From QCD's n-point functions to nucleon resonances

Gernot Eichmann

University of Giessen, Germany
GE, Sanchis-Alepuz, Williams, Alkofer, Fischer, 1606.09602, Prog. Part. Nucl. Phys. (in press)

GE, Fischer, Sanchis-Alepuz, 1607.05748

Introduction

QCD Lagrangian: $\quad \mathcal{L}=\bar{\psi}(\not \partial+i g \mathscr{A}+m) \psi+\frac{1}{4} F_{\mu \nu}^{a} F_{a}^{\mu \nu}$

- if it only were that simple... we don't measure quarks and gluons, but hadrons

- origin of mass generation and confinement?

	u	d	s	c	b	\mathbf{t}
Current mass [GeV]	0.003	0.005	0.1	1	4	175
"Constituent" mass [GeV]	0.35	0.35	0.5	1.5	4.5	175

- need to understand spectrum and interactions!

Light baryon spectrum

Experimentally extracted from πN scattering, meson photo- and electroproduction

- Nature of Roper (level ordering)?
- Three-quark vs. quark-diquark?
- "Quark core" vs. meson-baryon coupled channel effects?

extraction of transition form factors
- Hybrid baryons?

Light baryon spectrum

M [GeV]				
2.0	[7/ N(1880)	$N(1895)$	[\|\% $\mathrm{N}(1900)$	Wh(N (1875)
1.0	Wea N(1710)	N(1650)	ज्यात $\mathrm{N}(1720)$	Wen $N(1700)$
1.6		\cdots N(1535)		- m (1520)
1.4	N(1440)			
1.2				
1.0	- $\mathrm{N}(940)$			
$J^{P}=$	$\frac{1}{2}^{+}$	$\frac{1}{2}^{-}$	$\frac{3}{2}^{+}$	$\frac{3}{2}^{-}$

Experimentally extracted from πN scattering, meson

- Nature of Roper (level ordering)?
- Three-quark vs. quark-diquark?
- "Quark core" vs. meson-baryon coupled channel effects?

Nonrelativistic quark model:

$$
P=(-1)^{L}
$$

- Hybrid baryons?

Lattice QCD

Extract baryon poles from (gauge-invariant) two-point correlators:

- Spectral decomposition:

$\sum_{\lambda}|\lambda\rangle\langle\lambda| \rightarrow \sum_{\lambda} \frac{\cdots}{P^{2}+m_{i}^{2}}$
- Same singularity structure in any n-point function:

(\rightarrow Mohler, Briceno, Hansen, . . .)
- Pole in momentum space \Rightarrow exp. decay in Euclidean time
$G(x-y) \rightarrow e^{-m \tau}$

Bethe-Salpeter

Extract baryon poles from (gauge-invariant) two-point correlators:

$$
\begin{aligned}
& G(x-y)=\langle 0| T[\underbrace{\left.\Gamma_{\alpha \beta \gamma} \psi_{\alpha} \psi_{\beta} \psi_{\gamma}\right](x)}_{J(x)}[\underbrace{\left.\bar{\Gamma}_{\rho \sigma \tau} \bar{\psi}_{\rho} \bar{\psi}_{\sigma} \bar{\psi}_{\tau}\right](y)}_{\bar{J}(y)}|0\rangle=\int \mathcal{D}[\psi, \bar{\psi}, A] e^{-S} J(x) \bar{J}(y) \\
& =\lim _{\substack{x_{i} \rightarrow x \\
y_{i} \rightarrow y}} \Gamma_{\alpha \beta \gamma} \bar{\Gamma}_{\rho \sigma \tau}\langle 0| T \psi_{\alpha}\left(x_{1}\right) \psi_{\beta}\left(x_{2}\right) \psi_{\gamma}\left(x_{3}\right) \bar{\psi}_{\rho}\left(y_{1}\right) \bar{\psi}_{\sigma}\left(y_{2}\right) \bar{\psi}_{\tau}\left(y_{3}\right)|0\rangle \\
& \begin{array}{l}
\begin{array}{l}
x_{3}- \\
x_{2}- \\
x_{1}- \\
x_{1}
\end{array} \quad G \quad y_{3} \\
\cline { 1 - 2 }
\end{array}
\end{aligned}
$$

