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Introduction

origin of mass generation and confinement?

need to understand spectrum and interactions!
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if it only were that simple... 
we don’t measure quarks and gluons, but hadrons

mesons
baryons
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pentaquarks??

glueballs?
hybrids? tetraquarks?
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Light baryon spectrum
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Experimentally extracted from 𝜋𝑁 scattering, meson photo- and electroproduction 

extraction of
transition 
form factors

= + . . .

= + . . .

“Quark core” vs. meson-baryon 
coupled channel effects?

Three-quark vs. quark-diquark?

Hybrid baryons?

Nature of Roper (level ordering)? 
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Light baryon spectrum
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Lattice QCD

Extract baryon poles from (gauge-invariant) two-point correlators:

Spectral decomposition:

Same singularity structure 
in any n-point function:

Pole in momentum space ⟹
exp. decay in Euclidean time
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Bethe-Salpeter

Extract baryon poles from (gauge-invariant) two-point correlators:

Alternative: extract gauge-invariant baryon poles from gauge-dependent quark 6-point function:

Bethe-Salpeter wave function:
residue at pole, contains all information about baryon
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Bethe-Salpeter

Homogeneous Bethe-Salpeter equation for BS wave function:  

𝑃�           −𝑚�
𝐺 𝜒 𝜒𝐾=

Depends on QCD’s n-point functions as input, 
satisfy DSEs = quantum equations of motion

Kernel can be derived in accordance with chiral symmetry:

For reviews see:

Roberts, Williams, Prog. Part. Nucl. Phys. 33 (1994),
Alkofer, von Smekal, Phys. Rept. 353 (2001)
Fischer, J. Phys. G32 (2006)

infinitely many coupled eqs.,
in practice truncations:
model / neglect higher
n-point functions to obtain
closed system
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QCD’s n-point functions

Quark propagator

Dynamical chiral 
symmetry breaking 
generates ‘constituent-
quark masses’

Agreement between lattice, 
DSE & FRG within reach
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Bethe-Salpeter

Homogeneous Bethe-Salpeter equation for BS wave function:  

𝑃�           −𝑚�
𝐺 𝜒 𝜒𝐾=

Depends on QCD’s n-point functions as input, 
satisfy DSEs = quantum equations of motion

Kernel can be derived in accordance with chiral symmetry:

For reviews see:

Roberts, Williams, Prog. Part. Nucl. Phys. 33 (1994),
Alkofer, von Smekal, Phys. Rept. 353 (2001)
Fischer, J. Phys. G32 (2006)
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Bethe-Salpeter

Homogeneous Bethe-Salpeter equation for BS wave function:  
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Rainbow-ladder:
effective gluon exchange

Maris,  Tandy, PRC 60 (1999)
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Bethe-Salpeter

Homogeneous Bethe-Salpeter equation for BS wave function:  
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Mesons

Eigenvalue spectrum of BS kernel:

1iλ
𝑃�           −𝑚��

,iψ)2P(iλ=iK ψ

most general Dirac-Lorentz structure,
Lorentz-invariant dressing functions:

pion is made of s waves and p waves!
(relative momentum ~ orbital angular momentum)

⊗] )P/q,/[4f+q/3f+P/2f+1f Color ⊗ Flavor

)2m−=2P, P·, q2q(if=if
⟹ 

5γ (

1
iλ
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π(1800)?

The pion plays special role in hadron physics: 
quark-antiquark bound state ⟺ Goldstone boson of spontaneous chiral symmetry breaking
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Maris & Tandy, PRC 61 (2000),  Chang, Cloet, Roberts, 
Schmidt, Tandy, PRL 111 (2013)

Williams, Fischer, Heupel,
PRD 93 (2016)

GE, Sanchis-Alepuz, Williams,
Alkofer, Fischer, 1606.09602

Timelike vector meson poles
automatically generated in
quark-photon vertex!
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Mesons

Pion is Goldstone 
boson: 𝑚�� ~ 𝑚�

Light meson spectrum beyond rainbow-ladder

Pion electromagnetic form factor: 
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Baryons

Covariant Faddeev equation for baryons:
keep 2-body interactions & rainbow-ladder,
but no further approximations: 

Relativistic bound states: 
64 / 128 tensor structures for nucleon / 𝛥

Octet & decuplet baryons, pion cloud effects,
first steps beyond rainbow-ladder

GE, Alkofer, Krassnigg, Nicmorus, PRL 104 (2010),    GE, PRD 84 (2011)

Sanchis-Alepuz, Fischer, PRD 90 (2014), Sanchis-Alepuz, Fischer, Kubrak, PLB 733 (2014),
Sanchis-Alepuz, Williams PLB 749 (2015)

Baryon form factors: 
nucleon and 𝛥 FFs, 𝑁→𝛥𝛾 transition    

GE, PRD 84 (2011),   Sanchis-Alepuz, Williams, Alkofer, PRD 87 (2013),
Alkofer, GE, Sanchis-Alepuz, Williams,  Hyp. Int. 234 (2015)
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Resonances?

Branch cuts & widths generated by 
meson-baryon interactions: Roper → 𝑁𝜋 , etc.

Without them: bound states without widths

Difficult to implement at quark-gluon level: 
complicated topologies beyond rainbow-ladder

‘pion-cloud effects’ affect masses 
and form factors in light-quark region

dynamical generation of resonances: 
start with ‘bare’ seed, hadronic 
interactions produce new poles

Different phenomenological pictures 
how this could happen: 

Three-quark vs. five-quark / 
molecular components

Re

Im
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)2P(G

Re

Im

2P

2P

N(940)N(1440)N(1710)N(1880)

= +

= +V
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e.g. 
Suzuki et al.,
PRL 104 (2010)
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Diquarks?

)
− −

Suggested to resolve ‘missing resonances’ in quark model:
fewer degrees of freedom ⇒ fewer excitations

QCD version: assume 𝑞𝑞 scattering matrix as sum of diquark correlations 
⇒ three-body equation simplifies to quark-diquark BSE
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Rainbow-ladder: scalar diquark ~ 800 MeV,  axialvector diquark ~ 1 GeV 

Quark exchange between quark & diquark binds nucleon. 
Gluons absorbed in building blocks, to be calculated in advance:

N and 𝛥 masses & form factors very similar in quark-diquark and three-quark approach:
quark-diquark approximation is good.  →  What about other channels? 

GE, Krassnigg, Schwinzerl, 
Alkofer, Ann. Phys. 323 (2008),
  

GE, Cloet, Alkofer, Krassnigg, 
Roberts,  PRC 79 (2009),
  

Nicmorus, GE, Alkofer, 
PRD 82 (2010)     
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Oettel, Hellstern, Alkofer, 
Reinhardt,  PRC 58 (1998),

Cloet et al.,  FBS 46 (2009),
 

Segovia et al., FBS 55 (2014)

Anselmino et al.,  Rev. Mod. Phys. 65 (1993),  
Klempt, Richard,  Rev. Mod. Phys. 82 (2010)
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Baryon spectrum I

)
− −

Three-quark vs. quark-diquark in rainbow-ladder:    GE, Fischer, Sanchis-Alepuz, 1607.05748

Number of levels compatible with experiment: 
no states missing  

N, ∆ and their 1st excitations (including Roper) 
agree with experiment

Three-body and quark-diquark results agree 
(where available): N, ∆, Roper, N(1535)

But remaining states too low ⇒ level ordering
between Roper and N(1535) is wrong 
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Baryon spectrum I

)
− −
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The role of diquarks

)
− −

Mesons and ‘diquark’ properties closely related: after taking Dirac, color & flavor traces,
only factor 1/2 remains ⇒ diquarks ‘less bound’ than mesons

⇔

⇔

Pseudoscalar & vector mesons
already good in rainbow-ladder

Scalar & axialvector diquarks
sufficient for nucleon and 𝛥 

Scalar & axialvector mesons
too light, repulsion beyond RL

Pseudoscalar & vector diquarks
important for remaining channels
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Simple strategy to emulate beyond-RL effects:
Roberts, Chang, Cloet, Roberts, FBS 51 (2011),  Chen et al., FBS 53 (2012)

Insert factor 0 < c < 1 in ‘bad’ meson and 
diquark channels ⇒ increases masses

Fixed in the meson sector (𝜌�𝑎� splitting): 
c = 0.35
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Baryon spectrum I

)
− −

Three-quark vs. quark-diquark in rainbow-ladder:    GE, Fischer, Sanchis-Alepuz, 1607.05748

Number of levels compatible with experiment: 
no states missing  

N, ∆ and their 1st excitations (including Roper) 
agree with experiment

Three-body and quark-diquark results agree 
(where available): N, ∆, Roper, N(1535)

But remaining states too low ⇒ level ordering
between Roper and N(1535) is wrong 
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Baryon spectrum II

)
− −

Quark-diquark with reduced pseudoscalar + vector diquarks:    GE, Fischer, Sanchis-Alepuz, 1607.05748

N(    ) and ∆(    ) channels not affected, but 
remaining ones were polluted by ps + v diquarks

Correct level ordering between Roper and N(1535)

Quantitative agreement with experiment

Current-quark mass set by 𝑚�

𝜂 doesn’t change much

Scale 𝛬 set by 𝑓�

c adjusted to 𝜌�𝑎� splitting
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Baryon spectrum II

)
− −

Quark-diquark with reduced pseudoscalar + vector diquarks:

Partial-wave content:

But ‘quark-model forbidden’ contributions are always present,
e.g. Roper: dominated by p waves ⇒ relativity is important!

N and ∆ ground states dominated by s waves,
negative-parity states typically by p waves (as expected)

s p d f

+

2
1 −

2
1 +

2
1 −

2
1−

2
3+

2
3 −

2
3+

2
3

N(940)

M [GeV]

N(1440)

N(1710)

N(1880) N(1900)

N(1720)

N(1895)

N(1650)

N(1535)

N(1700)

N(1875)

N(1520)

∆(1910)

∆(1232)

∆(1600)

∆(1920)

∆(1620)

∆(1900)

∆(1700)

∆(1940)

1.0

1.2

1.4

1.6

1.8

2.0
D12+(0)

Gernot Eichmann (Uni Giessen) August 29, 2016 15 / 20



Structure properties

First three-body results similar
Alkofer, GE, Sanchis-Alepuz, Williams, Hyp. Int. 234 (2015)

*

Electric quadrupole ratio 
small & negative, encodes deformation.
No pion cloud necessary: OAM from p waves! 

Discrepancies mainly in magnetic dipole (𝐺� ): 
“Core + 25% pion cloud”

)
− −

All signatures of 1st radial excitation: 
partial-wave content, zero crossing

Roper transition form factors in 
qualitative agreement with experiment 
Segovia et al.,  PRL 115 (2015) 

Current-mass evolution of Roper 
similar to nucleon. Lattice?
GE, Fischer, Sanchis-Alepuz, 1607.05748

𝛾𝑁→𝛥 transition form factors:
GE, Nicmorus,  PRD 85 (2012)
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So what does it mean?

Results favor ‘mild’ scenario:

Mader, GE, Blank, Krassnigg,
PRD 84 (2011),

GE, Sanchis-Alepuz, Williams,
Alkofer, Fischer, 1606.09602 

Note: ‘bound states without widths’ doesn’t 
mean that 𝜌 → 𝜋𝜋,  𝛥 → 𝑁𝜋, . . . decays are zero!!

meson-baryon effects would merely
shift poles into complex plane

Effects on masses? Scale set by 𝑓� , 
but pion-cloud affects 𝑓� too
so only ‘non-trivial effects’ visible

Will be interesting to study 
transition form factors

spectrum generated by 
quark-gluon interactions
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DSE phys.
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Tetraquarks are resonances

Light scalar mesons 𝜎, 𝜅, 𝑎₀, 𝑓₀ as tetraquarks:
solution of four-body equation reproduces mass pattern
GE, Fischer, Heupel,  PLB 753 (2016)

BSE dynamically generates meson poles in wave function,
drive 𝜎 mass from 1.5 GeV to ~350 MeV

Similar in meson-meson / diquark-antidiquark approximation
(analogue of quark-diquark for baryons) Heupel, GE, Fischer,  PLB 718 (2012)

Four quarks rearrange
to “meson molecule”

Tetraquarks are “dynamically 
generated resonances” 
(but from the quark level!)
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. . . and more

Scattering amplitudes from quark level:

Hadronic light-by-light scattering 
Nucleon
Compton
scattering

𝜋𝜋 scattering

GE, Fischer,  PRD 85 (2012) & 
PRD 87 (2013),  GE,  FBS 57 (2016)

Bicudo et al., 
PRD 65 (2002),

Cotanch, Maris,  
PRD 66 (2002)

Goecke, Fischer, Williams,  PLB 704 (2011),   
GE, Fischer, Heupel,  PRD 92 (2015)

Colangelo,
PoS Kaon (2008)

Colangelo,
PoS Kaon (2008)

t
channel

u
channel

s
channel
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 = 0  =
 0

 = 4

 =
 4

Universal band

ChPT tree, 1 loop, 2 loops
ChPT + dispersion theory (2001)

DIRAC (2005)
NA48 K -> 3 π  (2005)
E865 isospin corrected
NA48 isospin-corrected

MILC (2004) 
NPLQCD (2005) 
Del Debbio (2007) 
ETM (2007) 

DSE (rainbow-ladder)
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Summary

Thank you!

Quark-diquark and three-quark spectrum very similar:

Still “bound states without widths”,
because meson-baryon interactions difficult to implement at quark-gluon level. 
But:

Quark-diquark with sc, av, ps, v  ~  three-quark in RL

Quark diquark with sc, av, ps, v  ~  three-quark beyond RL?

would mainly shift poles into complex plane (?)

decay properties are calculable

tetraquarks are genuine resonances (even in RL!)

