Confinement and Chiral Symmetry Breaking from an ensemble of interacting Instanton-dyons(monopoles) in SU(2) QCD

Rasmus Larsen

R. Larsen and E. Shuryak: arXiv:1511.02237 [PhysRevD], arXiv:1504.03341 [PhysRevD]

Stony Brook University

August 30. 2016

Overview

- Motivation
 - Understand the mechanism behind **Confinement** and **Chiral Symmetry breaking** in SU(2) using instanton-dyons.

- Tool
 - Minimize free energy density in a gas of interacting dyons
 - Find **Polyakov loop** (Confinement) and **chiral condensate** (Chiral symmetry breaking)
- Introduction
 - Properties of dyons and 2-point interactions
- Free energy density f
 - Results for pure gauge
- Add Fermions
 - Obtain chiral condensate from eigenvalue distribution
 - Results for $N_f = 2$

Instanton-Dyons

• Dyons appear for non-zero expectation value of A_4 field in a color direction

$$\langle A_4^3 \rangle \equiv 2\pi T \nu,$$
 holonomy ν (1)
Polyakov loop $P = \cos(\pi \nu)$ (2)

- Lee, Lu[hep-th/9802108] and Kraan, van Baal [arXiv:hep-th/9806034]
- Dyons are topological solutions to Equations of Motion
- N_c dyons make up one Caloron (finite temperature Instanton)
- $N_c = 2$: Two dyons called M and L dyons

Instanton-Dyons

• Dyons appear for non-zero expectation value of A_4 field in a color direction

$$\langle A_4^3 \rangle \equiv 2\pi T \nu,$$
 holonomy ν (1)
Polyakov loop $P = \cos(\pi \nu)$ (2)

- Lee, Lu[hep-th/9802108] and Kraan, van Baal [arXiv:hep-th/9806034]
- Dyons are topological solutions to Equations of Motion
- N_c dyons make up one Caloron (finite temperature Instanton)
- $N_c = 2$: Two dyons called M and L dyons
- Confined phase is P=0 and $\nu=0.5$
- Deconfined phase is P = 1 and $\nu = 0$
- Topological charge is ν for M and $\bar{\nu}=1-\nu$ for L dyons

	M	\bar{M}	L	\bar{L}
Sg^2	$8\pi^2\nu$	$8\pi^2\nu$	$8\pi^2(1-\nu)$	$8\pi^2(1-\nu)$
е	1	1	-1	-1
m	1	-1	-1	1

Classical interaction

· Coulomb like interaction, with opposite sign on electric charges

$$\Delta S = \frac{8\pi^2\nu}{g^2} \left(-e_1 e_2 \frac{1}{x} + m_1 m_2 \frac{1}{x} \right)$$
$$x = 2\pi\nu r T$$

(3)

Classical interaction

· Coulomb like interaction, with opposite sign on electric charges

$$\Delta S = \frac{8\pi^2\nu}{g^2} \left(-e_1 e_2 \frac{1}{x} + m_1 m_2 \frac{1}{x} \right)$$
$$x = 2\pi\nu rT$$

- r is distance between dyons
- Attractive case obtained from gradient flow

(3)

Free Energy Density

- At volume $V \to \infty,$ the dominating configuration is the parameters that minimizes free energy density

$$f = \frac{4\pi^2}{3}\nu^2 \bar{\nu}^2 - 2n_M \ln\left[\frac{d_{\nu}e}{n_M}\right] - 2n_L \ln\left[\frac{d_{\bar{\nu}}e}{n_L}\right] + \Delta f_{Interactions}$$

- Free energy density contains 3 items
 - The GPY potential that prefer trivial Holonomy
 - The entropy due to the dyons moving around
 - $(\Delta f_{Interactions})$ Corrections to the energy due to the interactions of the dyons
- GPY potential [Gross, Pisarski, Yaffe, Rev. Mod. Phys. 53, 43]
- *d*_ν [Diakonov, Gromov, Petrov, Slizovskiy: arXiv:hep-th/0404042]

(4)

Pure Gauge: Polyakov Loop

• The Polyakov loop P (left) and **density** of M and L dyons (right) as a function of action/temperature

Dyons ensemble gives Confinement-Deconfinement phase transition.

Rasmus Larsen (Stony Brook University)

Confinement and Chiral Symmetry Breaking

Fermions

- L dyons have fermionic zero modes ($D \psi = 0$) for anti-periodic fermions
- The determinant of the Dirac operator = closed loops of hopping over *L*'s [Shuryak, Verbaarschot:Nucl.Phys. B341 (1990) 1-26]

$$Det \begin{vmatrix} 0 & T_{ij} \\ T_{ji} & 0 \end{vmatrix} = \sum_{\text{All combinations}} \mathbf{1}$$

• Shape of T_{ij} is taken from overlap of fermionic zero-modes

$$\langle i|D | j \rangle \equiv T_{ij} \sim \exp(-2\pi(1-\nu)r/2)$$
 (5)

Fermions

- L dyons have fermionic zero modes ($D \psi = 0$) for anti-periodic fermions
- The determinant of the Dirac operator = closed loops of hopping over *L*'s [Shuryak, Verbaarschot:Nucl.Phys. B341 (1990) 1-26]

$$Det \begin{vmatrix} 0 & T_{ij} \\ T_{ji} & 0 \end{vmatrix} = \sum_{\text{All combinations}} \mathbf{1}$$

• Shape of T_{ij} is taken from overlap of fermionic zero-modes

$$\langle i|D | j \rangle \equiv T_{ij} \sim \exp(-2\pi(1-\nu)r/2)$$
 (5)

• The Banks-Casher relation for the chiral condensate tells us that

$$|\langle \bar{\psi}\psi \rangle| = \pi \rho(\lambda)_{\lambda \to 0, m \to 0, V \to \infty}$$
(6)

- For finite volume we need to look at eigenvalue distribution around 0
- Eigenvalue distribution fitted to Random matrix theory[arXiv:0910.4134]

Polyakov Loop and Chiral Condensate for $N_f = 2$

- Polyakov loop P and Chiral condensate Σ (left) and densities for M and L dyons (right)
- The drop in the Polyakov loop increases the **effective density** of L dyons, creating a chiral condensate

• Dyons can therefore give **Confinement** and a non-zero **Chiral condensate**.

Summary

- Pure gauge: Phase transition to zero Polyakov loop
- Add 2 fermions: Non-zero Chiral condensate appear as the Polyakov loop approaches zero
- Transitions driven by density of instanton-dyons
- Chiral condensate dependent on Polyakov loop

- Outlook
 - Expand the ideas to SU(3) QCD
 - Correlation functions for mesons

• New paper on Z₂ symmetric fermions [arXiv:1605.07474]

Finding the dominating Configuration

- We minimize free energy in the following parameters:
 - Density of M dyons n_M and L dyons n_L
 - Holonomy ν
 - Screening mass describing the fall off of the fields

• • n = 0.53, $\blacksquare n = 0.37$, $\blacklozenge n = 0.27$, $\blacktriangle n = 0.20$, $\lor n = 0.15$, $\circ n = 0.12$