Alternative: extract gauge-invariant baryon poles from gauge-dependent quark 6-point function:

Bethe-Salpeter wave function:
residue at pole, contains all information about baryon

Bethe-Salpeter

- Homogeneous Bethe-Salpeter equation for BS wave function:

- Depends on QCD's n-point functions as input, satisfy DSEs = quantum equations of motion

infinitely many coupled equations, in practice truncations: model / neglect higher n-point functions to obtain closed system

QCD's n-point functions

- Quark propagator

Dynamical chiral symmetry breaking generates 'constituentquark masses'

- Gluon propagator

$$
\frac{D\left(p^{2}\right)}{p^{2}}\left(\delta^{\mu \nu}-\frac{p^{\mu} p^{\nu}}{p^{2}}\right) \quad \cdots \cdots \infty
$$

- Three-gluon vertex

$$
\begin{aligned}
& F_{1}\left[\delta^{\mu \nu}\left(p_{1}-p_{2}\right)^{\rho}+\delta^{\nu \rho}\left(p_{2}-p_{3}\right)^{\mu}\right. \\
& \left.+\delta^{\rho \mu}\left(p_{3}-p_{1}\right)^{\nu}\right]+\ldots
\end{aligned}
$$

Agreement between lattice, DSE \& FRG within reach
(\rightarrow Sternbeck, Williams, Huber, Blum, Mitter, Cyrol, Campagnari,)

- Quark-gluon vertex

Bethe-Salpeter

- Homogeneous Bethe-Salpeter equation for BS wave function:

- Depends on QCD's n-point functions as input, satisfy DSEs = quantum equations of motion
\qquad L^{-1}

mororor ${ }^{-1}$ $\operatorname{momer}^{-1}$

菑
- Kernel can be derived in accordance with chiral symmetry:

- Quark propagator

Dynamical chiral symmetry breaking generates 'constituentquark masses'

Bethe-Salpeter

- Homogeneous Bethe-Salpeter equation for BS wave function:

- Depends on QCD's n-point functions as input, satisfy DSEs = quantum equations of motion
\qquad $]^{-1}$

morror ${ }^{-1}$ momer $^{-1}$

- Kernel can be derived in accordance with chiral symmetry:

Rainbow-ladder: effective gluon exchange $\alpha\left(k^{2}\right)=\alpha_{\mathrm{IR}}\left(k^{2} /^{2}, \eta\right)+\alpha_{\mathrm{UV}}\left(k^{2}\right)$ adjust scale Λ to observable, keep width η as parameter
Maris, Tandy, PRC 60 (1999)

- Quark propagator

Dynamical chiral symmetry breaking generates 'constituentquark masses'

Bethe-Salpeter

- Homogeneous Bethe-Salpeter equation for BS wave function:

- Depends on QCD's n-point functions as input, satisfy DSEs = quantum equations of motion
\qquad
$-^{-1}$ \qquad -1

$\operatorname{moreros}^{-1}=\operatorname{mormorn}^{-1}$

- Kernel can be derived in accordance with chiral symmetry:

Rainbow-ladder:
effective gluon exchange
$\alpha\left(k^{2}\right)=\alpha_{\mathrm{IR}}\left(k^{2} /^{2}, \eta\right)+\alpha_{\mathrm{UV}}\left(k^{2}\right)$
adjust scale Λ to observable, keep width η as parameter
Maris, Tandy, PRC 60 (1999)

- Quark propagator

Calculated in complex plane: singularities pose restrictions (no physical threshold!)

Mesons

- The pion plays special role in hadron physics: quark-antiquark bound state \Leftrightarrow Goldstone boson of spontaneous chiral symmetry breaking
most general Dirac-Lorentz structure, Lorentz-invariant dressing functions:

$$
f_{i}=f_{i}\left(q^{2}, q \cdot P, P^{2}=-m^{2}\right)
$$

\otimes Color
\otimes Flavor
$\Rightarrow \quad$ pion is made of s waves and p waves! (relative momentum \sim orbital angular momentum)

- Eigenvalue spectrum of BS kernel:

Holl, Krassnigg, Roberts, PRC 70 (2004)

$$
K \psi_{i}=\lambda_{i}\left(P^{2}\right) \psi_{i}, \quad \lambda_{i} \xrightarrow{P^{2} \rightarrow-m_{i}^{2}} 1
$$

