Superconformal Algebraic Approach to Hadron Structure: The Perturbative-Nonperturbative Interface in QCD

Guy F. de Téramond

Universidad de Costa Rica

$\mathsf{XII}^{\mathrm{th}}$ quark confinement and the hadronic spectrum

Thessaloniki, Greece

29 Aug - 3 Sep 2016

Contents

1	Preamble: The complexity of QCD	3
2	Semiclassical approximation to light front QCD	4
3	Higher integer-spin wave equations in AdS space	6
4	Higher half-integer-spin wave equations in AdS space	8
5	Superconformal quantum mechanics and nucleons	11
6	Superconformal meson-baryon symmetry	15
7	Supersymmetry across the heavy-light hadronic spectrum	18
8	Infrared behavior of the strong coupling in light-front holographic QCD	22

1 Preamble: The complexity of QCD

- The QCD Lagrangian in the limit of massless quarks has no scale: still confinement and a mass scale should emerge from the quantum theory built upon the classical QCD conformal theory
- Increase of the QCD coupling at low energies implies that an infinite number of quark and gluons are strongly coupled
- Description of the dynamics is vastly complex and understanding the mechanism of confinement is an unsolved problem
- We require a semiclassical approximation which captures essential aspects of the nonperturbative confinement dynamics, which are not obvious from the QCD Lagrangian
- Recent progress: nonperturbative QCD dynamics is well captured in a semiclassical effective theory based on superconformal quantum mechanics in the light-front and its holographic embedding on a higher dimensional AdS space (gauge/gravity correspondence)

2 Semiclassical approximation to light front QCD

[GdT and S. J. Brodsky, PRL 102, 081601 (2009)]

• Start with $SU(3)_C$ QCD Lagrangian

$$\mathcal{L}_{\text{QCD}} = \overline{\psi} \left(i \gamma^{\mu} D_{\mu} - m \right) \psi - \frac{1}{4} G^{a}_{\mu\nu} G^{a\,\mu\nu}$$

• Express the hadron 4-momentum generator $P = (P^+, P^-, \mathbf{P}_{\perp})$, $P^{\pm} = P^0 \pm P^3$, in terms of dynamical fields $\psi_+ = \Lambda_+ \psi$ and \mathbf{A}_{\perp} $(\Lambda_{\pm} = \gamma^0 \gamma^{\pm})$ quantized in null plane $x^+ = x^0 + x^3 = 0$

$$P^{-} = \frac{1}{2} \int dx^{-} d^{2} \mathbf{x}_{\perp} \overline{\psi}_{+} \gamma^{+} \frac{(i\nabla_{\perp})^{2} + m^{2}}{i\partial^{+}} \psi_{+} + \text{interactions}$$
$$P^{+} = \int dx^{-} d^{2} \mathbf{x}_{\perp} \overline{\psi}_{+} \gamma^{+} i\partial^{+} \psi_{+}$$
$$\mathbf{P}_{\perp} = \frac{1}{2} \int dx^{-} d^{2} \mathbf{x}_{\perp} \overline{\psi}_{+} \gamma^{+} i\nabla_{\perp} \psi_{+}$$

• Construct LF invariant Hamiltonian $P^2 = P_{\mu}P^{\mu} = P^-P^+ - \mathbf{P}_{\perp}^2$ from mass-shell relation

$$P^2|\psi(P)\rangle = M^2|\psi(P)\rangle, \quad |\psi\rangle = \sum_n \psi_n|n\rangle$$

• Simple structure of LF vacuum allows a quantum-mechanical probabilistic interpretation of hadronic states in terms of wave functions: $\psi_n = \langle n | \psi \rangle$

- Compute the hadron matrix element $\langle \psi(P')|P_{\mu}P^{\mu}|\psi(P)
 angle$ for a two-parton bound state
- Factor out the longitudinal X(x) and orbital kinematical dependence from LFWF ψ

$$\psi(x,\zeta,\varphi) = e^{iL\varphi}X(x)\frac{\phi(\zeta)}{\sqrt{2\pi\zeta}}$$

with invariant transverse impact variable

$$\zeta^2 = x(1-x)\mathbf{b}_{\perp}^2$$

• Ultra relativistic limit $m_q \to 0$ longitudinal modes X(x) decouple $(L = L^z)$

$$M^{2} = \int d\zeta \,\phi^{*}(\zeta) \sqrt{\zeta} \left(-\frac{d^{2}}{d\zeta^{2}} - \frac{1}{\zeta} \frac{d}{d\zeta} + \frac{L^{2}}{\zeta^{2}} \right) \frac{\phi(\zeta)}{\sqrt{\zeta}} + \int d\zeta \,\phi^{*}(\zeta) \,U(\zeta) \,\phi(\zeta)$$

where effective potential U includes all interactions, including those from higher Fock states

