The EOS of neutron matter, and the effect of Λ hyperons to neutron star structure

Stefano Gandolfi

Los Alamos National Laboratory (LANL)

XIIth Quark Confinement and the Hadron Spectrum
29th August to 3rd September 2016, Thessaloniki, Greece

www.computingnuclei.org
Neutron star is a wonderful natural laboratory

- **Atmosphere**: atomic and plasma physics
- **Crust**: physics of superfluids (neutrons, vortex), solid state physics (nuclei)
- **Inner crust**: deformed nuclei, pasta phase
- **Outer core**: nuclear matter
- **Inner core**: hyperons? quark matter? π or K condensates?
Few thousands of binding energies for normal nuclei are known. Only few tens for hypernuclei.
The model and the method
Equation of state of neutron matter
Neutron star structure (I) - radius
Λ-hypernuclei and Λ-neutron matter
Neutron star structure (II) - maximum mass
Conclusions
Nuclear Hamiltonian

Model: non-relativistic nucleons interacting with an effective nucleon-nucleon force (NN) and three-nucleon interaction (TNI).

\[
H = -\frac{\hbar^2}{2m} \sum_{i=1}^{A} \nabla_i^2 + \sum_{i<j} v_{ij} + \sum_{i<j<k} V_{ijk}
\]

\(v_{ij}\) NN (Argonne AV8’) fitted on scattering data. Sum of operators:

\[
v_{ij} = \sum O_{ij}^{p=1,8} v^p (r_{ij}), \quad O_{ij}^p = (1, \vec{\sigma}_i \cdot \vec{\sigma}_j, S_{ij}, \vec{L}_{ij} \cdot \vec{S}_{ij}) \times (1, \vec{\tau}_i \cdot \vec{\tau}_j)
\]

Urbana–Illinois \(V_{ijk}\) models processes like

\[\pi \pi \Delta \pi \pi \Delta\] + short-range correlations (spin/isospin independent).

Stefano Gandolfi (LANL) - stefano@lanl.gov
The EOS of neutron matter, and the effect of \(\Lambda\) hyperons
Quantum Monte Carlo

\[H \psi(\vec{r}_1 \ldots \vec{r}_N) = E \psi(\vec{r}_1 \ldots \vec{r}_N) \]
\[\psi(t) = e^{-\left(H-E_T\right)t} \psi(0) \]

Ground-state extracted in the limit of \(t \to \infty \).

Propagation performed by

\[\psi(R, t) = \langle R | \psi(t) \rangle = \int dR' G(R, R', t) \psi(R', 0) \]

- Importance sampling: \(G(R, R', t) \to G(R, R', t) \frac{\Psi_I(R')}{\Psi_I(R)} \)
- Constrained-path approximation to control the sign problem. Unconstrained calculation possible in several cases (exact).

Ground-state obtained in a **non-perturbative way.** Systematic uncertainties within 1-2 \%.
Neutron matter is an "exotic" system. Why do we care?

- EOS of neutron matter gives the symmetry energy and its slope.
- The three-neutron force ($T = 3/2$) very weak in light nuclei, while $T = 1/2$ is the dominant part. No direct $T = 3/2$ experiments available.
- Determines properties of neutron stars.

![Diagram showing the relationship between theory, experiments, Esym, L, and neutron stars.](image)
What is the Symmetry energy?

Assumption from experiments:

\[E_{SNM}(\rho_0) = -16\,\text{MeV}, \quad \rho_0 = 0.16\,\text{fm}^{-3}, \quad E_{sym} = E_{PNM}(\rho_0) + 16 \]

At \(\rho_0 \) we access \(E_{sym} \) by studying PNM.
We consider different forms of three-neutron interaction by only requiring a particular value of E_{sym} at saturation.

different 3N:
- $V_{2\pi} + \alpha V_R$
- $V_{2\pi} + \alpha V_R^\mu$
- ($\text{several } \mu$)
- $V_{2\pi} + \alpha \tilde{V}_R$
- $V_{3\pi} + \alpha V_R$
Neutron matter

Equation of state of neutron matter using Argonne forces:

\[E_{\text{sym}} = 35.1 \text{ MeV (AV8'+UIX)} \]
\[E_{\text{sym}} = 33.7 \text{ MeV} \]
\[E_{\text{sym}} = 32 \text{ MeV} \]
\[E_{\text{sym}} = 30.5 \text{ MeV (AV8')} \]

Gandolfi, Carlson, Reddy, PRC (2012)
Neutron matter and symmetry energy

From the EOS, we can fit the symmetry energy around ρ_0 using

$$E_{\text{sym}}(\rho) = E_{\text{sym}} + \frac{L \rho - 0.16}{0.16} + \cdots$$

Gandolfi et al., EPJ (2014)