Mesons

- Pion is Goldstone boson: $m_{\pi}{ }^{2} \sim m_{q}$

- Light meson spectrum beyond rainbow-ladder

A. Krassnigg, Schladming 2010

Baryons

- Covariant Faddeev equation for baryons: keep 2-body interactions \& rainbow-ladder, but no further approximations: $M_{N}=0.94 \mathrm{GeV}$
GE, Alkofer, Krassnigg, Nicmorus, PRL 104 (2010), GE, PRD 84 (2011)

Relativistic bound states:

64 / 128 tensor structures for nucleon / Δ

- Octet \& decuplet baryons, pion cloud effects, first steps beyond rainbow-ladder
Sanchis-Alepuz, Fischer, PRD 90 (2014), Sanchis-Alepuz, Fischer, Kubrak, PLB 733 (2014), Sanchis-Alepuz, Williams PLB 749 (2015)
- Baryon form factors: nucleon and $\Delta \mathrm{FFs}, N \rightarrow \Delta \gamma$ transition
GE, PRD 84 (2011), Sanchis-Alepuz, Williams, Alkofer, PRD 87 (2013), Alkofer, GE, Sanchis-Alepuz, Williams, Hyp. Int. 234 (2015)

GE, Sanchis-Alepuz, Williams, Alkofer, Fischer, 1606.09602

Resonances?

Branch cuts \& widths generated by meson-baryon interactions: Roper $\rightarrow N \pi$, etc.

Without them: bound states without widths

Difficult to implement at quark-gluon level: complicated topologies beyond rainbow-ladder

Different phenomenological pictures how this could happen:

- 'pion-cloud effects' affect masses and form factors in light-quark region

- dynamical generation of resonances: start with 'bare' seed, hadronic interactions produce new poles

- Three-quark vs. five-quark / molecular components

Diquarks?

- Suggested to resolve 'missing resonances' in quark model:

Anselmino et al., Rev. Mod. Phys. 65 (1993), fewer degrees of freedom \Rightarrow fewer excitations

Klempt, Richard, Rev. Mod. Phys. 82 (2010)

- QCD version: assume $q q$ scattering matrix as sum of diquark correlations \Rightarrow three-body equation simplifies to quark-diquark BSE

Quark exchange between quark \& diquark binds nucleon.
Gluons absorbed in building blocks, to be calculated in advance:

Rainbow-ladder: scalar diquark $\sim \mathbf{8 0 0} \mathrm{MeV}$, axialvector diquark $\sim \mathbf{1 G e V}$
GE, Krassnigg, Schwinzerl, Alkofer, Ann. Phys. 323 (2008),
GE, Cloet, Alkofer, Krassnigg, Roberts, PRC 79 (2009),
Nicmorus, GE, Alkofer,
PRD 82 (2010)

- N and Δ masses \& form factors very similar in quark-diquark and three-quark approach: quark-diquark approximation is good. \rightarrow What about other channels?

Baryon spectrum I

Three-quark vs. quark-diquark in rainbow-ladder:
GE, Fischer, Sanchis-Alepuz, 1607.05748

- Three-body and quark-diquark results agree (where available): N, Δ, Roper, $\mathrm{N}(1535)$
- Number of levels compatible with experiment: no states missing
- N, Δ and their 1st excitations (including Roper) agree with experiment
- But remaining states too low \Rightarrow level ordering between Roper and $\mathrm{N}(1535)$ is wrong

Baryon spectrum I

Three-quark vs. quark-diquark in rainbow-ladder:
GE, Fischer, Sanchis-Alepuz, 1607.05748
M [GeV]

- Three-body and quark-diquark results agree (where available): N, Δ, Roper, $\mathrm{N}(1535)$
- Number of levels compatible with experiment: no states missing
- N, Δ and their 1 st excitations (including Roper) agree with experiment
- But remaining states too low \Rightarrow level ordering between Roper and $\mathrm{N}(1535)$ is wrong

The role of diquarks

Mesons and 'diquark' properties closely related: after taking Dirac, color \& flavor traces, only factor $1 / 2$ remains \Rightarrow diquarks 'less bound' than mesons