Baryon spectrum quantitatively reproduced

For a recent review see:
GE, Sanchis-Alepuz, Williams, Alkofer, Fischer,  
arXiv:1606.09602, Prog. Part. Nucl. Phys. (in press)

Progress with Dyson-Schwinger, Bethe-Salpeter and Faddeev equations:
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Backup slides

Tetraquark notes

Gernot Eichmann

Defining the momenta as in your notes, we have the
two momentum multiplets

SM =
4∑

i=1
pi = P , T +

M = 1
2




1√
3 (p + q + k)

1√
6 (p + q − 2k)

1√
2 (q − p)


 . (1)

Apart from the trivial singlet P 2, the resulting nine
Lorentz invariants are

S0 = T +
M · T +

M = 1
4 (p2 + q2 + k2) ,

D0 = T +
M ∗ T +

M = 1
4S0

[ √
3 (q2 − p2)

p2 + q2 − 2k2

]
,

T0 = T +
M ∨ T +

M = 1
4S0




2 (ω1 + ω2 + ω3)√
2 (ω1 + ω2 − 2ω3)√

6 (ω2 − ω1)


 , (2)

T1 = T +
M · SM = 1

4S0




2 (η1 + η2 + η3)√
2 (η1 + η2 − 2η3)√

6 (η2 − η1)


 ,

with

ω1 = q · k , ω2 = p · k , ω3 = p · q (3)

and

η1 = p · P̂ , η2 = q · P̂ , η3 = k · P̂ . (4)

We can express p2, q2, k2 in terms of the doublet vari-
ables:

p2 = 2
3 S0(2 + s −

√
3 a) ,

q2 = 2
3 S0(2 + s −

√
3 a) ,

k2 = 4
3 S0(1 − s) .

(5)

Now let’s express the ‘pole variables’ in terms of these.
Let’s say Z+ = (p1 + p2)2 and Z− = (p3 + p4)2. Then

Z± =
(

k ± P

2

)2
= k2 − M2

4 ± iMη3

= k2 − M2

4 ± iM
√

k2 z3 ,

(6)

where z3 = k̂ · P̂ ∈ (−1, 1). This is the usual parabola in
the complex k2 plane with apex −M2/4. That is, a pole
at Z± = −m2

π (or along the contour of the parabola with
apex −m2

π) leads to the condition

16
3 S0(1 − s) = M2 − 4m2

π (7)

and therefore.

s = 1 + 3
16S0

(4m2
π − M2) . (8)

So it looks like above threshold M > 4mπ we have indeed
the situation that the poles cross over into the spacelike
region (s < 1). However, below threshold this cannot
happen. (The same analysis would work for the remain-
ing poles with X+ = (p2 + p3)2, etc.)

• Since you see a similar behavior at large quark
masses, but at the opposite side of the triangle:
Could it be that the Maris-Tandy scalar diquark
simply comes out very low, i.e., that the diquark
mass bends down at large quark masses and crosses
the threshold? Can you calculate scalar diquarks
too? Might be good to know as a check.

• This is all very interesting. I found a similar condi-
tion for the baryon, although the interpretation as
two-body poles at the border of the triangle doesn’t
work in that case (because it’s S3, the triangle is
bounded by the three quark momenta).
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... to Dyson-Schwinger equations

DSEs = quantum equations of motion:  
instead of calculating n-point functions directly,
derive eqs. of motion for them from path integral

Γ−e=

For reviews see:

Roberts, Williams, Prog. Part. Nucl. Phys. 33 (1994),
Alkofer, von Smekal, Phys. Rept. 353 (2001)
Fischer, J. Phys. G32 (2006)

S−e]ψ,A¯ψ,[D
∫

infinitely many coupled eqs.,
in practice truncations:
model / neglect higher
n-point functions to obtain
closed system

-1
=

-1
+

-1 -1
= ++

++ +

+

QCD’s classical action: Quantum “effective action”: 
]

µνFµνF4
1+ψ)m+A/ig

a

a+∂/ (ψ̄
[

x4d
∫

=

=

S

g g g 2

-1 -1 -1 -1
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Mesons

BS wave function only makes sense onshell, but homogeneous BSE = eigenvalue equation, 
can be solved for offshell momenta:

1iλ
𝑃�           −𝑚��

,iψ)2P(iλ=iK ψ

Restricted by 
singularities in 
quark propagator 
(no physical 
 threshold!):

mesons: 
baryons: 

Largest eigenvalue ⇔ ground state, 
smaller ones ⇔ excitations

⇒

0λ1λ2λ

2P

1

0
2m−1

2m−2
2m−

0λ 1λ 2λ

M

1

0m 1m 2m

Im 

Im 

Re 

Re 

Re ( )

pm2M <

pm3M <

MeV500∼pm

Homogeneous Bethe-Salpeter equation for BS wave function:  

𝑃�           −𝑚�
𝐺 𝜒 𝜒𝐾=
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Eigenvalue spectra

)
− −

N(    ) and ∆(    ) channels 
hardly affected by ps, v diquarks

+

2
1 +

2
3

all other channels:
sc, av → masses too high
sc, av, ps, v → masses too low

not all eigenvalues extrapolate
to masses below 2 GeV

some are complex conjugate 
(but imaginary parts small), 
some split into 2 real branches: 
numerical or truncation artifact?

GE, Fischer, Sanchis-Alepuz, 1607.05748
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Form factors

Sketch of a generic electromagnetic form factor:

How can we calculate this from the quark level?

‘rainbow-ladder’

quark-photon vertex

quark propagator

Faddeev
amplitude

⟶

⟶

⟶

2 Excited-QCD printed on April 17, 2014

           
 

〉H|)2x(ψ̄)1x(T ψ|0〈) =2, x1x(χ

Fig. 1. Quark-photon vertex and the ρ−meson poles it contains.

conservation for electromagnetic form factors, the Goldberger-Treiman relation for
axial form factors and so on, so that no ’fine-tuning’ is necessary.

In order to calculate nucleon form factors and polarizabilities, we must couple
photons to nucleons in a symmetry-preserving way [17–19]. To this end, we should
first understand how a photon microscopically interacts with a quark. Two of the
relevant Green functions that encode this interaction are the quark-photon vertex
and the quark Compton vertex. Here I will discuss some of their properties, the
role of electromagnetic gauge invariance in determining their structure, and their
implications for hadron properties.

2. Quark-photon vertex

Several well-known characteristics of form factors are reflected in the nonper-
turbative structure of the dressed quark-photon vertex. The vertex is defined as the
γµ−contraction of the qq̄ four-point function, see Fig. 1. The four-point function
contains all intermediate hadronic states that can be formed by a valence quark and
antiquark. Therefore, its singularity structure in the vector channel will be inher-
ited by the quark-photon vertex, i.e., ’vector-meson dominance’ is implemented by
construction. On the other hand, the definition allows to derive an inhomogeneous
Bethe-Salpeter equation (BSE) for the vertex; it depends on the qq̄ kernel where
the truncation to rainbow-ladder is made. Its numerical solution has been first
achieved in Ref. [20] and nowadays become almost a routine task. However, even
before solving the vertex dynamically one can gain some insight based on general
properties alone.

Electromagnetic gauge invariance entails that the quark-photon vertex can be
separated into a ’gauge part’ and a purely transverse part:

Γµ(k,Q) =
[
iγµ ΣA + 2kµ(i/k∆A + ∆B)

]
+
[
i

8∑

j=1

fj τ
µ
j (k,Q)

]
. (1)

Here, Q is the photon momentum and k = (k+ + k−)/2 the average momentum
of the quark legs, see Fig. 1. The gauge part in the first bracket is the Ball-Chiu
vertex [21] that satisfies the vector WTI. It is completely determined by the dressed
fermion propagator. At large Q2 it reproduces the tree-level structure, whereas the
nonperturbative dressing effects are contained in ΣA, ∆A and ΣB. These are sums
and difference quotients of the quark dressing functions A(p2) and B(p2):

ΣF (k,Q) =
F (k2+) + F (k2−)

2
, ∆F (k,Q) =

F (k2+) − F (k2−)

k2+ − k2−
, (2)

with F ∈ {A,B}. A(p2) approaches the quark wave-function renormalization con-
stant Z2 at large p2 and is nonperturbatively enhanced. The quark mass function

12

A. Fermion-photon vertex

We start with a discussion of the fermion-photon ver-
tex as it provides the template for the two-photon case.
It satisfies the Ward-Takahashi identity

Qµ Γµ(k,Q) = S−1(k+) − S−1(k−) , (70)

where Q is the photon momentum, k is the relative mo-
mentum of the quark, and k± = k ± Q/2 are the quark
momenta. The inverse dressed quark propagator reads

S−1(k) = i/k A(k2) + B(k2) , (71)

and the renormalization-point independent mass func-
tion of the fermion is given by M(k2) = B(k2)/A(k2).
Eq. (70) is solved by the Ball-Chiu vertex [52]

Γµ
BC(k,Q) = iγµ ΣA + 2kµ(i/k∆A + ∆B), (72)

where the functions

ΣA(k,Q) :=
A(k2+) + A(k2−)

2
,

∆A(k,Q) :=
A(k2+) − A(k2−)

k2+ − k2−
,

∆B(k,Q) :=
B(k2+) − B(k2−)

k2+ − k2−

(73)

are completely determined by the dressed fermion prop-
agator and free of kinematic singularities.

The full vertex is then the sum of the Ball-Chiu part
and a transverse piece that is not constrained by the
WTI:

Γµ(k,Q) = Γµ
BC(k,Q) + Γµ

T(k,Q) . (74)

Γµ
T consists of eight independent tensor structures. An-

alyticity at vanishing photon momentum requires Γµ
T to

vanish in the limit Qµ = 0, either via appropriate mo-
mentum dependencies of the basis elements, vanishing
dressing functions, or kinematic relations between the
dressing functions in that limit. In order to find eight
kinematically independent dressing functions, we want
to express Γµ

T in a basis that is free of kinematic singu-
larities and ’minimal’ with respect to its powers in the
photon momentum. Since the construction of the two-
photon vertex is closely related to the one-photon case,
we illustrate the problem here in detail.

The general fermion-photon vertex with quantum
numbers JPC = 1−− vertex consists of 12 tensor struc-
tures which can be chosen as
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To ensure definite charge-conjugation symmetry (indi-
cated by the signs in the brackets) we have used the

commutator for the product of two γ matrices and the
totally antisymmetric combination

[A,B,C] := [A,B]C + [B,C]A + [C,A]B (76)

for three γ matrices. If the odd basis tensors are multi-
plied with a factor k · Q, the full vertex satisfies

Γµ(k,Q) = C Γµ(−k,−Q)TCT = −Γµ(k,−Q) (77)

with scalar dressing functions that are even in k · Q.
The transverse part of the vertex consists of eight

tensor structures that are constructed from Eq. (75).
The two elements [γµ, /Q] and [γµ, /k, /Q] are transverse by
themselves. In principle one could apply the transverse
projector

Tµν
Q = δµν − QµQν

Q2
(78)

to the remaining elements from the first two columns of
Eq. (75) to obtain the basis decomposition
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where
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T = Tµν

Q γν , kµT = Tµν
Q kν . (80)

We have attached prefactors so that the scalar dressing
functions gi(k

2, k · Q, Q2) are even in k · Q and real for
k2 > 0, Q2 ∈ R. However, since the projector (78) con-
tains a kinematic singularity at Q2 → 0, the resulting
dressing functions are kinematically dependent: the four
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g1 + (k · Q)2g7 , g2 − g8 , g5 , g6 (81)

must vanish with Q2 for Q2 → 0. Instead of the pro-
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Q which has
no kinematic singularity; unfortunately this overcompen-
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individually when Q2 goes to zero.
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truly kinematically independent is given by [53–55]
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It satisfies the requirements of Eq. (81) since

f1 Q
2 = g1 + (k · Q)2g7 ,

f2 Q
2 = g2 − g8 ,

f3 = g3 ,

f4 = g4 ,

f5 Q
2 = g5 ,

f6 Q
2 = g6 ,

−f7 = g7 ,

f8 = g8 .
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S−1(k) = i/k A(k2) + B(k2) , (71)

and the renormalization-point independent mass func-
tion of the fermion is given by M(k2) = B(k2)/A(k2).
Eq. (70) is solved by the Ball-Chiu vertex [52]

Γµ
BC(k,Q) = iγµ ΣA + 2kµ(i/k∆A + ∆B), (72)

where the functions

ΣA(k,Q) :=
A(k2+) + A(k2−)

2
,

∆A(k,Q) :=
A(k2+) − A(k2−)

k2+ − k2−
,

∆B(k,Q) :=
B(k2+) − B(k2−)

k2+ − k2−

(73)

are completely determined by the dressed fermion prop-
agator and free of kinematic singularities.

The full vertex is then the sum of the Ball-Chiu part
and a transverse piece that is not constrained by the
WTI:

Γµ(k,Q) = Γµ
BC(k,Q) + Γµ

T(k,Q) . (74)

Γµ
T consists of eight independent tensor structures. An-

alyticity at vanishing photon momentum requires Γµ
T to

vanish in the limit Qµ = 0, either via appropriate mo-
mentum dependencies of the basis elements, vanishing
dressing functions, or kinematic relations between the
dressing functions in that limit. In order to find eight
kinematically independent dressing functions, we want
to express Γµ

T in a basis that is free of kinematic singu-
larities and ’minimal’ with respect to its powers in the
photon momentum. Since the construction of the two-
photon vertex is closely related to the one-photon case,
we illustrate the problem here in detail.