- LF Hamiltonian equation $P_{\mu}P^{\mu}|\psi\rangle=M^{2}|\psi\rangle$ is a LF wave equation for ϕ

$$\left(-\frac{d^2}{d\zeta^2} - \frac{1-4L^2}{4\zeta^2} + U(\zeta)\right)\phi(\zeta) = M^2\phi(\zeta)$$

- Critical value L = 0 corresponds to lowest possible stable solution
- Relativistic and frame-independent LF Schrödinger equation: U is instantaneous in LF time

Superconformal Algebraic Approach to Hadron Structure

3 Higher integer-spin wave equations in AdS space

[GdT and S. J. Brodsky, PRL **102**, 081601 (2009)] [GdT, H.G. Dosch and S. J. Brodsky, PRD **87**, 075004 (2013)]

- Why is AdS space important? AdS₅ is a 5-dim space of maximal symmetry (conformal), negative curvature and a four-dim boundary: Minkowski space $ds^2 = \frac{R^2}{z^2} \left(dx_\mu dx^\mu dz^2 \right)$
- Isomorphism of SO(4,2) group of conformal transformations with generators $P^{\mu}, M^{\mu\nu}, K^{\mu}, D$ with the group of isometries of AdS₅
- Integer spin-J in AdS conveniently described by tensor field $\Phi_{N_1 \cdots N_J}$ with effective action

$$S_{eff} = \int d^d x \, dz \, \sqrt{|g|} \, e^{\varphi(z)} \, g^{N_1 N_1'} \cdots g^{N_J N_J'} \Big(g^{MM'} D_M \Phi^*_{N_1 \dots N_J} \, D_{M'} \Phi_{N_1' \dots N_J'} - \mu^2_{eff}(z) \, \Phi^*_{N_1 \dots N_J} \, \Phi_{N_1' \dots N_J'} \Big)$$

Covariant derivative D_M includes affine connection and dilaton $\varphi(z)$ effectively breaks conformality

- Effective mass $\mu_{e\!f\!f}(z)$ is determined by precise mapping to light-front physics
- Non-trivial geometry of pure AdS encodes the kinematics and additional deformations of AdS encode the dynamics, including confinement

- Physical hadron has plane-wave and spin components along physical coordinates $\Phi_P(x, z)_{\mu_1 \cdots \mu_J} = e^{iP \cdot x} \Phi(z)_{\mu_1 \cdots \mu_J}$ with invariant hadronic mass $P_\mu P^\mu = M^2$
- Variation of the action gives AdS wave equation for spin-J field $\Phi(z)_{\mu_1\cdots\mu_J} = \Phi_J(z)\epsilon_{\mu_1\cdots\mu_J}(P)$

$$\left[-\frac{z^{d-1-2J}}{e^{\varphi(z)}}\partial_z\left(\frac{e^{\varphi(z)}}{z^{d-1-2J}}\partial_z\right) + \left(\frac{\mu R}{z}\right)^2\right]\Phi_J = M^2\Phi_J$$

• Upon substitution $\Phi_J(z) \sim z^{(d-1)/2-J} e^{-\varphi(z)/2} \phi_J(z)$ and $z \to \zeta$ we find LFWE (slide 5)

$$\left(-\frac{d^2}{d\zeta^2} - \frac{1-4L^2}{4\zeta^2} + U(\zeta)\right)\phi_J(\zeta) = M^2\phi_J(\zeta)$$

for (d = 4) where

$$U(\zeta) = \frac{1}{2}\varphi''(\zeta) + \frac{1}{4}\varphi'(\zeta)^2 + \frac{2J-3}{2z}\varphi'(\zeta)$$

and $(\mu R)^2 = -(2-J)^2 + L^2$

- Unmodified AdS equations correspond to the kinetic energy terms for the partons, and effective LF potential $U(\zeta)$ corresponds to the IR modification of AdS space
- AdS Breitenlohner-Freedman bound $(\mu R)^2 \geq -4$ equivalent to LF QM stability condition $L^2 \geq 0$