Pseudoscalar \& vector mesons already good in rainbow-ladder Scalar \& axialvector mesons too light, repulsion beyond RL

$\Leftrightarrow \quad$ Scalar \& axialvector diquarks sufficient for nucleon and Δ
$\Leftrightarrow \quad$ Pseudoscalar \& vector diquarks important for remaining channels

Simple strategy to emulate beyond-RL effects: Roberts, Chang, Cloet, Roberts, FBS 51 (2011), Chen et al., FBS 53 (2012)

- Insert factor $0<c<1$ in 'bad' meson and diquark channels \Rightarrow increases masses
- Fixed in the meson sector ($\rho-a_{1}$ splitting): $\mathrm{c}=0.35$

Baryon spectrum I

Three-quark vs. quark-diquark in rainbow-ladder:
GE, Fischer, Sanchis-Alepuz, 1607.05748

- Three-body and quark-diquark results agree (where available): N, Δ, Roper, $\mathrm{N}(1535)$
- Number of levels compatible with experiment: no states missing
- N, Δ and their 1st excitations (including Roper) agree with experiment
- But remaining states too low \Rightarrow level ordering between Roper and $\mathrm{N}(1535)$ is wrong

Baryon spectrum II

Quark-diquark with reduced pseudoscalar + vector diquarks: GE, Fischer, Sanchis-Alepuz, 1607.05748

- Quantitative agreement with experiment
- $\mathrm{N}\left(\frac{1}{2}^{+}\right)$and $\Delta\left(\frac{3}{2}^{+}\right)$channels not affected, but remaining ones were polluted by ps + v diquarks
- Correct level ordering between Roper and $\mathbf{N}(1535)$
- Scale Λ set by f_{π}
- Current-quark mass set by m_{π}
- c adjusted to $\rho-a_{1}$ splitting
- η doesn't change much

Baryon spectrum II

Quark-diquark with reduced pseudoscalar + vector diquarks:

Partial-wave content:

- N and Δ ground states dominated by swaves, negative-parity states typically by \mathbf{p} waves (as expected)
- But ‘quark-model forbidden’ contributions are always present, e.g. Roper: dominated by p waves \Rightarrow relativity is important!

Structure properties

- Current-mass evolution of Roper similar to nucleon. Lattice?
GE, Fischer, Sanchis-Alepuz, 1607.05748

- All signatures of 1 st radial excitation: partial-wave content, zero crossing
- Roper transition form factors in qualitative agreement with experiment

[^0]- $\gamma N \rightarrow \Delta$ transition form factors:

GE, Nicmorus, PRD 85 (2012)

Discrepancies mainly in magnetic dipole (G_{M}^{*}): "Core $+25 \%$ pion cloud"

Electric quadrupole ratio

small \& negative, encodes deformation.
No pion cloud necessary: OAM from \mathbf{p} waves!
First three-body results similar
Alkofer, GE, Sanchis-Alepuz, Williams, Hyp. Int. 234 (2015)

So what does it mean?

Note: 'bound states without widths' doesn't mean that $\rho \rightarrow \pi \pi, \Delta \rightarrow N \pi, \ldots$ decays are zero!!

Results favor 'mild' scenario:

- spectrum generated by quark-gluon interactions
- meson-baryon effects would merely shift poles into complex plane
- Effects on masses? Scale set by f_{π}, but pion-cloud affects f_{π} too so only 'non-trivial effects' visible
- Will be interesting to study transition form factors

Mader, GE, Blank, Krassnigg, PRD 84 (2011),
GE, Sanchis-Alepuz, Williams,
Alkofer, Fischer, 1606.09602

Tetraquarks are resonances

- Light scalar mesons $\sigma, \kappa, a_{0}, f_{0}$ as tetraquarks: solution of four-body equation reproduces mass pattern GE, Fischer, Heupel, PLB 753 (2016)

BSE dynamically generates meson poles in wave function, drive σ mass from 1.5 GeV to $\sim 350 \mathrm{MeV}$

Four quarks rearrange to "meson molecule"

Tetraquarks are "dynamically generated resonances" (but from the quark level!)