The general fermion-photon vertex with quantum
numbers JPC = 1−− vertex consists of 12 tensor struc-
tures which can be chosen as

(+) γµ

(−) [γµ, /k]

(+) [γµ, /Q]

(+) [γµ, /k, /Q]

(+) kµ

(+) kµ/k

(−) kµ /Q

(+) kµ[/k, /Q]

(−) Qµ

(−) Qµ/k

(+) Qµ /Q

(−) Qµ[/k, /Q].

(75)

To ensure definite charge-conjugation symmetry (indi-
cated by the signs in the brackets) we have used the

commutator for the product of two γ matrices and the
totally antisymmetric combination

[A,B,C] := [A,B]C + [B,C]A + [C,A]B (76)

for three γ matrices. If the odd basis tensors are multi-
plied with a factor k · Q, the full vertex satisfies

Γµ(k,Q) = C Γµ(−k,−Q)TCT = −Γµ(k,−Q) (77)

with scalar dressing functions that are even in k · Q.
The transverse part of the vertex consists of eight

tensor structures that are constructed from Eq. (75).
The two elements [γµ, /Q] and [γµ, /k, /Q] are transverse by
themselves. In principle one could apply the transverse
projector

Tµν
Q = δµν − QµQν

Q2
(78)

to the remaining elements from the first two columns of
Eq. (75) to obtain the basis decomposition

−iΓµ
T = g1γ

µ
T + g2 k ·Q i

2 [γµ
T , /k]

+ g3
i
2 [γµ, /Q] + g4

1
6 [γµ, /k, /Q]

+ kµT
(
ig5 + g6 /k + g7 k ·Q /Q + g8

i
2 [/k, /Q]

)
,

(79)

where

γµ
T = Tµν

Q γν , kµT = Tµν
Q kν . (80)

We have attached prefactors so that the scalar dressing
functions gi(k

2, k · Q, Q2) are even in k · Q and real for
k2 > 0, Q2 ∈ R. However, since the projector (78) con-
tains a kinematic singularity at Q2 → 0, the resulting
dressing functions are kinematically dependent: the four
combinations

g1 + (k · Q)2g7 , g2 − g8 , g5 , g6 (81)

must vanish with Q2 for Q2 → 0. Instead of the pro-
jector (78) one could equally apply Q2 Tµν

Q which has
no kinematic singularity; unfortunately this overcompen-
sates the problem since g1, g2, g7, g8 do not need to vanish
individually when Q2 goes to zero.

A basis decomposition where all dressing functions are
truly kinematically independent is given by [53–55]

−iΓµ
T = f1 Q

2 γµ
T + f2 k ·QQ2 i

2 [γµ
T , /k]

+ f3
i
2 [γµ, /Q] + f4

1
6 [γµ, /k, /Q]

+ if5 Q
2 kµT + f6 Q

2 kµT /k

+ f7 k ·Q (k ·Qγµ − kµ /Q)

+ f8
i
2 [k ·Qγµ − kµ /Q, /k].

(82)

It satisfies the requirements of Eq. (81) since

f1 Q
2 = g1 + (k · Q)2g7 ,

f2 Q
2 = g2 − g8 ,

f3 = g3 ,

f4 = g4 ,

f5 Q
2 = g5 ,

f6 Q
2 = g6 ,

−f7 = g7 ,

f8 = g8 .

(83)
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Fig. 1. Quark-photon vertex and the ρ−meson poles it contains.

conservation for electromagnetic form factors, the Goldberger-Treiman relation for
axial form factors and so on, so that no ’fine-tuning’ is necessary.

In order to calculate nucleon form factors and polarizabilities, we must couple
photons to nucleons in a symmetry-preserving way [17–19]. To this end, we should
first understand how a photon microscopically interacts with a quark. Two of the
relevant Green functions that encode this interaction are the quark-photon vertex
and the quark Compton vertex. Here I will discuss some of their properties, the
role of electromagnetic gauge invariance in determining their structure, and their
implications for hadron properties.

2. Quark-photon vertex

Several well-known characteristics of form factors are reflected in the nonper-
turbative structure of the dressed quark-photon vertex. The vertex is defined as the
γµ−contraction of the qq̄ four-point function, see Fig. 1. The four-point function
contains all intermediate hadronic states that can be formed by a valence quark and
antiquark. Therefore, its singularity structure in the vector channel will be inher-
ited by the quark-photon vertex, i.e., ’vector-meson dominance’ is implemented by
construction. On the other hand, the definition allows to derive an inhomogeneous
Bethe-Salpeter equation (BSE) for the vertex; it depends on the qq̄ kernel where
the truncation to rainbow-ladder is made. Its numerical solution has been first
achieved in Ref. [20] and nowadays become almost a routine task. However, even
before solving the vertex dynamically one can gain some insight based on general
properties alone.

Electromagnetic gauge invariance entails that the quark-photon vertex can be
separated into a ’gauge part’ and a purely transverse part:

Γµ(k,Q) =
[
iγµ ΣA + 2kµ(i/k∆A + ∆B)

]
+
[
i

8∑

j=1

fj τ
µ
j (k,Q)

]
. (1)

Here, Q is the photon momentum and k = (k+ + k−)/2 the average momentum
of the quark legs, see Fig. 1. The gauge part in the first bracket is the Ball-Chiu
vertex [21] that satisfies the vector WTI. It is completely determined by the dressed
fermion propagator. At large Q2 it reproduces the tree-level structure, whereas the
nonperturbative dressing effects are contained in ΣA, ∆A and ΣB. These are sums
and difference quotients of the quark dressing functions A(p2) and B(p2):

ΣF (k,Q) =
F (k2+) + F (k2−)

2
, ∆F (k,Q) =

F (k2+) − F (k2−)

k2+ − k2−
, (2)

with F ∈ {A,B}. A(p2) approaches the quark wave-function renormalization con-
stant Z2 at large p2 and is nonperturbatively enhanced. The quark mass function
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A. Fermion-photon vertex

We start with a discussion of the fermion-photon ver-
tex as it provides the template for the two-photon case.
It satisfies the Ward-Takahashi identity

Qµ Γµ(k,Q) = S−1(k+) − S−1(k−) , (70)

where Q is the photon momentum, k is the relative mo-
mentum of the quark, and k± = k ± Q/2 are the quark
momenta. The inverse dressed quark propagator reads

S−1(k) = i/k A(k2) + B(k2) , (71)

and the renormalization-point independent mass func-
tion of the fermion is given by M(k2) = B(k2)/A(k2).
Eq. (70) is solved by the Ball-Chiu vertex [52]

Γµ
BC(k,Q) = iγµ ΣA + 2kµ(i/k∆A + ∆B), (72)

where the functions

ΣA(k,Q) :=
A(k2+) + A(k2−)

2
,

∆A(k,Q) :=
A(k2+) − A(k2−)

k2+ − k2−
,

∆B(k,Q) :=
B(k2+) − B(k2−)

k2+ − k2−

(73)

are completely determined by the dressed fermion prop-
agator and free of kinematic singularities.

The full vertex is then the sum of the Ball-Chiu part
and a transverse piece that is not constrained by the
WTI:

Γµ(k,Q) = Γµ
BC(k,Q) + Γµ

T(k,Q) . (74)

Γµ
T consists of eight independent tensor structures. An-

alyticity at vanishing photon momentum requires Γµ
T to

vanish in the limit Qµ = 0, either via appropriate mo-
mentum dependencies of the basis elements, vanishing
dressing functions, or kinematic relations between the
dressing functions in that limit. In order to find eight
kinematically independent dressing functions, we want
to express Γµ

T in a basis that is free of kinematic singu-
larities and ’minimal’ with respect to its powers in the
photon momentum. Since the construction of the two-
photon vertex is closely related to the one-photon case,
we illustrate the problem here in detail.

The general fermion-photon vertex with quantum
numbers JPC = 1−− vertex consists of 12 tensor struc-
tures which can be chosen as

(+) γµ

(−) [γµ, /k]

(+) [γµ, /Q]

(+) [γµ, /k, /Q]

(+) kµ

(+) kµ/k

(−) kµ /Q

(+) kµ[/k, /Q]

(−) Qµ

(−) Qµ/k

(+) Qµ /Q

(−) Qµ[/k, /Q].

(75)

To ensure definite charge-conjugation symmetry (indi-
cated by the signs in the brackets) we have used the

commutator for the product of two γ matrices and the
totally antisymmetric combination

[A,B,C] := [A,B]C + [B,C]A + [C,A]B (76)

for three γ matrices. If the odd basis tensors are multi-
plied with a factor k · Q, the full vertex satisfies

Γµ(k,Q) = C Γµ(−k,−Q)TCT = −Γµ(k,−Q) (77)

with scalar dressing functions that are even in k · Q.
The transverse part of the vertex consists of eight

tensor structures that are constructed from Eq. (75).
The two elements [γµ, /Q] and [γµ, /k, /Q] are transverse by
themselves. In principle one could apply the transverse
projector

Tµν
Q = δµν − QµQν

Q2
(78)

to the remaining elements from the first two columns of
Eq. (75) to obtain the basis decomposition

−iΓµ
T = g1γ

µ
T + g2 k ·Q i

2 [γµ
T , /k]

+ g3
i
2 [γµ, /Q] + g4

1
6 [γµ, /k, /Q]

+ kµT
(
ig5 + g6 /k + g7 k ·Q /Q + g8

i
2 [/k, /Q]

)
,

(79)

where

γµ
T = Tµν

Q γν , kµT = Tµν
Q kν . (80)

We have attached prefactors so that the scalar dressing
functions gi(k

2, k · Q, Q2) are even in k · Q and real for
k2 > 0, Q2 ∈ R. However, since the projector (78) con-
tains a kinematic singularity at Q2 → 0, the resulting
dressing functions are kinematically dependent: the four
combinations

g1 + (k · Q)2g7 , g2 − g8 , g5 , g6 (81)

must vanish with Q2 for Q2 → 0. Instead of the pro-
jector (78) one could equally apply Q2 Tµν

Q which has
no kinematic singularity; unfortunately this overcompen-
sates the problem since g1, g2, g7, g8 do not need to vanish
individually when Q2 goes to zero.

A basis decomposition where all dressing functions are
truly kinematically independent is given by [53–55]

−iΓµ
T = f1 Q

2 γµ
T + f2 k ·QQ2 i

2 [γµ
T , /k]

+ f3
i
2 [γµ, /Q] + f4

1
6 [γµ, /k, /Q]

+ if5 Q
2 kµT + f6 Q

2 kµT /k

+ f7 k ·Q (k ·Qγµ − kµ /Q)

+ f8
i
2 [k ·Qγµ − kµ /Q, /k].

(82)

It satisfies the requirements of Eq. (81) since

f1 Q
2 = g1 + (k · Q)2g7 ,

f2 Q
2 = g2 − g8 ,

f3 = g3 ,

f4 = g4 ,

f5 Q
2 = g5 ,

f6 Q
2 = g6 ,

−f7 = g7 ,

f8 = g8 .

(83)
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are completely determined by the dressed fermion prop-
agator and free of kinematic singularities.

The full vertex is then the sum of the Ball-Chiu part
and a transverse piece that is not constrained by the
WTI:
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BC(k,Q) + Γµ
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Γµ
T consists of eight independent tensor structures. An-

alyticity at vanishing photon momentum requires Γµ
T to

vanish in the limit Qµ = 0, either via appropriate mo-
mentum dependencies of the basis elements, vanishing
dressing functions, or kinematic relations between the
dressing functions in that limit. In order to find eight
kinematically independent dressing functions, we want
to express Γµ

T in a basis that is free of kinematic singu-
larities and ’minimal’ with respect to its powers in the
photon momentum. Since the construction of the two-
photon vertex is closely related to the one-photon case,
we illustrate the problem here in detail.

The general fermion-photon vertex with quantum
numbers JPC = 1−− vertex consists of 12 tensor struc-
tures which can be chosen as
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(+) [γµ, /Q]
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To ensure definite charge-conjugation symmetry (indi-
cated by the signs in the brackets) we have used the

commutator for the product of two γ matrices and the
totally antisymmetric combination

[A,B,C] := [A,B]C + [B,C]A + [C,A]B (76)

for three γ matrices. If the odd basis tensors are multi-
plied with a factor k · Q, the full vertex satisfies

Γµ(k,Q) = C Γµ(−k,−Q)TCT = −Γµ(k,−Q) (77)

with scalar dressing functions that are even in k · Q.
The transverse part of the vertex consists of eight

tensor structures that are constructed from Eq. (75).
The two elements [γµ, /Q] and [γµ, /k, /Q] are transverse by
themselves. In principle one could apply the transverse
projector

Tµν
Q = δµν − QµQν

Q2
(78)

to the remaining elements from the first two columns of
Eq. (75) to obtain the basis decomposition

−iΓµ
T = g1γ
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T + g2 k ·Q i

2 [γµ
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where

γµ
T = Tµν

Q γν , kµT = Tµν
Q kν . (80)

We have attached prefactors so that the scalar dressing
functions gi(k

2, k · Q, Q2) are even in k · Q and real for
k2 > 0, Q2 ∈ R. However, since the projector (78) con-
tains a kinematic singularity at Q2 → 0, the resulting
dressing functions are kinematically dependent: the four
combinations

g1 + (k · Q)2g7 , g2 − g8 , g5 , g6 (81)

must vanish with Q2 for Q2 → 0. Instead of the pro-
jector (78) one could equally apply Q2 Tµν

Q which has
no kinematic singularity; unfortunately this overcompen-
sates the problem since g1, g2, g7, g8 do not need to vanish
individually when Q2 goes to zero.