4 Higher half-integer-spin wave equations in AdS space

[J. Polchinski and M. J. Strassler, JHEP **0305**, 012 (2003)] [GdT and S. J. Brodsky, PRL **94**, 201601 (2005)] [GdT, H.G. Dosch and S. J. Brodsky, PRD **87**, 075004 (2013)]

Image credit: N. Evans

- Extension of holographic ideas to spin- $\frac{1}{2}$ (and higher half-integral J) hadrons by considering wave equations for Rarita-Schwinger spinor fields in AdS space and their mapping to light-front physics
- LF clustering decomposition of invariant variable ζ : same multiplicity of states for mesons and baryons
- The invariant variable ζ is the light-front weighted distribution of the spectator diquark cluster relative to the active quark

$$\zeta = \sqrt{\frac{x}{1-x}} \left| \sum_{j=1}^{N-1} x_j \mathbf{b}_{\perp j} \right|$$

• LF cluster decomposition follows from mapping of EM form factor in AdS to the light front [S. J. Brodsky and GdT, PRL **96**, 201601 (2006)]

• Half-integer spin $J = T + \frac{1}{2}$ represented by RS spinor $[\Psi_{N_1 \cdots N_T}]_{\alpha}$ with effective AdS action

$$S_{eff} = \frac{1}{2} \int d^{d}x \, dz \, \sqrt{|g|} \, g^{N_{1} N_{1}'} \cdots g^{N_{T} N_{T}'} \\ \left[\overline{\Psi}_{N_{1} \cdots N_{T}} \left(i \, \Gamma^{A} \, e^{M}_{A} \, D_{M} - \mu - \rho(z) \right) \Psi_{N_{1}' \cdots N_{T}'} + h.c. \right]$$

where the covariant derivative D_M includes the affine connection and the spin connection

- e^A_M is the vielbein and Γ^A tangent space Dirac matrices $\{\Gamma^A, \Gamma^B\} = \eta^{AB}$
- Variation of the action gives linear equations

$$-\frac{d}{dz}\psi_{-} - \frac{L + \frac{1}{2}}{z}\psi_{-} - V(z)\psi_{-} = M\psi_{+}$$
$$\frac{d}{dz}\psi_{+} - \frac{L + \frac{1}{2}}{z}\psi_{+} - V(z)\psi_{+} = M\psi_{-}$$

where $L=\mu R-rac{1}{2},$ $\psi\equiv\Psi_{T}$ and

$$V(z) = \frac{R}{z}\rho(z)$$

a J-independent potential – No spin-orbit coupling along a given trajectory !

[See also: T. Gutsche, V. E. Lyubovitskij, I. Schmidt and A. Vega, Phys. Rev. D 85, 076003 (2012)]

• Mapping to the light front, $z \to \zeta$ system of linear eqs. is equivalent to the second order equations:

$$\left(-\frac{d^2}{d\zeta^2} - \frac{1 - 4L^2}{4\zeta^2} + U^+(\zeta)\right)\psi_+ = M^2\psi_+$$
$$\left(-\frac{d^2}{d\zeta^2} - \frac{1 - 4(L+1)^2}{4\zeta^2} + U^-(\zeta)\right)\psi_- = M^2\psi_-$$

where

$$U^{\pm}(\zeta) = V^2(\zeta) \pm V'(\zeta) + \frac{1+2L}{\zeta}V(\zeta)$$

and

$$V(\zeta) = \frac{R}{\zeta}\rho(\zeta)$$

• The plus and minus component equations correspond to LF orbital angular momentum L and L+1

Superconformal Algebraic Approach to Hadron Structure

5 Superconformal quantum mechanics and nucleons

[S. Fubini and E. Rabinovici, NPB 245, 17 (1984)]

[GdT, H.G. Dosch and S. J. Brodsky, PRD 91, 045040 (2015)]

- SUSY QM contains two fermionic generators Q and Q^{\dagger} , and a bosonic generator, the Hamiltonian H [E. Witten, NPB **188**, 513 (1981)]
- Closure under the graded algebra sl(1/1):

$$\frac{1}{2} \{Q, Q^{\dagger}\} = H$$
$$\{Q, Q\} = \{Q^{\dagger}, Q^{\dagger}\} = 0$$
$$[Q, H] = [Q^{\dagger}, H] = 0$$