- Similar in meson-meson / diquark-antidiquark approximation (analogue of quark-diquark for baryons) Heupel, GE, Fischer, PLB 718 (2012)

. . . and more

Scattering amplitudes from quark level:

- $\pi \pi$ scattering

Bicudo et al., PRD 65 (2002),
Cotanch, Maris, PRD 66 (2002)

\square Universal band
-
ChPT tree, 1 loop, 2 loops
ChPT + dispersion theory (2001)
DIRAC (2005)
I. NA 48 K $->3 \pi$ (2005)

E865 isospin corrected
NA48 isospin-corrected
\equiv MILC (2004)
H/L NPLQCD (2005)
4 D Del Debbio (2007)

- ETM (2007)

DSE (rainbow-ladder)

- Nucleon

Compton scattering
GE, Fischer, PRD 85 (2012) \& PRD 87 (2013), GE, FBS 57 (2016)

- Hadronic light-by-light scattering

Goecke, Fischer, Williams, PLB 704 (2011), GE, Fischer, Heupel, PRD 92 (2015)

Summary

Progress with Dyson-Schwinger, Bethe-Salpeter and Faddeev equations:

- Baryon spectrum quantitatively reproduced
- Quark-diquark and three-quark spectrum very similar:

Quark-diquark with sc, av, ps, v ~ three-quark in RL
Quark diquark with sc, av, ps, v ~ three-quark beyond RL?

- Still "bound states without widths", because meson-baryon interactions difficult to implement at quark-gluon level. But:
- would mainly shift poles into complex plane (?)
- decay properties are calculable
- tetraquarks are genuine resonances (even in RL!)
- For a recent review see:

GE, Sanchis-Alepuz, Williams, Alkofer, Fischer, arXiv:1606.09602, Prog. Part. Nucl. Phys. (in press)

Backup slides

to Dyson-Schwinger equations

QCD's classical action:

Quantum "effective action":

$\int \mathcal{D}[\psi, \bar{\psi}, A] e^{-S}=e^{-\Gamma}$

DSEs = quantum equations of motion: instead of calculating n-point functions directly, derive eqs. of motion for them from path integral

infinitely many coupled eqs., in practice truncations: model / neglect higher n -point functions to obtain closed system

For reviews see:
Roberts, Williams, Prog. Part. Nucl. Phys. 33 (1994), Alkofer, von Smekal, Phys. Rept. 353 (2001) Fischer, J. Phys. G32 (2006)

Mesons

- Homogeneous Bethe-Salpeter equation for BS wave function:

- BS wave function only makes sense onshell, but homogeneous $B S E=$ eigenvalue equation, can be solved for offshell momenta:

$$
K \psi_{i}=\lambda_{i}\left(P^{2}\right) \psi_{i}, \quad \lambda_{i} \xrightarrow{P^{2} \rightarrow-m_{i}^{2}} 1
$$

Largest eigenvalue \Leftrightarrow ground state, smaller ones \Leftrightarrow excitations

Restricted by singularities in quark propagator (no physical threshold!):
mesons: $M<2 m_{p}$ baryons: $M<3 m_{p}$ $m_{p} \sim 500 \mathrm{MeV}$

Eigenvalue spectra

GE, Fischer, Sanchis-Alepuz, 1607.05748

- $N\left(\frac{1}{2}^{+}\right)$and $\Delta\left(\frac{3}{2}^{+}\right)$channels hardly affected by ps, v diquarks
- all other channels:
$\mathrm{sc}, \mathrm{av} \rightarrow$ masses too high
$\mathrm{sc}, \mathrm{av}, \mathrm{ps}, \mathrm{v} \rightarrow$ masses too low
- not all eigenvalues extrapolate to masses below 2 GeV
- some are complex conjugate (but imaginary parts small), some split into 2 real branches: numerical or truncation artifact?

Form factors

Sketch of a generic electromagnetic form factor:

> spacelike:
> $e^{-} N \rightarrow e^{-} N$
charge,
magnetic moment,...