A basis decomposition where all dressing functions are
truly kinematically independent is given by [53–55]
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where Q is the photon momentum, k is the relative mo-
mentum of the quark, and k± = k ± Q/2 are the quark
momenta. The inverse dressed quark propagator reads

S−1(k) = i/k A(k2) + B(k2) , (71)

and the renormalization-point independent mass func-
tion of the fermion is given by M(k2) = B(k2)/A(k2).
Eq. (70) is solved by the Ball-Chiu vertex [52]
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are completely determined by the dressed fermion prop-
agator and free of kinematic singularities.

The full vertex is then the sum of the Ball-Chiu part
and a transverse piece that is not constrained by the
WTI:

Γµ(k,Q) = Γµ
BC(k,Q) + Γµ

T(k,Q) . (74)

Γµ
T consists of eight independent tensor structures. An-

alyticity at vanishing photon momentum requires Γµ
T to

vanish in the limit Qµ = 0, either via appropriate mo-
mentum dependencies of the basis elements, vanishing
dressing functions, or kinematic relations between the
dressing functions in that limit. In order to find eight
kinematically independent dressing functions, we want
to express Γµ

T in a basis that is free of kinematic singu-
larities and ’minimal’ with respect to its powers in the
photon momentum. Since the construction of the two-
photon vertex is closely related to the one-photon case,
we illustrate the problem here in detail.
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larities and ’minimal’ with respect to its powers in the
photon momentum. Since the construction of the two-
photon vertex is closely related to the one-photon case,
we illustrate the problem here in detail.

The general fermion-photon vertex with quantum
numbers JPC = 1−− vertex consists of 12 tensor struc-
tures which can be chosen as

(+) γµ

(−) [γµ, /k]

(+) [γµ, /Q]

(+) [γµ, /k, /Q]

(+) kµ

(+) kµ/k

(−) kµ /Q

(+) kµ[/k, /Q]

(−) Qµ

(−) Qµ/k

(+) Qµ /Q

(−) Qµ[/k, /Q].

(75)

To ensure definite charge-conjugation symmetry (indi-
cated by the signs in the brackets) we have used the

commutator for the product of two γ matrices and the
totally antisymmetric combination

[A,B,C] := [A,B]C + [B,C]A + [C,A]B (76)

for three γ matrices. If the odd basis tensors are multi-
plied with a factor k · Q, the full vertex satisfies

Γµ(k,Q) = C Γµ(−k,−Q)TCT = −Γµ(k,−Q) (77)

with scalar dressing functions that are even in k · Q.
The transverse part of the vertex consists of eight

tensor structures that are constructed from Eq. (75).
The two elements [γµ, /Q] and [γµ, /k, /Q] are transverse by
themselves. In principle one could apply the transverse
projector

Tµν
Q = δµν − QµQν

Q2
(78)

to the remaining elements from the first two columns of
Eq. (75) to obtain the basis decomposition

−iΓµ
T = g1γ

µ
T + g2 k ·Q i

2 [γµ
T , /k]

+ g3
i
2 [γµ, /Q] + g4

1
6 [γµ, /k, /Q]

+ kµT
(
ig5 + g6 /k + g7 k ·Q /Q + g8

i
2 [/k, /Q]

)
,

(79)

where

γµ
T = Tµν

Q γν , kµT = Tµν
Q kν . (80)

We have attached prefactors so that the scalar dressing
functions gi(k

2, k · Q, Q2) are even in k · Q and real for
k2 > 0, Q2 ∈ R. However, since the projector (78) con-
tains a kinematic singularity at Q2 → 0, the resulting
dressing functions are kinematically dependent: the four
combinations

g1 + (k · Q)2g7 , g2 − g8 , g5 , g6 (81)

must vanish with Q2 for Q2 → 0. Instead of the pro-
jector (78) one could equally apply Q2 Tµν

Q which has
no kinematic singularity; unfortunately this overcompen-
sates the problem since g1, g2, g7, g8 do not need to vanish
individually when Q2 goes to zero.

A basis decomposition where all dressing functions are
truly kinematically independent is given by [53–55]

−iΓµ
T = f1 Q

2 γµ
T + f2 k ·QQ2 i

2 [γµ
T , /k]

+ f3
i
2 [γµ, /Q] + f4

1
6 [γµ, /k, /Q]

+ if5 Q
2 kµT + f6 Q

2 kµT /k

+ f7 k ·Q (k ·Qγµ − kµ /Q)

+ f8
i
2 [k ·Qγµ − kµ /Q, /k].

(82)

It satisfies the requirements of Eq. (81) since

f1 Q
2 = g1 + (k · Q)2g7 ,

f2 Q
2 = g2 − g8 ,

f3 = g3 ,

f4 = g4 ,

f5 Q
2 = g5 ,

f6 Q
2 = g6 ,

−f7 = g7 ,

f8 = g8 .

(83)
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A. Fermion-photon vertex

We start with a discussion of the fermion-photon ver-
tex as it provides the template for the two-photon case.
It satisfies the Ward-Takahashi identity
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where Q is the photon momentum, k is the relative mo-
mentum of the quark, and k± = k ± Q/2 are the quark
momenta. The inverse dressed quark propagator reads

S−1(k) = i/k A(k2) + B(k2) , (71)

and the renormalization-point independent mass func-
tion of the fermion is given by M(k2) = B(k2)/A(k2).
Eq. (70) is solved by the Ball-Chiu vertex [52]

Γµ
BC(k,Q) = iγµ ΣA + 2kµ(i/k∆A + ∆B), (72)

where the functions

ΣA(k,Q) :=
A(k2+) + A(k2−)

2
,

∆A(k,Q) :=
A(k2+) − A(k2−)

k2+ − k2−
,

∆B(k,Q) :=
B(k2+) − B(k2−)

k2+ − k2−

(73)

are completely determined by the dressed fermion prop-
agator and free of kinematic singularities.

The full vertex is then the sum of the Ball-Chiu part
and a transverse piece that is not constrained by the
WTI:
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BC(k,Q) + Γµ

T(k,Q) . (74)

Γµ
T consists of eight independent tensor structures. An-

alyticity at vanishing photon momentum requires Γµ
T to

vanish in the limit Qµ = 0, either via appropriate mo-
mentum dependencies of the basis elements, vanishing
dressing functions, or kinematic relations between the
dressing functions in that limit. In order to find eight
kinematically independent dressing functions, we want
to express Γµ

T in a basis that is free of kinematic singu-
larities and ’minimal’ with respect to its powers in the
photon momentum. Since the construction of the two-
photon vertex is closely related to the one-photon case,
we illustrate the problem here in detail.

The general fermion-photon vertex with quantum
numbers JPC = 1−− vertex consists of 12 tensor struc-
tures which can be chosen as

(+) γµ

(−) [γµ, /k]

(+) [γµ, /Q]

(+) [γµ, /k, /Q]

(+) kµ

(+) kµ/k

(−) kµ /Q

(+) kµ[/k, /Q]

(−) Qµ

(−) Qµ/k

(+) Qµ /Q

(−) Qµ[/k, /Q].

(75)

To ensure definite charge-conjugation symmetry (indi-
cated by the signs in the brackets) we have used the

commutator for the product of two γ matrices and the
totally antisymmetric combination

[A,B,C] := [A,B]C + [B,C]A + [C,A]B (76)

for three γ matrices. If the odd basis tensors are multi-
plied with a factor k · Q, the full vertex satisfies

Γµ(k,Q) = C Γµ(−k,−Q)TCT = −Γµ(k,−Q) (77)

with scalar dressing functions that are even in k · Q.
The transverse part of the vertex consists of eight

tensor structures that are constructed from Eq. (75).
The two elements [γµ, /Q] and [γµ, /k, /Q] are transverse by
themselves. In principle one could apply the transverse
projector

Tµν
Q = δµν − QµQν

Q2
(78)

to the remaining elements from the first two columns of
Eq. (75) to obtain the basis decomposition

−iΓµ
T = g1γ

µ
T + g2 k ·Q i

2 [γµ
T , /k]

+ g3
i
2 [γµ, /Q] + g4

1
6 [γµ, /k, /Q]

+ kµT
(
ig5 + g6 /k + g7 k ·Q /Q + g8

i
2 [/k, /Q]

)
,

(79)

where

γµ
T = Tµν

Q γν , kµT = Tµν
Q kν . (80)

We have attached prefactors so that the scalar dressing
functions gi(k

2, k · Q, Q2) are even in k · Q and real for
k2 > 0, Q2 ∈ R. However, since the projector (78) con-
tains a kinematic singularity at Q2 → 0, the resulting
dressing functions are kinematically dependent: the four
combinations

g1 + (k · Q)2g7 , g2 − g8 , g5 , g6 (81)

must vanish with Q2 for Q2 → 0. Instead of the pro-
jector (78) one could equally apply Q2 Tµν

Q which has
no kinematic singularity; unfortunately this overcompen-
sates the problem since g1, g2, g7, g8 do not need to vanish
individually when Q2 goes to zero.

A basis decomposition where all dressing functions are
truly kinematically independent is given by [53–55]

−iΓµ
T = f1 Q

2 γµ
T + f2 k ·QQ2 i

2 [γµ
T , /k]

+ f3
i
2 [γµ, /Q] + f4

1
6 [γµ, /k, /Q]

+ if5 Q
2 kµT + f6 Q

2 kµT /k

+ f7 k ·Q (k ·Qγµ − kµ /Q)

+ f8
i
2 [k ·Qγµ − kµ /Q, /k].

(82)

It satisfies the requirements of Eq. (81) since

f1 Q
2 = g1 + (k · Q)2g7 ,

f2 Q
2 = g2 − g8 ,

f3 = g3 ,

f4 = g4 ,

f5 Q
2 = g5 ,

f6 Q
2 = g6 ,

−f7 = g7 ,

f8 = g8 .

(83)

12

A. Fermion-photon vertex

We start with a discussion of the fermion-photon ver-
tex as it provides the template for the two-photon case.
It satisfies the Ward-Takahashi identity

Qµ Γµ(k,Q) = S−1(k+) − S−1(k−) , (70)

where Q is the photon momentum, k is the relative mo-
mentum of the quark, and k± = k ± Q/2 are the quark
momenta. The inverse dressed quark propagator reads

S−1(k) = i/k A(k2) + B(k2) , (71)

and the renormalization-point independent mass func-
tion of the fermion is given by M(k2) = B(k2)/A(k2).
Eq. (70) is solved by the Ball-Chiu vertex [52]

Γµ
BC(k,Q) = iγµ ΣA + 2kµ(i/k∆A + ∆B), (72)

where the functions

ΣA(k,Q) :=
A(k2+) + A(k2−)

2
,

∆A(k,Q) :=
A(k2+) − A(k2−)

k2+ − k2−
,

∆B(k,Q) :=
B(k2+) − B(k2−)

k2+ − k2−

(73)

are completely determined by the dressed fermion prop-
agator and free of kinematic singularities.

The full vertex is then the sum of the Ball-Chiu part
and a transverse piece that is not constrained by the
WTI:

Γµ(k,Q) = Γµ
BC(k,Q) + Γµ

T(k,Q) . (74)

Γµ
T consists of eight independent tensor structures. An-

alyticity at vanishing photon momentum requires Γµ
T to

vanish in the limit Qµ = 0, either via appropriate mo-
mentum dependencies of the basis elements, vanishing
dressing functions, or kinematic relations between the
dressing functions in that limit. In order to find eight
kinematically independent dressing functions, we want
to express Γµ

T in a basis that is free of kinematic singu-
larities and ’minimal’ with respect to its powers in the
photon momentum. Since the construction of the two-
photon vertex is closely related to the one-photon case,
we illustrate the problem here in detail.

The general fermion-photon vertex with quantum
numbers JPC = 1−− vertex consists of 12 tensor struc-
tures which can be chosen as

(+) γµ

(−) [γµ, /k]

(+) [γµ, /Q]

(+) [γµ, /k, /Q]

(+) kµ

(+) kµ/k

(−) kµ /Q

(+) kµ[/k, /Q]

(−) Qµ

(−) Qµ/k

(+) Qµ /Q

(−) Qµ[/k, /Q].

(75)

To ensure definite charge-conjugation symmetry (indi-
cated by the signs in the brackets) we have used the

commutator for the product of two γ matrices and the
totally antisymmetric combination

[A,B,C] := [A,B]C + [B,C]A + [C,A]B (76)

for three γ matrices. If the odd basis tensors are multi-
plied with a factor k · Q, the full vertex satisfies

Γµ(k,Q) = C Γµ(−k,−Q)TCT = −Γµ(k,−Q) (77)

with scalar dressing functions that are even in k · Q.
The transverse part of the vertex consists of eight

tensor structures that are constructed from Eq. (75).
The two elements [γµ, /Q] and [γµ, /k, /Q] are transverse by
themselves. In principle one could apply the transverse
projector

Tµν
Q = δµν − QµQν

Q2
(78)

to the remaining elements from the first two columns of
Eq. (75) to obtain the basis decomposition

−iΓµ
T = g1γ

µ
T + g2 k ·Q i

2 [γµ
T , /k]

+ g3
i
2 [γµ, /Q] + g4

1
6 [γµ, /k, /Q]

+ kµT
(
ig5 + g6 /k + g7 k ·Q /Q + g8

i
2 [/k, /Q]

)
,

(79)

where

γµ
T = Tµν

Q γν , kµT = Tµν
Q kν . (80)

We have attached prefactors so that the scalar dressing
functions gi(k

2, k · Q, Q2) are even in k · Q and real for
k2 > 0, Q2 ∈ R. However, since the projector (78) con-
tains a kinematic singularity at Q2 → 0, the resulting
dressing functions are kinematically dependent: the four
combinations

g1 + (k · Q)2g7 , g2 − g8 , g5 , g6 (81)

must vanish with Q2 for Q2 → 0. Instead of the pro-
jector (78) one could equally apply Q2 Tµν

Q which has
no kinematic singularity; unfortunately this overcompen-
sates the problem since g1, g2, g7, g8 do not need to vanish
individually when Q2 goes to zero.

