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Overview

• Motivation
• Understand the mechanism behind Confinement and Chiral Symmetry

breaking in SU(2) using instanton-dyons.

• Tool
• Minimize free energy density in a gas of interacting dyons
• Find Polyakov loop (Confinement) and chiral condensate (Chiral symmetry

breaking)

• Introduction
• Properties of dyons and 2-point interactions

• Free energy density f
• Results for pure gauge

• Add Fermions
• Obtain chiral condensate from eigenvalue distribution
• Results for Nf = 2
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Instanton-Dyons

• Dyons appear for non-zero expectation value of A4 field in a color direction

< A3
4 > ≡ 2πTν, holonomy ν (1)

Polyakov loop P = cos(πν) (2)

• Lee, Lu[hep-th/9802108] and Kraan, van Baal [arXiv:hep-th/9806034]
• Dyons are topological solutions to Equations of Motion
• Nc dyons make up one Caloron (finite temperature Instanton)
• Nc = 2: Two dyons called M and L dyons

• Confined phase is P = 0 and ν = 0.5
• Deconfined phase is P = 1 and ν = 0

• Topological charge is ν for M and ν̄ = 1− ν for L dyons

M M̄ L L̄
Sg2 8π2ν 8π2ν 8π2(1− ν) 8π2(1− ν)
e 1 1 -1 -1
m 1 -1 -1 1
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Classical interaction

• Coulomb like interaction, with opposite sign on electric charges

∆S =
8π2ν

g2

(
−e1e2

1

x
+m1m2

1

x

)
x = 2πνrT (3)

• r is distance between dyons
• Attractive case obtained from gradient flow
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• Lack of states within x < 2 simulated as a hard core
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Free Energy Density

• At volume V →∞, the dominating configuration is the parameters that
minimizes free energy density

f =
4π2

3
ν2ν̄2 − 2nM ln

[
dνe

nM

]
− 2nL ln

[
dν̄e

nL

]
+∆fInteractions (4)

• Free energy density contains 3 items
• The GPY potential that prefer trivial Holonomy
• The entropy due to the dyons moving around
• (∆fInteractions) Corrections to the energy due to the interactions of the

dyons

• GPY potential [Gross, Pisarski, Yaffe, Rev. Mod. Phys. 53, 43 ]

• dν [Diakonov, Gromov, Petrov, Slizovskiy: arXiv:hep-th/0404042]
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Pure Gauge: Polyakov Loop

• The Polyakov loop P (left) and density of M and L dyons (right) as a
function of action/temperature
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Phase Transition

Phase Transition

Dyons ensemble gives Confinement-Deconfinement phase transition.
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Fermions

• L dyons have fermionic zero modes (D/ ψ = 0) for anti-periodic fermions

• The determinant of the Dirac operator = closed loops of hopping over L’s
[Shuryak, Verbaarschot:Nucl.Phys. B341 (1990) 1-26]

Det

∣∣∣∣ 0 Tij
Tji 0

∣∣∣∣ =
∑

All combinations

• Shape of Tij is taken from overlap of fermionic zero-modes

< i|D/ |j >≡ Tij ∼ exp(−2π(1− ν)r/2) (5)

• The Banks-Casher relation for the chiral condensate tells us that

| < ψ̄ψ > | = πρ(λ)λ→0,m→0,V→∞ (6)

• For finite volume we need to look at eigenvalue distribution around 0

• Eigenvalue distribution fitted to Random matrix theory[arXiv:0910.4134]
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Polyakov Loop and Chiral Condensate for Nf = 2

• Polyakov loop P and Chiral condensate Σ (left) and densities for M and L
dyons (right)

• The drop in the Polyakov loop increases the effective density of L dyons,
creating a chiral condensate
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• Dyons can therefore give Confinement and a non-zero Chiral condensate.
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Summary

• Pure gauge: Phase transition to zero Polyakov loop

• Add 2 fermions: Non-zero Chiral condensate appear as the Polyakov loop
approaches zero

• Transitions driven by density of instanton-dyons

• Chiral condensate dependent on Polyakov loop

• Outlook
• Expand the ideas to SU(3) QCD
• Correlation functions for mesons

• New paper on Z2 symmetric fermions [arXiv:1605.07474]
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Finding the dominating Configuration

• We minimize free energy in
the following parameters:

• Density of M dyons nM

and L dyons nL

• Holonomy ν
• Screening mass describing

the fall off of the fields
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• • n = 0.53, � n = 0.37, � n = 0.27, N n = 0.20, H n = 0.15, ◦ n = 0.12
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