0

How can we calculate this from the quark level?
quark-photon vertex

'rainbow-ladder'
\rightarrow

quark propagator

Faddeev
amplitude

Form factors

Sketch of a generic electromagnetic form factor:

Microscopic decomposition of current matrix element: satisfies electromagnetic gauge invariance, consistent with baryon's Faddeev equation

Nucleon em. form factors

Three-body results: all ingredients calculated, model dependence shown by bands GE, PRD 84 (2011)

- electric proton form factor: consistent with data, possible zero crossing
- magnetic form factors: missing pion effects at low Q^{2}
- Similar for axial \& ps. FFs, Δ elastic and $N \rightarrow \Delta \gamma$ transition GE, Fischer, EPJ A 48 (2012), Sanchis-Alepuz et al., PRD 87 (2013),
Alkofer et al., Hyp. Int. 234 (2015)
\Rightarrow "quark core without pion-cloud effects"

Nucleon em. form factors

Nucleon charge radii:
isovector (p-n) Dirac (F1) radius

- Pion-cloud effects missing (\Rightarrow divergence!), agreement with lattice at larger quark masses.

Nucleon magnetic moments: isovector ($p-n$), isoscalar ($p+n$)

- But: pion-cloud cancels in $\kappa^{s} \Leftrightarrow$ quark core Exp: $\quad \kappa^{s}=-0.12$
!!
GE, PRD 84 (2011)

Pion form factor

A. Krassnigg (Schladming 2010),

Maris \& Tandy, Nucl. Phys. Proc. Suppl. 161 (2006)

- Form factor from

- Timelike vector meson poles automatically generated by quark-photon vertex BSE!

$\Rightarrow \Gamma^{\mu}=$ Ball-Chiu (em. gauge invariance)
+ Transverse part (vm. poles \& dominance)
- Form factor at large Q^{2}

Chang, Cloet, Roberts, Schmidt, Tandy, PRL 111 (2013)

- Include pion cloud effects:

GE, Fischer, Kubrak, Williams, in preparation

Pion cloud effects

- Hadron level:

$N \pi$ contributions to nucleon self-energy; charge radii diverge in chiral limit, $\Delta \rightarrow N \pi$ decay cusps, etc.

- Baryons: pion effects reduce N, Δ masses but also f_{π} (sets the scale) by similar amount: net effect small Sanchis-Alepuz, Fischer, Kubrak, PLB 733 (2014)
- Pion form factor: photon also couples to pion (necessary for gauge invariance), π exchange in quark-photon vertex

- Quark level:
π contributions to quark self-energy, effective π exchange between quarks; pion not elementary field!
Fischer, Nickel, Wambach, PRD 76 (2007)

[^1]
Axial form factors

- looks like magnetic form factors: missing structure at low $Q^{2} \Rightarrow g_{A}$ too small
- Timelike meson poles:
a_{1} in $G_{A}, \pi \& \pi(1300)$ in $G_{P}, G_{\pi N N}$
- Goldberger-Treiman relation reproduced for all quark masses:
$G_{A}(0)=\frac{f_{\pi}}{M_{N}} G_{\pi N N}(0)$

Δ electromagnetic FFs

Almost no experimental information since Δ unstable: $\Delta \rightarrow N \pi$
Magnetic moment $\mu_{\Delta} \sim 3.5$ with large errors (Δ^{+}).
But Ω^{-}(spin $3 / 2$, sss) is stable w.r.t strong interaction, magnetic moment $\left|\mu_{\Omega}\right|=3.6(1)$. Accidental?

$$
J^{\mu, \rho \sigma}(P, Q)=i \mathbb{P}^{\rho \alpha}\left(P_{f}\right)\left[\left(F_{1}^{\star} \gamma^{\mu}-F_{2}^{\star} \frac{\sigma^{\mu \nu} Q^{\nu}}{2 M_{\Delta}}\right) \delta^{\alpha \beta}-\left(F_{3}^{\star} \gamma^{\mu}-F_{4}^{\star} \frac{\sigma^{\mu \nu} Q^{\nu}}{2 M_{\Delta}}\right) \frac{Q^{\alpha} Q^{\beta}}{4 M_{\Delta}^{2}}\right] \mathbb{P}^{\beta \sigma}\left(P_{i}\right)
$$

Form factors at $Q^{2}=0$:

$$
\begin{array}{ll}
G_{E_{0}}(0)=e_{\Delta} & \text { charge } \\
G_{E_{2}}(0)=\mathcal{Q} & \text { electric quadrupole moment } \\
G_{M_{1}}(0)=\mu_{\Delta} & \text { magnetic dipole moment } \\
G_{M_{3}}(0)=\mathcal{O} & \text { magnetic octupole moment }
\end{array}
$$

almost quark-mass independent, match Ω^{-}magnetic moment
Nicmorus, GE, Alkofer, PRD 82 (2010)