- Since $[Q^{\dagger}, H] = 0$, the states $|E\rangle$ and $Q^{\dagger}|E\rangle$ have identical eigenvalues E, but for a zero eigenvalue we can have the trivial solution $|E = 0\rangle = 0$
- For a conformal theory

$$Q = \psi^{\dagger} \left(-\frac{d}{dx} + \frac{f}{x} \right), \qquad Q^{\dagger} = \psi \left(\frac{d}{dx} + \frac{f}{x} \right)$$

where ψ and ψ^{\dagger} are spinor operators with $\,\{\psi,\psi^{\dagger}\}=1$ and f is dimensionless

• Conformal graded-Lie algebra has in addition to the Hamiltonian H and supercharges Q and Q^{\dagger} , a new operator S related to the generator of conformal transformations K

$$S = \chi x, \qquad S^{\dagger} = \chi^{\dagger} x$$

• Find enlarged algebra (Superconformal algebra of Haag, Lopuszanski and Sohnius (1974))

$$\frac{1}{2} \{Q, Q^{\dagger}\} = H, \qquad \frac{1}{2} \{S, S^{\dagger}\} = K, \{Q, S^{\dagger}\} = f - B + 2iD, \qquad \{Q^{\dagger}, S\} = f - B - 2iD$$

where $B = \frac{1}{2}[\psi^{\dagger}, \psi]$, and the generators of translation, dilatation and the special conformal transformation H, D and K

$$H = \frac{1}{2} \left(-\frac{d^2}{dx^2} + \frac{f^2 + 2Bf}{x^2} \right)$$
$$D = \frac{i}{4} \left(\frac{d}{dx} x + x \frac{d}{dx} \right)$$
$$K = \frac{1}{2} x^2$$

satisfy the conformal algebra

$$[H, D] = iH,$$
 $[H, K] = 2iD,$ $[K, D] = -iK$

 XII^{th} Quark Confinement and the Hadronic Spectrum, Thessaloniki, 29 Aug 2016

• Following F&R define a fermionic generator R, a linear combination of the generators Q and S

$$R_{\lambda} = Q + \lambda S$$

which generates a new Hamiltonian

$$G_{\lambda} = \{R_{\lambda}, R_{\lambda}^{\dagger}\}$$

where by construction

$$\{R_{\lambda}, R_{\lambda}\} = \{R_{\lambda}^{\dagger}, R_{\lambda}^{\dagger}\} = 0, \qquad [R_{\lambda}, G_{\lambda}] = [R_{\lambda}^{\dagger}, G_{\lambda}] = 0$$

which also closes under the graded algebra sl(1/1)

• In a Pauli matrix representation G_{λ} is given by

$$G_{\lambda} = 2H + 2\lambda^2 K + 2\lambda \left(f - \sigma_3\right)$$

and leads to the eigenvalue equations

$$\left(-\frac{d^2}{dx^2} + \lambda^2 x^2 + 2\lambda f - \lambda + \frac{4(f + \frac{1}{2})^2 - 1}{4x^2}\right)\phi_1 = E\phi_1$$
$$\left(-\frac{d^2}{dx^2} + \lambda^2 x^2 + 2\lambda f + \lambda + \frac{4(f - \frac{1}{2})^2 - 1}{4x^2}\right)\phi_2 = E\phi_2$$

 ${\rm XII}^{\rm th}$ Quark Confinement and the Hadronic Spectrum, Thessaloniki, 29 Aug 2016

 $\psi_+(\zeta)$

 $\psi_{-}(\zeta)$

Light-front mapping and nucleon spectrum

• Upon the substitutions $x\mapsto \zeta$, $E\mapsto M^2$ and $f\mapsto L+\frac{1}{2}$ in the AdS wave equations (slide 10) we find $U^+ = \lambda^2 \zeta^2 + 2\lambda (L+1)$ and $U^- = \lambda^2 \zeta^2 + 2\lambda L$, thus the effective potential $V = \lambda z$ and the bound state equations:

$$\begin{pmatrix} -\frac{d^2}{d\zeta^2} - \frac{1 - 4L^2}{4\zeta^2} + \lambda^2\zeta^2 + 2\lambda(L+1) \end{pmatrix} \psi_+ = M^2 \psi_+ \\ \begin{pmatrix} -\frac{d^2}{d\zeta^2} - \frac{1 - 4(L+1)^2}{4\zeta^2} + \lambda^2\zeta^2 + 2\lambda L \end{pmatrix} \psi_- = M^2 \psi_-, \\ \bullet \text{ Eigenfunctions} \\ \psi_+(\zeta) \sim \zeta^{\frac{1}{2} + L} e^{-\lambda\zeta^2/2} L_n^L(\lambda\zeta^2) \\ \psi_-(\zeta) \sim \zeta^{\frac{3}{2} + L} e^{-\lambda\zeta^2/2} L_n^{L+1}(\lambda\zeta^2) \\ \bullet \text{ Eigenvalues} \\ M^2 = 4\lambda(n+L+1) \\ M^{(1710)} \\ M^{(1720)} \\$$

N(1440)

N(940)

0

• L is the relative LF angular momentum between the active quark and spectator cluster

 $\sqrt{\lambda} = 0.49 \, \text{GeV}$

3

2

1

 ${\sf XII}^{
m th}$ Quark Confinement and the Hadronic Spectrum, Thessaloniki, 29 Aug 2016

Superconformal Algebraic Approach to Hadron Structure

6 Superconformal meson-baryon symmetry

[H.G. Dosch, GdT, and S. J. Brodsky, PRD 91, 085016 (2015)]

- Extend superconformal QM to relate bound-state equations for mesons and baryons
- Upon the substitutions (slide 13) $x \mapsto \zeta$, $E \to M^2$, $\lambda \mapsto \lambda_B = \lambda_M$ and $f \mapsto L_M \frac{1}{2} = L_B + \frac{1}{2}$ find the bound-state equations

$$\left(-\frac{d^2}{d\zeta^2} + \frac{4L_M^2 - 1}{4\zeta^2} + \lambda_M^2 \zeta^2 + 2\lambda_M (L_M - 1)\right)\phi_{Meson} = M^2 \phi_{Meson}$$
$$\left(-\frac{d^2}{d\zeta^2} + \frac{4L_N^2 - 1}{4\zeta^2} + \lambda_N^2 \zeta^2 + 2\lambda_N (L_N + 1)\right)\phi_{Nucleon} = M^2 \phi_{Nucleon}$$

- Superconformal QM imposes the condition $\lambda = \lambda_M = \lambda_B$ (equality of Regge slopes) and the remarkable relation $\Rightarrow L_M = L_B + 1$
- Also $R^{\dagger}|M,L\rangle = |B,L-1\rangle$, $R^{\dagger}|M,L=0\rangle = 0$ Special role of the pion as a unique state of zero energy
- Emerging dynamical SUSY from SU(3) color (Hadronic SUSY introduced by H. Miyazawa (1966))

• Superconformal spin-dependent Hamiltonian to describe mesons and baryons (chiral limit)

[S. J. Brodsky, GdT, H. G. Dosch, C. Lorcé, PLB 759, 171 (2016)]

$$G = \{R_{\lambda}^{\dagger}, R_{\lambda}\} + 2\lambda S \qquad \qquad S = 0, 1$$

Mesons : $M^2 = 4\lambda (n + L_M) + 2\lambda S$, Baryons : $M^2 = 4\lambda (n + L_B + 1) + 2\lambda S$

Superconformal meson-nucleon partners: solid line corresponds to $\sqrt{\lambda}=0.53~{
m GeV}$

 How universal is the semiclassical approximation based on superconformal QM and its LF holographic embedding? [S. J. Brodsky, GdT, H. G. Dosch, C. Lorcé, PLB 759, 171 (2016)]]

Best fit for hadronic scale $\sqrt{\lambda}$ from the different sectors including radial and orbital excitations

7 Supersymmetry across the heavy-light hadronic spectrum

[H.G. Dosch, GdT, and S. J. Brodsky, Phys. Rev. D 92, 074010 (2015)]

[H.G. Dosch, GdT, and S. J. Brodsky IN PREPARATION]