A basis decomposition where all dressing functions are
truly kinematically independent is given by [53–55]

−iΓµ
T = f1 Q

2 γµ
T + f2 k ·QQ2 i

2 [γµ
T , /k]

+ f3
i
2 [γµ, /Q] + f4

1
6 [γµ, /k, /Q]

+ if5 Q
2 kµT + f6 Q

2 kµT /k

+ f7 k ·Q (k ·Qγµ − kµ /Q)

+ f8
i
2 [k ·Qγµ − kµ /Q, /k].

(82)

It satisfies the requirements of Eq. (81) since

f1 Q
2 = g1 + (k · Q)2g7 ,

f2 Q
2 = g2 − g8 ,

f3 = g3 ,

f4 = g4 ,

f5 Q
2 = g5 ,

f6 Q
2 = g6 ,

−f7 = g7 ,

f8 = g8 .

(83)

)2Q(F

𝜌

𝜌’
𝜌’’

2Q

charge,
magnetic moment,...

radius

timelike: spacelike:not 
accessibleN̄N→−e+e N−e→N−e

2M4− 0

++= ++ ++

Microscopic decomposition of current matrix element:
satisfies electromagnetic gauge invariance, consistent with baryon’s Faddeev equation 

Gernot Eichmann (Uni Giessen) August 29, 2016 20 / 20



Nucleon em. form factors
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Nucleon em. form factors

Nucleon magnetic moments: 
isovector (p-n), isoscalar (p+n)
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Fig. 1. Quark-photon vertex and the ρ−meson poles it contains.

conservation for electromagnetic form factors, the Goldberger-Treiman relation for
axial form factors and so on, so that no ’fine-tuning’ is necessary.

In order to calculate nucleon form factors and polarizabilities, we must couple
photons to nucleons in a symmetry-preserving way [17–19]. To this end, we should
first understand how a photon microscopically interacts with a quark. Two of the
relevant Green functions that encode this interaction are the quark-photon vertex
and the quark Compton vertex. Here I will discuss some of their properties, the
role of electromagnetic gauge invariance in determining their structure, and their
implications for hadron properties.

2. Quark-photon vertex

Several well-known characteristics of form factors are reflected in the nonper-
turbative structure of the dressed quark-photon vertex. The vertex is defined as the
γµ−contraction of the qq̄ four-point function, see Fig. 1. The four-point function
contains all intermediate hadronic states that can be formed by a valence quark and
antiquark. Therefore, its singularity structure in the vector channel will be inher-
ited by the quark-photon vertex, i.e., ’vector-meson dominance’ is implemented by
construction. On the other hand, the definition allows to derive an inhomogeneous
Bethe-Salpeter equation (BSE) for the vertex; it depends on the qq̄ kernel where
the truncation to rainbow-ladder is made. Its numerical solution has been first
achieved in Ref. [20] and nowadays become almost a routine task. However, even
before solving the vertex dynamically one can gain some insight based on general
properties alone.

Electromagnetic gauge invariance entails that the quark-photon vertex can be
separated into a ’gauge part’ and a purely transverse part:

Γµ(k,Q) =
[
iγµ ΣA + 2kµ(i/k∆A + ∆B)

]
+
[
i

8∑

j=1

fj τ
µ
j (k,Q)

]
. (1)

Here, Q is the photon momentum and k = (k+ + k−)/2 the average momentum
of the quark legs, see Fig. 1. The gauge part in the first bracket is the Ball-Chiu
vertex [21] that satisfies the vector WTI. It is completely determined by the dressed
fermion propagator. At large Q2 it reproduces the tree-level structure, whereas the
nonperturbative dressing effects are contained in ΣA, ∆A and ΣB. These are sums
and difference quotients of the quark dressing functions A(p2) and B(p2):

ΣF (k,Q) =
F (k2+) + F (k2−)

2
, ∆F (k,Q) =

F (k2+) − F (k2−)

k2+ − k2−
, (2)

with F ∈ {A,B}. A(p2) approaches the quark wave-function renormalization con-
stant Z2 at large p2 and is nonperturbatively enhanced. The quark mass function

=µΓ

+

⇒

2Q

Pion form factor
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A. Fermion-photon vertex

We start with a discussion of the fermion-photon ver-
tex as it provides the template for the two-photon case.
It satisfies the Ward-Takahashi identity

Qµ Γµ(k,Q) = S−1(k+) − S−1(k−) , (70)

where Q is the photon momentum, k is the relative mo-
mentum of the quark, and k± = k ± Q/2 are the quark
momenta. The inverse dressed quark propagator reads

S−1(k) = i/k A(k2) + B(k2) , (71)

and the renormalization-point independent mass func-
tion of the fermion is given by M(k2) = B(k2)/A(k2).
Eq. (70) is solved by the Ball-Chiu vertex [52]

Γµ
BC(k,Q) = iγµ ΣA + 2kµ(i/k∆A + ∆B), (72)

where the functions

ΣA(k,Q) :=
A(k2+) + A(k2−)

2
,
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,
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B(k2+) − B(k2−)

k2+ − k2−

(73)

are completely determined by the dressed fermion prop-
agator and free of kinematic singularities.

The full vertex is then the sum of the Ball-Chiu part
and a transverse piece that is not constrained by the
WTI:

Γµ(k,Q) = Γµ
BC(k,Q) + Γµ

T(k,Q) . (74)

Γµ
T consists of eight independent tensor structures. An-

alyticity at vanishing photon momentum requires Γµ
T to

vanish in the limit Qµ = 0, either via appropriate mo-
mentum dependencies of the basis elements, vanishing
dressing functions, or kinematic relations between the
dressing functions in that limit. In order to find eight
kinematically independent dressing functions, we want
to express Γµ

T in a basis that is free of kinematic singu-
larities and ’minimal’ with respect to its powers in the
photon momentum. Since the construction of the two-
photon vertex is closely related to the one-photon case,
we illustrate the problem here in detail.

The general fermion-photon vertex with quantum
numbers JPC = 1−− vertex consists of 12 tensor struc-
tures which can be chosen as

(+) γµ

(−) [γµ, /k]

(+) [γµ, /Q]

(+) [γµ, /k, /Q]

(+) kµ

(+) kµ/k

(−) kµ /Q

(+) kµ[/k, /Q]

(−) Qµ

(−) Qµ/k

(+) Qµ /Q

(−) Qµ[/k, /Q].

(75)

To ensure definite charge-conjugation symmetry (indi-
cated by the signs in the brackets) we have used the

commutator for the product of two γ matrices and the
totally antisymmetric combination

[A,B,C] := [A,B]C + [B,C]A + [C,A]B (76)

for three γ matrices. If the odd basis tensors are multi-
plied with a factor k · Q, the full vertex satisfies

Γµ(k,Q) = C Γµ(−k,−Q)TCT = −Γµ(k,−Q) (77)

with scalar dressing functions that are even in k · Q.
The transverse part of the vertex consists of eight

tensor structures that are constructed from Eq. (75).
The two elements [γµ, /Q] and [γµ, /k, /Q] are transverse by
themselves. In principle one could apply the transverse
projector

Tµν
Q = δµν − QµQν

Q2
(78)

to the remaining elements from the first two columns of
Eq. (75) to obtain the basis decomposition

−iΓµ
T = g1γ

µ
T + g2 k ·Q i

2 [γµ
T , /k]

+ g3
i
2 [γµ, /Q] + g4

1
6 [γµ, /k, /Q]

+ kµT
(
ig5 + g6 /k + g7 k ·Q /Q + g8

i
2 [/k, /Q]

)
,

(79)

where

γµ
T = Tµν

Q γν , kµT = Tµν
Q kν . (80)

We have attached prefactors so that the scalar dressing
functions gi(k

2, k · Q, Q2) are even in k · Q and real for
k2 > 0, Q2 ∈ R. However, since the projector (78) con-
tains a kinematic singularity at Q2 → 0, the resulting
dressing functions are kinematically dependent: the four
combinations

g1 + (k · Q)2g7 , g2 − g8 , g5 , g6 (81)

must vanish with Q2 for Q2 → 0. Instead of the pro-
jector (78) one could equally apply Q2 Tµν

Q which has
no kinematic singularity; unfortunately this overcompen-
sates the problem since g1, g2, g7, g8 do not need to vanish
individually when Q2 goes to zero.

A basis decomposition where all dressing functions are
truly kinematically independent is given by [53–55]

−iΓµ
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2 γµ
T + f2 k ·QQ2 i

2 [γµ
T , /k]

+ f3
i
2 [γµ, /Q] + f4

1
6 [γµ, /k, /Q]

+ if5 Q
2 kµT + f6 Q

2 kµT /k

+ f7 k ·Q (k ·Qγµ − kµ /Q)

+ f8
i
2 [k ·Qγµ − kµ /Q, /k].

(82)

It satisfies the requirements of Eq. (81) since

f1 Q
2 = g1 + (k · Q)2g7 ,

f2 Q
2 = g2 − g8 ,

f3 = g3 ,

f4 = g4 ,

f5 Q
2 = g5 ,

f6 Q
2 = g6 ,

−f7 = g7 ,

f8 = g8 .

(83)
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Q which has
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plied with a factor k · Q, the full vertex satisfies
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Pion cloud effects

Quark level: 
𝜋 contributions to quark self-energy, 
effective 𝜋 exchange between quarks;
pion not elementary field!

)
− −

Hadron level: 
𝑁𝜋 contributions to nucleon self-energy; 
charge radii diverge in chiral limit, 
𝛥 → 𝑁𝜋 decay cusps, etc.

Pion form factor: photon also couples to pion 
(necessary for gauge invariance),
𝜋 exchange in quark-photon vertex

Baryons: pion effects reduce 𝑁, 𝛥 masses 
but also 𝑓� (sets the scale) by similar amount: 
net effect small

= +

-1= -1
+ ++ + +

+ +

GE, Fischer, Kubrak, Williams,  in preparation

Fischer, Nickel, Wambach, PRD 76 (2007)

Sanchis-Alepuz, Fischer, Kubrak,  PLB 733 (2014)
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Axial form factors
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Goldberger-Treiman relation
reproduced for all quark masses: 

Timelike meson poles:
𝑎� in 𝐺�, 𝜋 & 𝜋(1300) in 𝐺� , 𝐺���

looks like magnetic form factors:
missing structure at low 𝑄� ⇒ 𝑔� too small 
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𝛥 electromagnetic FFs   

Almost no experimental information since 𝛥 unstable:  𝛥 → 𝑁𝜋 

Magnetic moment 𝜇� ~ 3.5 with large errors (𝛥⁺).
But 𝛺⁻ (spin 3/2, sss) is stable w.r.t strong interaction,
magnetic moment |𝜇�| � 3.6(1).  Accidental?
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TABLE II. (Color online) Rest-frame partial-wave decomposi-
tion of nucleon and ∆−baryon in the quark-diquark approach.
The basis elements are characterized by their scalar and ax-
ialvector diquark content and their eigenvalues with respect
to quark-diquark spin (s) and orbital angular momentum (l).
The colored boxes highlight the dominant components; for
example, the dressing functions associated with τµ

4 and τµ
6

are much smaller than the remaining p−wave contributions.

positive-energy and Rarita-Schwinger projectors which
satisfy

Λ+(P )u(P, s) = u(P, s) ,

Pµν(P )uν(P, s) = uµ(P, s) .
(13)

They are given by

Λ+ = 1
2 (1+ /̂P ) , Pµν = Λ+

(
Tµν
P − 1

3 γ
µ
T γν

T

)
, (14)

where P̂ = P/(iMB) is the normalized baryon momen-

tum, Tµν
P = δµν −P̂µP̂ ν is a transverse projector with re-

spect to P , and γµ
T = Tµν

P γν is the transverse γ−matrix.
The projectors inherit the constraints from the spinors:

/̂P Λ+ = Λ+ , P̂µPµν = γµPµν = 0 . (15)

Instead of p and P , the basis elements in Eqs. (11–12)
can be equally well expressed through orthonormal mo-
menta P̂µ and rµ := p̂T

µ
, i.e., such that r2 = P̂ 2 = 1

and r · P̂ = 0. The dependence on the Lorentz invari-
ants p2 and z is then carried by the coefficients fB

k only.
This simplifies the construction of an orthogonal basis
and is also convenient for practical calculations, e.g. in
the baryon’s rest frame, where P̂ and r are Euclidean
unit vectors.

The largest linearly independent set of basis elements
for the bound-state amplitude Γ0

N , Γµ
N and Γµν

∆ is given in
Eq. (B1). On the baryon’s mass shell, which is enforced

by the properties (15) of the projectors, the following
independent basis elements remain:

Γ0
N : {1, r/},

Γµ
N : {γµ

T , r
µ, P̂µ} × {1, r/},

Γµν
∆ : {δµν , γµ

T rν , rµrν , P̂µrν} × {1, r/}.
(16)

These can be further orthonormalized and arranged ac-
cording to their (quark-diquark) spin and orbital angular
momentum content in the baryon’s rest frame, cf. App. B.
The resulting classification in s, p, d and f waves is illus-
trated in Tables I and II. We emphasize that p-wave con-
tributions to the bound-state amplitudes emerge quite
naturally because of Poincaré covariance. Those disap-
pear in the non-relativistic limit [64] but have important
consequences for the behavior of the form factors in Sec-
tion IV.