Sanchis-Alepuz, Alkofer, Williams, PRD 87 (2013)

$$
m_{\pi}^{2}\left[\mathrm{GeV}^{2}\right]
$$

DSE / Faddeev landscape $N \rightarrow N^{*} \gamma$

	Quark-diquark$D=-\Phi(D)$			Three-quark		
	Contact interaction	$\begin{aligned} & \text { QCD-based } \\ & \text { model } \end{aligned}$	DSE (RL)	RL	bRL	$b R L+3 q$
N, Δ masses	$\sqrt{ }$	$\sqrt{ }$	\checkmark	\checkmark	\checkmark	\ldots
N, Δ em. FFs	\checkmark	\checkmark	\checkmark	$\sqrt{ }$		
$N \rightarrow \Delta \gamma$	$\sqrt{ }$	\checkmark	\checkmark	\ldots		
Roper	\checkmark	\checkmark		\ldots		
$N \rightarrow N^{*} \gamma$	\checkmark	\checkmark		\ldots		
$N^{*}(1535)$,	\ldots	\ldots		\ldots	\ldots	
$N \rightarrow N^{*} \gamma$	\ldots	\ldots				

$N^{*}(1535) ?$

Form factors:
no kinematic constraints CLAS data \& toy parametrization with " ρ bump"

...vs. helicity amplitudes
 in $\left[10^{-3} \mathrm{GeV}^{-1 / 2}\right]$

kinematic zeros at
$Q^{2}=-\left(m_{R} \pm m\right)^{2}$
see also
Ramalho \& Tsushima, PRD 84 (2011)

N*(1535): the recipe

- Calculate quark DSE and (pseudoscalar, vector) diquark BSEs \& propagators in complex plane

- Solve Faddeev equation, obtain $\mathrm{N}^{*}(1535)$ mass and wave function

- Calculate quark-photon and (pseudoscalar, vector scalar, axialvector) diquark-photon vertices

Muon g-2

- Muon anomalous magnetic moment:
total SM prediction deviates from exp. by $\sim 3 \sigma$

- Theory uncertainty dominated by QCD: Is QCD contribution under control?

Hadronic vacuum polarization

Hadronic light-by-light scattering

$a_{\mu}\left[10^{-10}\right] \quad$| Jegerlehner, Nyffeler, |
| :--- |
| Phys. Rept. 477 (2009) |

Exp:	11659208.9	(6.3)
QED:	11658471.9	(0.0)
EW:	15.3	(0.2)
Hadronic:		
•VP (LO+HO)	685.1	(4.3)
•LBL	$\mathbf{1 0 . 5}$	(2.6)
SM:	11659	182.8
Diff:	26.1	(8.9)

- LbL amplitude: ENJL \& MD model results

Bijnens 1995, Hakayawa 1995, Knecht 2002, Melnikov 2004, Prades 2009, Jegerlehner 2009, Pauk 2014

Muon g-2

- Muon anomalous magnetic moment:
total SM prediction deviates from exp. by $\sim 3 \sigma$

- Theory uncertainty dominated by QCD: Is QCD contribution under control?

Hadronic vacuum polarization

$a_{\mu}\left[10^{-10}\right]$	Jegerlehner, Nyffeler, Phys. Rept. 477 (2009)	
Exp:	11659208.9	(6.3)
QED:	11658471.9	(0.0)
EW:	15.3	(0.2)
Hadronic:		
•VP (LO+HO)	685.1	(4.3)
• LBL	$\mathbf{1 0 . 5}$	$\mathbf{(2 . 6)}$
SM:	11659	182.8
Diff:	26.1	(8.9)

- LbL amplitude at quark level, derived from gauge invariance:

GE, Fischer, PRD 85 (2012), Goecke, Fischer, Williams, PRD 87 (2013)

- no double-counting, gauge invariant!
- need to understand structure of amplitude GE, Fischer, Heupel, PRD 92 (2015)

[^0]: Segovia et al., PRL 115 (2015)

[^1]: GE, Fischer, Kubrak, Williams, in preparation