Tsang et al., PRC (2012)

Very weak dependence to the model of 3N force for a given E_{sym}. Knowing E_{sym} or L useful to constrain 3N! (within this model...)
TOV equations:

\[
\frac{dP}{dr} = - \frac{G[m(r) + 4\pi r^3 P/c^2][\epsilon + P/c^2]}{r[r - 2Gm(r)/c^2]},
\]

\[
\frac{dm(r)}{dr} = 4\pi \epsilon r^2,
\]
Neutron star matter

- Neutron star radii sensitive to EOS around $\rho \sim (1 - 2)\rho_0$
- Maximum mass depends to higher densities
Neutron star structure

Causality: $R > 2.9 \ (GM/c^2)$

$\rho_{\text{central}} = 2 \rho_0$

$\rho_{\text{central}} = 3 \rho_0$

Error associated with E_{sym}

$E_{\text{sym}} = 30.5 \ \text{MeV (NN)}$

$1.4 \ M_\odot$

$1.97(4) \ M_\odot$

Observations of the mass-radius relation are becoming available:

Neutron star observations can be used to constrain the EOS, E_{sym} and L.

(Systematic uncertainties still under debate...)
Here an 'astrophysical measurement'

\[32 < E_{\text{sym}} < 34 \text{ MeV}, \ 43 < L < 52 \text{ MeV} \]

Steiner, Gandolfi, PRL (2012).
If chemical potential large enough ($\rho \sim 2 - 3\rho_0$), nucleons produce Λ, Σ, ...

Non-relativistic BHF calculations suggest that available hyperon-nucleon Hamiltonians do not support an EOS with $M > 2M_\odot$:

Schulze and Rijken PRC (2011).

Note: (Some) other relativistic model support $2M_\odot$ neutron stars.

→ Hyperon puzzle
Λ-hypernuclei and hypermatter

\[
H = H_N + \frac{\hbar^2}{2m_\Lambda} \sum_{i=1}^{A} \nabla_i^2 + \sum_{i<j} v_{ij}^{\Lambda N} + \sum_{i<j<k} V_{ijk}^{\Lambda NN}
\]

Λ-binding energy calculated as the difference between the system with and without Λ.
The Λ-nucleon interaction is constructed similarly to the Argonne potentials (Usmani).

Argonne NN:

$$v_{ij} = \sum_p v_p(r_{ij}) O_{ij}^p, \quad O_{ij} = (1, \sigma_i \cdot \sigma_j, S_{ij}, \vec{L}_{ij} \cdot \vec{S}_{ij}) \times (1, \tau_i \cdot \tau_j)$$

Usmani ΛN:

$$v_{ij} = \sum_p v_p(r_{ij}) O_{ij}^\lambda, \quad O_{\lambda j} = (1, \sigma_{\lambda} \cdot \sigma_j) \times (1, \tau_j^z)$$

Unfortunately... ~ 4500 NN data, ~ 30 of ΛN data.
ΛN and ΛNN interactions

ΛNN has the same range of ΛN

\[
\begin{array}{c}
\Lambda \\
\Sigma \\
\Lambda \\
\end{array}
\quad \pi \\
\begin{array}{c}
N \\
\Sigma \\
N \\
\end{array}
\]

\[
\begin{array}{c}
N \\
\pi \\
N \\
\end{array}
\quad \begin{array}{c}
\Lambda \\
\Sigma \\
\Lambda \\
\end{array}
\quad \pi \\
\begin{array}{c}
N \\
\Sigma \\
N \\
\end{array}
\]

Differently from NN and NNN interactions:

\[
\begin{array}{c}
N \\
\pi \\
N \\
\end{array}
\quad \Delta \\
\begin{array}{c}
N \\
\pi \\
N \\
\end{array}
\]

\[
\begin{array}{c}
N \\
\pi \\
N \\
\end{array}
\quad \Delta \\
\begin{array}{c}
N \\
\pi \\
N \\
\end{array}
\]
The EOS of neutron matter, and the effect of Λ hyperons

Lonardoni, Gandolfi, Pederiva, PRC (2013) and PRC (2014).

