $O_{ij} = (1, \sigma_i \cdot \sigma_j, S_{ij}, \vec{L}_{ij} \cdot \vec{S}_{ij}) \times (1, \tau_i \cdot \tau_j)$ Usmani AN: $v_{ij} = \sum_{p} v_p(r_{ij}) O_{ij}^p$, $O_{\lambda j} = (1, \sigma_\lambda \cdot \sigma_j) \times (1, \tau_j^z)$

Unfortunately... \sim 4500 NN data, \sim 30 of AN data.

ELE DOG

AN and ANN interactions

 ΛNN has the same range of ΛN

Differently from NN and NNN interactions:

Lonardoni, Gandolfi, Pederiva, PRC (2013) and PRC (2014).

 $V^{\Lambda NN}$ (II) is a new form where the parameters have been readjusted. ΛNN crucial for saturation. Neutrons and Λ particles:

$$\rho = \rho_n + \rho_\Lambda, \qquad \qquad x = \frac{\rho_\Lambda}{\rho}$$

$$E_{\text{HNM}}(\rho, x) = \left[E_{\text{PNM}}((1-x)\rho) + m_n\right](1-x) + \left[E_{\text{PAM}}(x\rho) + m_{\Lambda}\right]x + f(\rho, x)$$

where $E_{P\Lambda M}$ is the non-interacting energy (no $v_{\Lambda\Lambda}$ interaction),

$$E_{PNM}(
ho) = a \left(rac{
ho}{
ho_0}
ight)^lpha + b \left(rac{
ho}{
ho_0}
ight)^eta$$

and

$$f(\rho, x) = c_1 \frac{x(1-x)\rho}{\rho_0} + c_2 \frac{x(1-x)^2 \rho^2}{\rho_0^2}$$

All the parameters are fit to Quantum Monte Carlo results.

'글▶ ◀ 글▶ ' 글| 날 ' ' 이 < (~

Λ-neutron matter

EOS obtained by solving for $\mu_{\Lambda}(\rho, x) = \mu_n(\rho, x)$

Lonardoni, Lovato, Gandolfi, Pederiva, PRL (2015)

No hyperons up to $\rho = 0.5 \text{ fm}^{-3}$ using ΛNN (II)!!!

Λ-neutron matter

Lonardoni, Lovato, Gandolfi, Pederiva, PRL (2015)

Drastic role played by ΛNN . Calculations can be compatible with neutron star observations.

Note: no $v_{\Lambda\Lambda}$, no protons, and no other hyperons included yet...

三日 のへの

Summary

- EOS of pure neutron matter qualitatively well understood.
- Λ -nucleon data very limited, but ΛNN is very important.
- Role of Λ in neutron stars far to be understood. We cannot conclude **anything** for neutron stars with present models...

Future needs:

- Accurate and precise measurement of E_{sym} and L.
- More AN experimental data needed. Input from Lattice QCD? Femtoscopy @HADES (talk by Piotr Salabura)?
- Light and medium A-nuclei measurements needed, especially $N \neq Z$ (JLAB exp. approved)

Acknowledgments

- J. Carlson, D. Lonardoni (LANL)
- A. Lovato (ANL)
- F. Pederiva (Trento)
- S. Reddy (INT)
- A. Steiner (UT/ORNL)

25 / 25

三日 のへの

Extra slides

글 제 제 글 제

三日 のへの

Neutron matter at N2LO

EOS of pure neutron matter at N2LO, R_0 =1.0 fm. Error quantification estimated as previously.

Lynn, Tews, Carlson, Gandolfi, Gezerlis, Schmidt, Schwenk (2015).

Model: non-relativistic nucleons interacting with an effective nucleon-nucleon force (NN) and three-nucleon interaction (TNI).

$$\mathcal{H} = -rac{\hbar^2}{2m}\sum_{i=1}^A
abla_i^2 + \sum_{i < j} \mathsf{v}_{ij} + \sum_{i < j < k} V_{ijk}$$

 v_{ij} NN fitted on scattering data. Sum of operators:

$$v_{ij} = \sum O_{ij}^{p=1,8} v^p(r_{ij}), \quad O_{ij}^p = (1, \vec{\sigma}_i \cdot \vec{\sigma}_j, S_{ij}, \vec{L}_{ij} \cdot \vec{S}_{ij}) \times (1, \vec{\tau}_i \cdot \vec{\tau}_j)$$

NN interaction - Argonne AV8' and AV6'.

ELE NOO

Phase shifts, AV8'

Difference AV8'-AV18 less than 0.2 MeV per nucleon up to A=12.

Two neutrons have

$$k pprox \sqrt{E_{lab} \ m/2} \,, \qquad
ightarrow k_F$$

that correspond to

$$k_F
ightarrow
ho pprox (E_{lab}\ m/2)^{3/2}/2\pi^2$$
 .

 E_{lab} =150 MeV corresponds to about 0.12 fm⁻³. E_{lab} =350 MeV to 0.44 fm⁻³.

Argonne potentials useful to study dense matter above $\rho_0=0.16$ fm⁻³

= - nan

Carlson, et al., arXiv:1412.3081, RMP (2015)

6/9

Neutron stars

Observations of the mass-radius relation are becoming available:

Steiner, Lattimer, Brown, ApJ (2010)

Neutron star observations can be used to 'measure' the EOS and constrain E_{sym} and L. (Systematic uncertainties still under debate...)

Neutron star matter

Neutron star matter model:

$$E_{NSM} = a \left(\frac{\rho}{\rho_0}\right)^{lpha} + b \left(\frac{\rho}{\rho_0}\right)^{eta}, \quad \rho < \rho_t$$

(form suggested by QMC simulations),

and a high density model for $\rho > \rho_t$

- i) two polytropes
- ii) polytrope+quark matter model

ELE DQA

Neutron star radius sensitive to the EOS at nuclear densities!

Direct way to extract E_{sym} and L from neutron stars observations:

$$E_{svm} = a + b + 16$$
, $L = 3(a\alpha + b\beta)$

Neutron star matter really matters!

 $32 < E_{sym} < 34 \; MeV$ $43 < L < 52 \; MeV$

Steiner, Gandolfi, PRL (2012).