- Introduction of quark masses breaks conformal symmetry without violating supersymmetry
- Embedding of SUSY bound-state equations in AdS to determine the confinement potential
- SUSY potential for a meson can be read-off from slide 10 $(V_{
 m light}=\lambda\zeta)$

$$U_{susy} = V^2 - V' + \frac{2L+1}{\zeta}V$$

where V is an arbitrary superpotential and $L = L_M - 1$

• Embedding meson bound-state equation in AdS the LF potential is $(\varphi_{\text{light}} = \lambda \zeta^2)$

$$U_{AdS} = \frac{1}{4}(\varphi')^2 + \frac{1}{2}\varphi'' + \frac{2L-1}{2\zeta}\varphi'$$

where φ is an arbitrary dilaton (slide 7) and $L=L_M-1$ for $J=L_M$

• Equating the SUSY and the dilaton potentials $U_{susy} = U_{AdS}$ we find:

$$\varphi'(\zeta) = \int d\zeta \left(\lambda \zeta \sigma(\zeta) - \frac{\lambda^2 \zeta^2 \sigma'(\zeta)}{\lambda^2 \zeta^2 \sigma(\zeta) + 2(L_M - 1)\lambda}\right)$$
$$V(\zeta) = \frac{1}{2} \left(\lambda \zeta \sigma(\zeta) + \frac{\lambda^2 \zeta^2 \sigma'(\zeta)}{\lambda^2 \zeta^2 \sigma(\zeta) + 2(L_M - 1)\lambda}\right)$$

where $\sigma(\zeta)$ is an arbitrary function

- If dilaton profile is independent of angular momentum one has $\sigma'(\zeta) = 0$ and thus $\sigma = \text{const} \equiv 2A$
- Solution:

$$\varphi = \lambda A \zeta^2 + B$$
 and $V(\zeta) = \lambda A \zeta$

• For strongly broken conformal invariance the dilaton is still quadratic, but since A is arbitrary the strength of the potential is not determined

 D/Λ_c trayectory (left) and D_s/Ξ_c trajectory (right)

$$\sqrt{\lambda_{\text{light}}} \simeq 0.52 \text{ GeV}, \ \sqrt{\lambda_{\text{charm}}} \simeq 0.7 \text{ GeV}, \ \sqrt{\lambda_{\text{bottom}}} \simeq 1 \text{ GeV},$$

Superconformal Algebraic Approach to Hadron Structure

8 Infrared behavior of the strong coupling in light-front holographic QCD

[S. J. Brodsky, GdT and A. Deur, PRD **81** (2010) 096010]

[A. Deur, S. J. Brodsky and GdT, PLB 750, 528 (2015); PLB 757, 275 (2016), arXiv:1608.04933 [hep-ph]

• Effective coupling $\alpha_{g_1} = g_1^2/4\pi$ defined from and observable: g_1 scheme from Bjorken sum rule

$$\frac{\alpha_{g_1}(Q^2)}{\pi} = 1 - \frac{6}{g_A} \int_0^1 dx \, g_1^{p-n}(x, Q^2)$$

• Infrared behavior of strong coupling in LF holographic QCD from Fourier transform of the LF transverse coupling:

$$\alpha_{g_1}^{AdS}(Q) = \pi \exp\left(-Q^2/4\lambda\right)$$

• Large Q-dependence of α_s is computed from the pQCD β series:

$$Q^2 d\alpha_s / dQ^2 = \beta(Q) = -(\beta_0 \alpha_s^2 + \beta_1 \alpha_s^3 + \beta_2 \alpha_s^4 + \cdots)$$

where coefficients β_i are known up to β_4 in \overline{MS} scheme (five-loops):

• $\alpha_{g_1}^{pQCD}(Q)$ expressed as a perturbative expansion in $\alpha_{\overline{MS}}(Q)$:

$$\alpha_{g_1}^{pQCD}(Q) = \pi \left[\alpha_{\overline{MS}} / \pi + a_1 \left(\alpha_{\overline{MS}} / \pi \right)^2 + a_2 \left(\alpha_{\overline{MS}} / \pi \right)^3 + \cdots \right]$$

The coefficients a_i are known up to order a_4

- Λ_{QCD} and transition scale Q_0 from matching perturbative and nonperturbative regimes: $\Lambda_{\overline{MS}} = 0.339 \pm 0.019 \text{ GeV}$ (World Average: $\Lambda_{\overline{MS}} = 0.332 \pm 0.019 \text{ GeV}$) Transition scale: $Q_0^2 \simeq 1 \text{ GeV}^2$
- Renormalization scheme dependence

Thanks !

Review of LFHQCD, see S. J. Brodsky, GdT, H. G. Dosch and J. Erlich, Phys. Rept. 584, 1 (2015)