III. ELECTROMAGNETIC TRANSITION

A. N∆γ transition current

We now turn to the general properties of the N∆γ
transition current and its decomposition in terms of
Lorentz-invariant form factors. The current can be gener-
ically written as

Jµ,ρ(P,Q) = Pρα(Pf ) iγ5 Γαµ(P,Q) Λ+(Pi) , (17)

where Pi and Pf are the incoming nucleon and outgoing
∆ momenta, with P 2

i = −M2
N and P 2

f = −M2
∆. They can

be expressed through the photon momentum Q = Pf −Pi

and the average momentum P = (Pi+Pf )/2. The onshell
structure of the current is ensured by the projectors de-
fined in Eq. (14), i.e., the positive-energy projector Λ+ for
the nucleon and the Rarita-Schwinger projector Pρα for
the ∆-baryon. Eq. (17) is a matrix in spinor space; the
usual current matrix element 〈Pf , sf | Jµ |Pi, si〉 is ob-
tained upon contraction with the ∆ and nucleon spinors
from Eq. (13). The momentum dependence of the projec-
tors implies that the γ−matrices contained in the Rarita-
Schwinger projector Pρα(Pf ) are now transverse with re-
spect to Pf . We extracted an explicit factor γ5 in Eq. (17)
so that the remainder Γαµ, which will be specified below,
has positive parity.

Similarly to the nucleon and ∆ bound-state ampli-
tudes, the composition of the four-point function Γαµ in
Eq. (17) is determined by Poincaré covariance. For its
explicit construction it is again convenient to work with
orthogonal momenta. This is not yet the case for P and
Q because the non-vanishing N -∆ mass difference entails
P · Q �= 0, cf. Eq. (C3). We take instead the component
of P transverse to Q:

Pµ
T = Tµν

Q P ν = Pµ − (P · Q̂) Q̂µ , (18)

and normalize it to unity: Kµ := P̂T

µ
. Here,

Tµν
Q = δµν − Q̂µQ̂ν (19)
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are much smaller than the remaining p−wave contributions.
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Instead of p and P , the basis elements in Eqs. (11–12)
can be equally well expressed through orthonormal mo-
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, i.e., such that r2 = P̂ 2 = 1

and r · P̂ = 0. The dependence on the Lorentz invari-
ants p2 and z is then carried by the coefficients fB

k only.
This simplifies the construction of an orthogonal basis
and is also convenient for practical calculations, e.g. in
the baryon’s rest frame, where P̂ and r are Euclidean
unit vectors.

The largest linearly independent set of basis elements
for the bound-state amplitude Γ0

N , Γµ
N and Γµν

∆ is given in
Eq. (B1). On the baryon’s mass shell, which is enforced

by the properties (15) of the projectors, the following
independent basis elements remain:
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N : {1, r/},
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N : {γµ

T , r
µ, P̂µ} × {1, r/},

Γµν
∆ : {δµν , γµ

T rν , rµrν , P̂µrν} × {1, r/}.
(16)

These can be further orthonormalized and arranged ac-
cording to their (quark-diquark) spin and orbital angular
momentum content in the baryon’s rest frame, cf. App. B.
The resulting classification in s, p, d and f waves is illus-
trated in Tables I and II. We emphasize that p-wave con-
tributions to the bound-state amplitudes emerge quite
naturally because of Poincaré covariance. Those disap-
pear in the non-relativistic limit [64] but have important
consequences for the behavior of the form factors in Sec-
tion IV.

III. ELECTROMAGNETIC TRANSITION

A. N∆γ transition current

We now turn to the general properties of the N∆γ
transition current and its decomposition in terms of
Lorentz-invariant form factors. The current can be gener-
ically written as

Jµ,ρ(P,Q) = Pρα(Pf ) iγ5 Γαµ(P,Q) Λ+(Pi) , (17)

where Pi and Pf are the incoming nucleon and outgoing
∆ momenta, with P 2

i = −M2
N and P 2

f = −M2
∆. They can

be expressed through the photon momentum Q = Pf −Pi

and the average momentum P = (Pi+Pf )/2. The onshell
structure of the current is ensured by the projectors de-
fined in Eq. (14), i.e., the positive-energy projector Λ+ for
the nucleon and the Rarita-Schwinger projector Pρα for
the ∆-baryon. Eq. (17) is a matrix in spinor space; the
usual current matrix element 〈Pf , sf | Jµ |Pi, si〉 is ob-
tained upon contraction with the ∆ and nucleon spinors
from Eq. (13). The momentum dependence of the projec-
tors implies that the γ−matrices contained in the Rarita-
Schwinger projector Pρα(Pf ) are now transverse with re-
spect to Pf . We extracted an explicit factor γ5 in Eq. (17)
so that the remainder Γαµ, which will be specified below,
has positive parity.

Similarly to the nucleon and ∆ bound-state ampli-
tudes, the composition of the four-point function Γαµ in
Eq. (17) is determined by Poincaré covariance. For its
explicit construction it is again convenient to work with
orthogonal momenta. This is not yet the case for P and
Q because the non-vanishing N -∆ mass difference entails
P · Q �= 0, cf. Eq. (C3). We take instead the component
of P transverse to Q:

Pµ
T = Tµν

Q P ν = Pµ − (P · Q̂) Q̂µ , (18)

and normalize it to unity: Kµ := P̂T

µ
. Here,

Tµν
Q = δµν − Q̂µQ̂ν (19)
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is the transverse projector with respect to Q. Together

with the normalized photon momentum Q̂, the current
is now characterized by two orthonormal four-momenta,

K and Q̂ (instead of P and Q, or Pi and Pf ), which will
simplify its structure considerably.

Using this construction, the most general form of the
vertex Γαµ that is compatible with Poincaré covariance,
positive parity and current conservation can be written
as (cf. App. C 2):

Γαµ = iQ̂α (g1γ
µ
T + g2 K

µ) − g3 T
αµ
Q , (20)

where γµ
T is transverse to Q. It depends on three real and

dimensionless form factors gi(Q
2).

For comparison with experiment, it is more convenient
to work with the Jones-Scadron form factors G�

M (Q2),
G�

E(Q2) and G�
C(Q2) which are related to the pion elec-

troproduction multipole amplitudes at the ∆−resonance
position and can be expressed in terms of helicity ampli-
tudes [2, 65]. The respective decomposition of the vertex
Γαµ is:

Γαµ = b

[
iω

2λ+
(G�

M − G�
E) γ5 ε

αµγδKγQ̂δ

− G�
E Tαγ

Q T γµ
K − iτ

ω
G�

C Q̂αKµ

]
,

(21)

where we used the dimensionless variables

τ :=
Q2

2 (M2
∆ + M2

N )
, λ± :=

(M∆ ± MN )2 + Q2

2 (M2
∆ + M2

N )
(22)

as well as ω :=
√
λ+λ− and b :=

√
3
2 (1 + M∆/MN ).

We show in App. C 2 that the vertices in (20) and (21)
are equivalent when contracted with the projectors in the
current matrix (17), and the relations between the gi and
the Jones-Scadron form factors are stated in Eq. (C18).

Eq. (21) is identical with the standard Jones-Scadron
expression [2, 65] which is given in terms of the Lorentz
structures

εαµγδP γ
i P

δ
f

M2
∆ + M2

N

= iω εαµγδKγQ̂δ ,

εαλγδP γ
i P

δ
f εµλρσP ρ

i P
σ
f

(M2
∆ + M2

N )2
= −ω2 Tαγ

Q T γµ
K ,

Qα
(
Q2Pµ − P · QQµ

)

(M2
∆ + M2

N )2
= 2iωτ Q̂αKµ .

(23)

These relations can be verified by expressing Pi and Pf

through P and Q and subsequently in terms of the unit

vectors K and Q̂ via Eq. (C6).

B. Electromagnetic current in the quark-diquark
approach

The computation of the N∆γ transition matrix of
Eqs. (17) and (21) from its substructure in QCD re-
quires a microscopic description of its ingredients. A

(a)

(b)

(c)

(d)

(e)

’

’

FIG. 4. (Color online) General expression for the N∆γ tran-
sition current in the quark-diquark approach, see Eqs. (24)
and App. D.

systematic construction principle to derive the coupling
of a hadron to an external current is the ’gauging of
equations’ method of Refs. [66–68]. The procedure was
applied in [69] to derive the relevant diagrams in the
quark-diquark system; recent discussions and applica-
tions in the three-quark framework can be found in
Refs. [27, 37, 70].

Applied to our case, the basic idea is that the N∆γ
transition matrix element is the N∆ pole residue of the
quark-diquark Green function that is struck by an exter-
nal photon. If the current systematically couples to all
internal constituents, which means that it has the formal
properties of a derivative, electromagnetic current con-
servation is automatically satisfied. The photon coupling
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FIG. 6. (Color online) Q2−evolution of the magnetic dipole
form factor G�

M in comparison with experimental data from
Refs. [82–86]. The band denotes the model dependence as
discussed in the text.

a variation of the parameter ρ3 ∈ [0, 0.15] into account;
the central value of that interval was used in Ref. [39]
to maximize agreement for nucleon electromagnetic form
factors at larger Q2. The combined model dependence,
stemming from the the seagull variation together with
the η dependence in the effective interaction, leads to
the colored bands in Figs. (6–8).

The Jones-Scadron form factors G�
M (Q2), G�

E(Q2) and
G�

C(Q2) are finally extracted from the Dirac traces in
Eq. (C19). Since the approach is Poincaré-covariant, the
results are independent of the choice of reference frame.
In order to avoid complex continuations for the radial
momentum variables in the N and ∆ bound-state am-
plitudes, we work in the frame where the photon mo-
mentum is purely real: Q = (0, 0, |Q|, 0) or, expressed in

terms of the unit vectors defined in Section C, Q̂ = e3 and
K = e4. The singularities in the quark and diquark prop-
agators that enter the form factor integrals restrict the
accessible domain of photon momenta to Q2 � 2.5 GeV2,
see App. D 2. This value is quite small and due to the
quark-diquark description; a genuine three-body calcu-
lation would be able to reach Q2 values roughly twice
as large. In addition, the kinematic dependence on the
non-vanishing N -∆ mass difference also imposes a lower
limit for Q2. In order to obtain results at Q2 = 0, we ex-
trapolate the form factor results at non-zero momentum
transfer using Padé approximants. The extrapolation re-
gions are indicated by the dashed margins in Figs. (6–7).

A. Q2 dependence of the form factors

The N∆γ transition current is determined by the
three Jones-Scadron form factors G�

M (Q2), G�
E(Q2) and

MN M∆ G�
M (0) REM (0) RSM (0)

Exp. 0.94 1.23 3.02(3) −2.5(5)

Calc. 0.94(1) 1.27(3) 2.23(2) −2.3(3) −2.2(6)

TABLE III. Results at the physical u/d mass compared to ex-
periment. Nucleon and ∆ masses are in units of GeV, G�

M (0)
is dimensionless, and the ratios REM and RSM are given in
percent. The experimental values for G�

M (0) and REM (0) are
the PDG values [87]. The parentheses in our results indicate
the combined model dependence as discussed in the text.

G�
C(Q2) which are experimentally extracted from the

multipole amplitudes in pion electroproduction [1, 2].
The process is dominated by a magnetic dipole transi-
tion (M1) which, in a quark-model picture, amounts to
a spinflip of a quark and is encoded in the form fac-
tor G�

M (Q2). Its static experimental value is G�
M (0) =

3.02(3) [87]; experimental data exist in the range up to
Q2 ∼ 8 GeV2. The remaining electric (E2) and Coulomb
(C2) quadrupole contributions are much smaller and
measure the deformation in the transition. They are ex-
pressed by the form factors G�

E(Q2) and G�
C(Q2) which

are usually related to the magnetic dipole form factor
through the form factor ratios

REM = − G�
E

G�
M

, RSM = − |Q|
2M∆

G�
C

G�
M

, (32)

where |Q| denotes the magnitude of the photon three-
momentum in the ∆ rest frame. It can be expressed in
terms of Lorentz-invariant variables via

|Q|
2M∆

=
ω

1 + 2δ
, (33)

where ω was defined below Eq. (22) and δ is related to
the N–∆ mass difference, cf. Eq. (C2):

δ =
M2

∆ − M2
N

2 (M2
∆ + M2

N )
. (34)

Our result for the magnetic dipole form factor G�
M (Q2)

is shown in Fig. 6. We find good agreement with exper-
imental data above Q2 ∼ 1 GeV2, whereas the quark-
diquark result underestimates these data by ∼ 25% in
the limit Q2 = 0, cf. Table III. This is comparable
to constituent-quark model predictions [18], where the
long-standing discrepancy with the data has been at-
tributed to missing meson-cloud contributions. Their
impact has been studied with dynamical reaction mod-
els [7, 91], where the ’bare’ ∆ resonance extracted from
the Nγ� → Nπ scattering amplitude corresponds to the
quark-core contribution and meson-cloud effects are gen-
erated via rescattering processes. In these analyses the
pion cloud is sizeable and accounts for ∼ 30% of G�

M (0).
Similar conclusions have been found in the cloudy bag
model [12, 13] or covariant chiral quark models [18].