V^{ΛNN} (II) is a new form where the parameters have been readjusted. ΛNN crucial for saturation.
Hyper-neutron matter

Neutrons and Λ particles:

$$\rho = \rho_n + \rho_\Lambda, \quad x = \frac{\rho_\Lambda}{\rho}$$

$$E_{\text{HNM}}(\rho, x) = \left[E_{\text{PNM}}((1-x)\rho) + m_n \right](1-x) + \left[E_{\text{PAM}}(x\rho) + m_\Lambda \right]x + f(\rho, x)$$

where E_{PAM} is the non-interacting energy (no $\nu_{\Lambda\Lambda}$ interaction),

$$E_{\text{PNM}}(\rho) = a \left(\frac{\rho}{\rho_0} \right)^\alpha + b \left(\frac{\rho}{\rho_0} \right)^\beta$$

and

$$f(\rho, x) = c_1 \frac{x(1-x)\rho}{\rho_0} + c_2 \frac{x(1-x)^2\rho^2}{\rho_0^2}$$

All the parameters are fit to Quantum Monte Carlo results.
Λ-neutron matter

EOS obtained by solving for \(\mu_\Lambda(\rho, x) = \mu_n(\rho, x) \)

Lonardoni, Lovato, Gandolfi, Pederiva, PRL (2015)

No hyperons up to \(\rho = 0.5 \text{ fm}^{-3} \) using \(\Lambda NN \) (II)!!!
Drastic role played by ΛNN. Calculations can be compatible with neutron star observations.

Note: no $\nu_{\Lambda\Lambda}$, no protons, and no other hyperons included yet...
Summary

- EOS of pure neutron matter qualitatively well understood.
- Λ-nucleon data very limited, but ΛNN is very important.
- Role of Λ in neutron stars far to be understood. We cannot conclude anything for neutron stars with present models...

Future needs:

- Accurate and precise measurement of E_{sym} and L.
- More ΛN experimental data needed. Input from Lattice QCD? Femtoscopy @HADES (talk by Piotr Salabura)?
- Light and medium Λ-nuclei measurements needed, especially $N \neq Z$ (JLAB exp. approved)

Acknowledgments

- J. Carlson, D. Lonardoni (LANL)
- A. Lovato (ANL)
- F. Pederiva (Trento)
- S. Reddy (INT)
- A. Steiner (UT/ORNL)
Extra slides
Neutron matter at N2LO

EOS of pure neutron matter at N2LO, $R_0=1.0$ fm. Error quantification estimated as previously.

Model: non-relativistic nucleons interacting with an effective nucleon-nucleon force (NN) and three-nucleon interaction (TNI).

\[
H = -\frac{\hbar^2}{2m} \sum_{i=1}^{A} \nabla_i^2 + \sum_{i<j} v_{ij} + \sum_{i<j<k} V_{ijk}
\]

\(v_{ij}\) NN fitted on scattering data. Sum of operators:

\[
v_{ij} = \sum O_{ij}^{p=1,8} v^p(r_{ij}), \quad O_{ij}^p = (1, \vec{\sigma}_i \cdot \vec{\sigma}_j, S_{ij}, \vec{L}_{ij} \cdot \vec{S}_{ij}) \times (1, \vec{\tau}_i \cdot \vec{\tau}_j)
\]

NN interaction - Argonne AV8’ and AV6’.
Phase shifts, AV8′

Difference AV8′-AV18 less than 0.2 MeV per nucleon up to A=12.

Stefano Gandolfi (LANL) - stefano@lanl.gov
Two neutrons have

\[k \approx \sqrt{E_{lab} m/2} \rightarrow k_F \]

that correspond to

\[k_F \rightarrow \rho \approx (E_{lab} m/2)^{3/2}/2\pi^2. \]

\(E_{lab} = 150 \) MeV corresponds to about 0.12 fm\(^{-3}\).

\(E_{lab} = 350 \) MeV to 0.44 fm\(^{-3}\).

Argonne potentials useful to study dense matter above \(\rho_0 = 0.16 \) fm\(^{-3}\).
Light nuclei spectrum computed with GFMC

Argonne v_{18} with UIX or Illinois-7 GFMC Calculations
1 June 2011

Observations of the mass-radius relation are becoming available:

Neutron star observations can be used to 'measure' the EOS and constrain E_{sym} and L. (Systematic uncertainties still under debate...)
Neutron star matter

Neutron star matter model:

\[E_{NSM} = a \left(\frac{\rho}{\rho_0} \right)^\alpha + b \left(\frac{\rho}{\rho_0} \right)^\beta, \quad \rho < \rho_t \]

(form suggested by QMC simulations),

and a high density model for \(\rho > \rho_t \)

i) two polytropes

ii) polytrope+quark matter model

Neutron star radius sensitive to the EOS at nuclear densities!

Direct way to extract \(E_{sym} \) and \(L \) from neutron stars observations:

\[E_{sym} = a + b + 16, \quad L = 3(a\alpha + b\beta) \]
Neutron star matter really matters!

32 < \(E_{sym} < 34 \text{ MeV} \)
43 < \(L < 52 \text{ MeV} \)

Steiner, Gandolfi, PRL (2012).