Form factors at 𝑄²�0: 

charge
electric quadrupole moment

magnetic dipole moment
magnetic octupole moment

6

are significantly suppressed compared to this structure
which corresponds to τµρ1 = δµρ in Eq. (9). A similar
observation holds for the nucleon amplitude and might
indicate that orbital angular-momentum correlations in
these baryons’ amplitudes are dominated by pionic effects
which are absent in our setup.

III. DELTA ELECTROMAGNETIC FORM
FACTORS

A. Electromagnetic current operator

Having numerically calculated the ∆-baryon ampli-
tudes, we proceed with the construction of the ∆ elec-
tromagnetic current. It can be written in the form

Jµ,ρσ(P,Q) = iPρα(Pf )

[(
F �
1 γµ − F �

2

σµνQν

2M∆

)
δαβ

−
(
F �
3 γµ − F �

4

σµνQν

2M∆

)
QαQβ

4M2
∆

]
Pβσ(Pi) (11)

which is derived in App. B 2. The exchanged photon
momentum is denoted by Q = Pf − Pi, where Pi and
Pf are the initial and final momenta of the ∆ and P =
(Pi + Pf )/2 is its average total momentum. The Rarita-
Schwinger projectors were defined in Eq. (10).

The electromagnetic current is expressed in terms of
four form factors F �

i (Q2). The experimentally mea-
sured ∆ form factors – Coulomb monopole GE0, mag-
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where e∆ ∈ {2, 1, 0,−1} is the ∆ charge, µ∆ its magnetic
dipole moment, Q the electric quadrupole moment, and
O the magnetic octupole moment. Equivalently, one has
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B. Construction of the electromagnetic current

To compute the electromagnetic properties of the ∆-
baryon in a given framework, one must specify how the
photon couples to its constituents. In the quark-diquark
context this amounts to resolving the coupling of the pho-
ton to the dressed quark, to the diquark, and to the inter-
action between them, where the incoming and outgoing
baryon states are described by the quark-diquark ampli-
tudes of Eq. (9).

The construction of this current is based on a proce-
dure which automatically satisfies electromagnetic gauge
invariance [80, 81]. The corresponding diagrams are de-
picted in Fig. 5 and worked out in detail in App. C. The
upper left diagram describes the impulse-approximation
coupling of the photon to the dressed quark and involves
the quark-photon vertex. The lower left diagram is the
respective coupling to the diquark and depends on the
axial-vector diquark-photon vertex. The upper right di-
agram depicts the photon’s coupling to the exchanged
quark in the quark-diquark kernel, and the lower two
diagrams its coupling to the diquark amplitudes which
involve seagull vertices.

At the level of the constituents, electromagnetic cur-
rent conservation QµJµ,ρσ = 0 translates to Ward-
Takahashi identities which constrain these vertices and
relate them to the previously determined quark and di-
quark propagators and diquark amplitudes. Neverthe-
less, the vertices may involve parts transverse to the
photon momentum which are not constrained by current
conservation and yet encode important physics. A self-
consistent determination of such transverse parts is in
principle possible but requires certain numerical effort.
For instance, the quark-photon vertex can be computed
from its rainbow-ladder truncated inhomogeneous Bethe-
Salpeter equation which unambiguously fixes its trans-
verse contribution [82]. As expected from vector-meson
dominance models, the latter exhibits a ρ−meson pole at
Q2 = −m2

ρ.

In the present calculation we construct the quark-
photon vertex from its component fixed by the WTI,
i.e. the Ball-Chiu vertex, augmented by a transverse ρ-
meson pole contribution that is modeled after the result
in [82]. An analogous construction is used for the axial-
vector seagull vertex. Having fixed those, the axial-vector
diquark-photon vertex is completely specified. The de-
tails of the construction are presented in Apps. C 2–C 4.
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momentum is denoted by Q = Pf − Pi, where Pi and
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Schwinger projectors were defined in Eq. (10).

The electromagnetic current is expressed in terms of
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where e∆ ∈ {2, 1, 0,−1} is the ∆ charge, µ∆ its magnetic
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B. Construction of the electromagnetic current

To compute the electromagnetic properties of the ∆-
baryon in a given framework, one must specify how the
photon couples to its constituents. In the quark-diquark
context this amounts to resolving the coupling of the pho-
ton to the dressed quark, to the diquark, and to the inter-
action between them, where the incoming and outgoing
baryon states are described by the quark-diquark ampli-
tudes of Eq. (9).

The construction of this current is based on a proce-
dure which automatically satisfies electromagnetic gauge
invariance [80, 81]. The corresponding diagrams are de-
picted in Fig. 5 and worked out in detail in App. C. The
upper left diagram describes the impulse-approximation
coupling of the photon to the dressed quark and involves
the quark-photon vertex. The lower left diagram is the
respective coupling to the diquark and depends on the
axial-vector diquark-photon vertex. The upper right di-
agram depicts the photon’s coupling to the exchanged
quark in the quark-diquark kernel, and the lower two
diagrams its coupling to the diquark amplitudes which
involve seagull vertices.

At the level of the constituents, electromagnetic cur-
rent conservation QµJµ,ρσ = 0 translates to Ward-
Takahashi identities which constrain these vertices and
relate them to the previously determined quark and di-
quark propagators and diquark amplitudes. Neverthe-
less, the vertices may involve parts transverse to the
photon momentum which are not constrained by current
conservation and yet encode important physics. A self-
consistent determination of such transverse parts is in
principle possible but requires certain numerical effort.
For instance, the quark-photon vertex can be computed
from its rainbow-ladder truncated inhomogeneous Bethe-
Salpeter equation which unambiguously fixes its trans-
verse contribution [82]. As expected from vector-meson
dominance models, the latter exhibits a ρ−meson pole at
Q2 = −m2

ρ.

In the present calculation we construct the quark-
photon vertex from its component fixed by the WTI,
i.e. the Ball-Chiu vertex, augmented by a transverse ρ-
meson pole contribution that is modeled after the result
in [82]. An analogous construction is used for the axial-
vector seagull vertex. Having fixed those, the axial-vector
diquark-photon vertex is completely specified. The de-
tails of the construction are presented in Apps. C 2–C 4.
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which is derived in App. B 2. The exchanged photon
momentum is denoted by Q = Pf − Pi, where Pi and
Pf are the initial and final momenta of the ∆ and P =
(Pi + Pf )/2 is its average total momentum. The Rarita-
Schwinger projectors were defined in Eq. (10).
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B. Construction of the electromagnetic current

To compute the electromagnetic properties of the ∆-
baryon in a given framework, one must specify how the
photon couples to its constituents. In the quark-diquark
context this amounts to resolving the coupling of the pho-
ton to the dressed quark, to the diquark, and to the inter-
action between them, where the incoming and outgoing
baryon states are described by the quark-diquark ampli-
tudes of Eq. (9).

The construction of this current is based on a proce-
dure which automatically satisfies electromagnetic gauge
invariance [80, 81]. The corresponding diagrams are de-
picted in Fig. 5 and worked out in detail in App. C. The
upper left diagram describes the impulse-approximation
coupling of the photon to the dressed quark and involves
the quark-photon vertex. The lower left diagram is the
respective coupling to the diquark and depends on the
axial-vector diquark-photon vertex. The upper right di-
agram depicts the photon’s coupling to the exchanged
quark in the quark-diquark kernel, and the lower two
diagrams its coupling to the diquark amplitudes which
involve seagull vertices.

At the level of the constituents, electromagnetic cur-
rent conservation QµJµ,ρσ = 0 translates to Ward-
Takahashi identities which constrain these vertices and
relate them to the previously determined quark and di-
quark propagators and diquark amplitudes. Neverthe-
less, the vertices may involve parts transverse to the
photon momentum which are not constrained by current
conservation and yet encode important physics. A self-
consistent determination of such transverse parts is in
principle possible but requires certain numerical effort.
For instance, the quark-photon vertex can be computed
from its rainbow-ladder truncated inhomogeneous Bethe-
Salpeter equation which unambiguously fixes its trans-
verse contribution [82]. As expected from vector-meson
dominance models, the latter exhibits a ρ−meson pole at
Q2 = −m2

ρ.

In the present calculation we construct the quark-
photon vertex from its component fixed by the WTI,
i.e. the Ball-Chiu vertex, augmented by a transverse ρ-
meson pole contribution that is modeled after the result
in [82]. An analogous construction is used for the axial-
vector seagull vertex. Having fixed those, the axial-vector
diquark-photon vertex is completely specified. The de-
tails of the construction are presented in Apps. C 2–C 4.
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which is derived in App. B 2. The exchanged photon
momentum is denoted by Q = Pf − Pi, where Pi and
Pf are the initial and final momenta of the ∆ and P =
(Pi + Pf )/2 is its average total momentum. The Rarita-
Schwinger projectors were defined in Eq. (10).

The electromagnetic current is expressed in terms of
four form factors F �

i (Q2). The experimentally mea-
sured ∆ form factors – Coulomb monopole GE0, mag-
netic dipole GM1, electric quadrupole GE2, and magnetic
octupole GM3 – can be expressed through linear combi-
nations of the F �

i (Q2) [78, 79]:

GE0
:=

(
1 +

2τ

3

)
(F �

1 − τF �
2 ) − τ

3
(1 + τ) (F �

3 − τF �
4 ) ,

GM1 :=

(
1 +

4τ

5

)
(F �

1 + F �
2 ) − 2τ

5
(1 + τ) (F �

3 + F �
4 ) ,

GE2 := (F �
1 − τF �

2 ) − 1

2
(1 + τ) (F �

3 − τF �
4 ) ,

GM3 := (F �
1 + F �

2 ) − 1

2
(1 + τ) (F �

3 + F �
4 ) . (12)

Their static dimensionless values are given by

GE0
(0) = e∆ ,

GE2
(0) = Q ,

GM1
(0) = µ∆ ,

GM3
(0) = O ,

(13)
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B. Construction of the electromagnetic current

To compute the electromagnetic properties of the ∆-
baryon in a given framework, one must specify how the
photon couples to its constituents. In the quark-diquark
context this amounts to resolving the coupling of the pho-
ton to the dressed quark, to the diquark, and to the inter-
action between them, where the incoming and outgoing
baryon states are described by the quark-diquark ampli-
tudes of Eq. (9).

The construction of this current is based on a proce-
dure which automatically satisfies electromagnetic gauge
invariance [80, 81]. The corresponding diagrams are de-
picted in Fig. 5 and worked out in detail in App. C. The
upper left diagram describes the impulse-approximation
coupling of the photon to the dressed quark and involves
the quark-photon vertex. The lower left diagram is the
respective coupling to the diquark and depends on the
axial-vector diquark-photon vertex. The upper right di-
agram depicts the photon’s coupling to the exchanged
quark in the quark-diquark kernel, and the lower two
diagrams its coupling to the diquark amplitudes which
involve seagull vertices.

At the level of the constituents, electromagnetic cur-
rent conservation QµJµ,ρσ = 0 translates to Ward-
Takahashi identities which constrain these vertices and
relate them to the previously determined quark and di-
quark propagators and diquark amplitudes. Neverthe-
less, the vertices may involve parts transverse to the
photon momentum which are not constrained by current
conservation and yet encode important physics. A self-
consistent determination of such transverse parts is in
principle possible but requires certain numerical effort.
For instance, the quark-photon vertex can be computed
from its rainbow-ladder truncated inhomogeneous Bethe-
Salpeter equation which unambiguously fixes its trans-
verse contribution [82]. As expected from vector-meson
dominance models, the latter exhibits a ρ−meson pole at
Q2 = −m2

ρ.

In the present calculation we construct the quark-
photon vertex from its component fixed by the WTI,
i.e. the Ball-Chiu vertex, augmented by a transverse ρ-
meson pole contribution that is modeled after the result
in [82]. An analogous construction is used for the axial-
vector seagull vertex. Having fixed those, the axial-vector
diquark-photon vertex is completely specified. The de-
tails of the construction are presented in Apps. C 2–C 4.
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are significantly suppressed compared to this structure
which corresponds to τµρ1 = δµρ in Eq. (9). A similar
observation holds for the nucleon amplitude and might
indicate that orbital angular-momentum correlations in
these baryons’ amplitudes are dominated by pionic effects
which are absent in our setup.
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which is derived in App. B 2. The exchanged photon
momentum is denoted by Q = Pf − Pi, where Pi and
Pf are the initial and final momenta of the ∆ and P =
(Pi + Pf )/2 is its average total momentum. The Rarita-
Schwinger projectors were defined in Eq. (10).

The electromagnetic current is expressed in terms of
four form factors F �
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GE0
(0) = e∆ ,

GE2
(0) = Q ,

GM1
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(13)

where e∆ ∈ {2, 1, 0,−1} is the ∆ charge, µ∆ its magnetic
dipole moment, Q the electric quadrupole moment, and
O the magnetic octupole moment. Equivalently, one has
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B. Construction of the electromagnetic current

To compute the electromagnetic properties of the ∆-
baryon in a given framework, one must specify how the
photon couples to its constituents. In the quark-diquark
context this amounts to resolving the coupling of the pho-
ton to the dressed quark, to the diquark, and to the inter-
action between them, where the incoming and outgoing
baryon states are described by the quark-diquark ampli-
tudes of Eq. (9).

The construction of this current is based on a proce-
dure which automatically satisfies electromagnetic gauge
invariance [80, 81]. The corresponding diagrams are de-
picted in Fig. 5 and worked out in detail in App. C. The
upper left diagram describes the impulse-approximation
coupling of the photon to the dressed quark and involves
the quark-photon vertex. The lower left diagram is the
respective coupling to the diquark and depends on the
axial-vector diquark-photon vertex. The upper right di-
agram depicts the photon’s coupling to the exchanged
quark in the quark-diquark kernel, and the lower two
diagrams its coupling to the diquark amplitudes which
involve seagull vertices.

At the level of the constituents, electromagnetic cur-
rent conservation QµJµ,ρσ = 0 translates to Ward-
Takahashi identities which constrain these vertices and
relate them to the previously determined quark and di-
quark propagators and diquark amplitudes. Neverthe-
less, the vertices may involve parts transverse to the
photon momentum which are not constrained by current
conservation and yet encode important physics. A self-
consistent determination of such transverse parts is in
principle possible but requires certain numerical effort.
For instance, the quark-photon vertex can be computed
from its rainbow-ladder truncated inhomogeneous Bethe-
Salpeter equation which unambiguously fixes its trans-
verse contribution [82]. As expected from vector-meson
dominance models, the latter exhibits a ρ−meson pole at
Q2 = −m2

ρ.

In the present calculation we construct the quark-
photon vertex from its component fixed by the WTI,
i.e. the Ball-Chiu vertex, augmented by a transverse ρ-
meson pole contribution that is modeled after the result
in [82]. An analogous construction is used for the axial-
vector seagull vertex. Having fixed those, the axial-vector
diquark-photon vertex is completely specified. The de-
tails of the construction are presented in Apps. C 2–C 4.
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N*(1535): the recipe

Calculate quark DSE and (pseudoscalar, vector) diquark BSEs & propagators in complex plane

Solve Faddeev equation, obtain
N*(1535) mass and wave function

Calculate quark-photon and (pseudoscalar, vector 
scalar, axialvector) diquark-photon vertices

Insert everything here and calculate
transition form factor:

pseudoscalar diquark ~ 1 GeV
vector diquark ~ 1.1 GeV

–1
-1

=

=

=
-1

+ +

= + + + + +

+
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Muon g-2

Theory uncertainty dominated by QCD:
Is QCD contribution under control? 

Hadronic 
light-by-light 
scattering

Exp: 

SM: 

QED:

Diff:

EW:
Hadronic:

VP (LO+HO)
LBL

11 659 208.9

11 658 

11 659 182.8

15.3

685.1
10.5

26.1

(6.3)

(0.0)
(0.2)

(4.3)
(2.6)    ?

(4.9)
(8.0)

471.9

]10−[10µa

Hadronic 
vacuum 
polarization

LbL amplitude: ENJL & MD model results
Bijnens 1995,  Hakayawa 1995,  Knecht 2002,  Melnikov 2004,  Prades 2009,  Jegerlehner 2009,  Pauk 2014

Jegerlehner, Ny�eler,  
Phys. Rept.  477 (2009)

=

22 8 ... 11

scalar
exchange

pseudoscalar
exchange

Quark loop axialvector
exchange

𝜋, 𝐾 loop

++ + + + . . .

−1 −2 )10−10×(

13

Apart from global factors k ·Q, the four tensor structures
corresponding to f3,4,7,8 are linear and the remaining four
are quadratic in the photon momentum.

The question remains whether Eq. (82) can be ob-
tained from a systematic construction principle. To this
end we define the quantities

tµνab := a · b δµν − bµaν ,

εµνab := γ5 ε
µναβaαbβ ,

(84)

with aµ, bµ ∈ {kµ, Qµ}. They are both regular in the
limits a → 0 or b → 0. tµνab is transverse to aµ and bν ,

aµ tµνab = 0 , tµνab bν = 0 , (85)

whereas εµνab is transverse to a and b in both Lorentz in-
dices. The usual transverse projectors can thus be writ-

ten as Tµν
Q = tµνQQ/Q

2 and Tµν
Q′ = tµνQ′Q′/Q′2.

With the help of these definitions one can generate the
basis (82) as follows. Take the four tensor structures that
are independent of the photon momentum:

γν , [γν , /k] , kν , kν/k . (86)

Contract them with tµνQQ, tµνQk and εµνQk to generate eight
transverse basis elements that are kinematically indepen-
dent and linear or quadratic in the four-momentum Qµ:

tµνQQ





γν

[γν , /k]

kν

kν/k





= Q2





γµ
T

[γµ
T , /k]

kµT
kµT /k





,

tµνQk

{
γν

[γν , /k]

}
=

{
k ·Qγµ − kµ /Q

[k ·Qγµ − kµ /Q, /k]

}
,

εµνQk

{
γν

[γν , /k]

}
=

{
1
6 [γµ, /k, /Q]

tµνQk [γν , /k] − k2 [γµ, /Q]

}
.

(87)

Instead of using tµνQk and εµνQk, one could contract the four

elements in Eq. (86) also with tµνQγ = /Q δµν − γµQν and
use commutators where necessary. However, this does
not generate any new elements:

1
2

[
tµνQγ , γ

ν
]

= − [γµ, /Q] ,

1
2

[
tµνQγ , γ

ν , /k
]

= [γµ, /k, /Q] ,

tµνQγ k
ν = −4 tµνQk γ

ν ,
[
tµνQγ k

ν , /k
]

= −tµνQk [γν , /k] .

(88)

Finally, attach appropriate factors k ·Q to ensure charge-
conjugation invariance of the dressing functions.

We will henceforth use Eq. (82) as our reference basis
for the transverse part of the fermion-photon vertex. We
write it in a compact way:

τµ1 = tµνQQ γν ,

τµ2 = tµνQQ k ·Q i
2 [γν , /k] ,

τµ3 = i
2 [γµ, /Q] ,

τµ4 = 1
6 [γµ, /k, /Q] ,

τµ5 = tµνQQ ikν ,

τµ6 = tµνQQ kν/k ,

τµ7 = tµνQk k ·Qγν ,

τµ8 = tµνQk
i
2 [γν , /k] .

(89)

The full vertex is thus given by Eq. (74), with the trans-
verse part

− iΓµ
T (k,Q) =

8∑

i=1

fi(k
2, k · Q,Q2) τµi (k,Q) . (90)

The dimensionful dressing functions fi(k
2, k ·Q, Q2) are

again even in k · Q. They are kinematically independent
and can remain constant at vanishing photon momen-
tum. The basis (89) is essentially identical to Eq. (A.8)
in Ref. [53] and Eq. (A2) in Ref. [55]. The relations be-
tween our τµi and the transverse tensor structures Tµ

i in
those papers are

τ1 = −T3 ,

τ2 = − 1
2 k ·QT4 ,

τ3 = T5 ,

τ4 = T8 ,

τ5 = T1 ,

τ6 = 1
2 T2 ,

τ7 = − 1
2 k ·QT6 ,

τ8 = 1
2 T7 .

(91)

The dressing functions associated with τ3 and τ4 con-
tribute to the onshell anomalous magnetic moment,
cf. Ref. [48] and Eq. (96) below, and τ7 constitutes the
transverse part of the Curtis-Pennington vertex [56].

Finally, to obtain a connection with the nucleon’s on-
shell current, we investigate the limit where the incoming
and outgoing fermion lines are taken on the mass shell,
i.e., k2± = −m2 or

k2 = −m2 − Q2/4 , k · Q = 0 . (92)

The onshell vertex

Jµ(k,Q) = Λf
+ Γµ(k,Q) Λi

+

∣∣∣
Eq. (92)

(93)

is sandwiched between Dirac spinors that are eigenvec-
tors of the positive-energy projectors

Λf
+ = Λ+(k+),

Λi
+ = Λ+(k−),

Λ+(p) =
1+ /̂p

2
. (94)

By virtue of the projectors, only two of the basis elements
in Eq. (89) remain independent, and the vertex can be
written in the standard form

Jµ(k,Q) = iΛf
+

(
F1 γ

µ +
iF2

4m
[γµ, /Q]

)
Λi
+ , (95)

where F1, F2 are dimensionless functions of Q2 only. Via
Eq. (74) they consist of Ball-Chiu parts and transverse
components which are related to the functions ΣA, ∆A,
∆B and fj in the onshell limit:

F1(Q
2) = A(−m2) + 2m

[
B′(−m2) − mA′(−m2)

]

+ Q2

[
f1 − m (f5 + mf6) − f4 − mf8

2

] ∣∣∣∣∣
Eq. (92)

,

F2(Q
2)

2m
= f3 − mf4 −

[
B′(−m2) − mA′(−m2)

]

+
Q2

2

[
f5 + mf6 − f8

2

] ∣∣∣∣∣
Eq. (92)

.

(96)

Muon anomalous magnetic moment: 

)p(u
]

m2
νq

µνσ
)2q(2F–µγ)2q(1F

[
)′p(ūie

𝑞
〉H|)2x(ψ̄)1x(T ψ|0〈) =2, x1x(χ

𝑝’ 𝑝

total SM prediction deviates from exp. by ~3σ
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Muon g-2

Theory uncertainty dominated by QCD:
Is QCD contribution under control? 
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scattering
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LbL amplitude at quark level, derived from gauge invariance:
GE, Fischer,  PRD 85 (2012),   Goecke, Fischer, Williams, PRD 87 (2013)

need to understand
structure of amplitude

no double-counting, 
gauge invariant!

Jegerlehner, Ny�eler,  
Phys. Rept.  477 (2009)

= + 𝑇 =

quark 
Compton vertex

Born terms GE, Fischer, Heupel, PRD 92 (2015)
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Apart from global factors k ·Q, the four tensor structures
corresponding to f3,4,7,8 are linear and the remaining four
are quadratic in the photon momentum.

The question remains whether Eq. (82) can be ob-
tained from a systematic construction principle. To this
end we define the quantities

tµνab := a · b δµν − bµaν ,

εµνab := γ5 ε
µναβaαbβ ,

(84)

with aµ, bµ ∈ {kµ, Qµ}. They are both regular in the
limits a → 0 or b → 0. tµνab is transverse to aµ and bν ,

aµ tµνab = 0 , tµνab bν = 0 , (85)

whereas εµνab is transverse to a and b in both Lorentz in-
dices. The usual transverse projectors can thus be writ-

ten as Tµν
Q = tµνQQ/Q

2 and Tµν
Q′ = tµνQ′Q′/Q′2.

With the help of these definitions one can generate the
basis (82) as follows. Take the four tensor structures that
are independent of the photon momentum:

γν , [γν , /k] , kν , kν/k . (86)

Contract them with tµνQQ, tµνQk and εµνQk to generate eight
transverse basis elements that are kinematically indepen-
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=
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Instead of using tµνQk and εµνQk, one could contract the four

elements in Eq. (86) also with tµνQγ = /Q δµν − γµQν and
use commutators where necessary. However, this does
not generate any new elements:
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= − [γµ, /Q] ,
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ν ,
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Finally, attach appropriate factors k ·Q to ensure charge-
conjugation invariance of the dressing functions.

We will henceforth use Eq. (82) as our reference basis
for the transverse part of the fermion-photon vertex. We
write it in a compact way:

τµ1 = tµνQQ γν ,

τµ2 = tµνQQ k ·Q i
2 [γν , /k] ,

τµ3 = i
2 [γµ, /Q] ,

τµ4 = 1
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τµ6 = tµνQQ kν/k ,

τµ7 = tµνQk k ·Qγν ,
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The full vertex is thus given by Eq. (74), with the trans-
verse part

− iΓµ
T (k,Q) =

8∑

i=1

fi(k
2, k · Q,Q2) τµi (k,Q) . (90)

The dimensionful dressing functions fi(k
2, k ·Q, Q2) are

again even in k · Q. They are kinematically independent
and can remain constant at vanishing photon momen-
tum. The basis (89) is essentially identical to Eq. (A.8)
in Ref. [53] and Eq. (A2) in Ref. [55]. The relations be-
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i in
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τ6 = 1
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τ8 = 1
2 T7 .
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The dressing functions associated with τ3 and τ4 con-
tribute to the onshell anomalous magnetic moment,
cf. Ref. [48] and Eq. (96) below, and τ7 constitutes the
transverse part of the Curtis-Pennington vertex [56].

Finally, to obtain a connection with the nucleon’s on-
shell current, we investigate the limit where the incoming
and outgoing fermion lines are taken on the mass shell,
i.e., k2± = −m2 or

k2 = −m2 − Q2/4 , k · Q = 0 . (92)

The onshell vertex

Jµ(k,Q) = Λf
+ Γµ(k,Q) Λi

+
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Eq. (92)
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is sandwiched between Dirac spinors that are eigenvec-
tors of the positive-energy projectors

Λf
+ = Λ+(k+),
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+ = Λ+(k−),

Λ+(p) =
1+ /̂p

2
. (94)

By virtue of the projectors, only two of the basis elements
in Eq. (89) remain independent, and the vertex can be
written in the standard form

Jµ(k,Q) = iΛf
+

(
F1 γ

µ +
iF2
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[γµ, /Q]

)
Λi
+ , (95)

where F1, F2 are dimensionless functions of Q2 only. Via
Eq. (74) they consist of Ball-Chiu parts and transverse
components which are related to the functions ΣA, ∆A,
∆B and fj in the onshell limit:

F1(Q
2) = A(−m2) + 2m
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f1 − m (f5 + mf6) − f4 − mf8

2

] ∣∣∣∣∣
Eq. (92)

,

F2(Q
2)

2m
= f3 − mf4 −

[
B′(−m2) − mA′(−m2)

]

+
Q2

2

[
f5 + mf6 − f8

2

] ∣∣∣∣∣
Eq. (92)

.

(96)

Muon anomalous magnetic moment: 
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total SM prediction deviates from exp. by ~3σ
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