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Lattice QCD and the Sign problem

Z =
∫
DUDψ̄Dψ e−SYM(U)−SF(U;µ)

SF(U;µ) = −
∫
d4x ψ̄M(U;µ)ψ

Z =
∫
DU e−SYM(U) det M(U;µ)

numerical evaluation of bosonic integral with importance
sampling

observable 〈O〉 =
∫
DU e−SYM det MO∫
DU e−SYM det M

lack of γ5-hermiticity, γ5M(µ)γ5 = M†(−µ∗) 6= M†(µ)

determinant is complex and satisfies
[det M(µ)]∗ = det M(−µ∗)
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Importance of the Sign problem
assymetry between matter and anti-matter

free energy of particle q /anti-particle q̄
expectation value of Polyakov loop / adjoint:

exp(− 1
T Fq) = 〈Tr P 〉

=
∫

Re(P)× Re(d$)−Im(P)× Im(d$)

exp(− 1
T Fq̄) = 〈Tr P∗〉

=
∫

Re(P)× Re(d$)+Im(P)× Im(d$)

finite chemical potential µ favors propagation of quarks
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Possible Solutions of the Sign problem
Reweighting and cumulant expansion:
measurements of O are given a varying, oscillatory weight
f /g in the ensemble average (“average sign”)

Taylor expansion: of O in powers of µ/T at µ = 0
Imaginary µ: analytic continuation of results to real µ
|QCD| detM = |detM|eiφ, drop eiφ + reweight
Complex Langevin: stochastic quantization - evolution of
fields in a fictitious time with Brownian noise and search
for stationary solutions with correct measure
Lefschetz thimble: saddle point integration method
Density of States: Gaussian dist. of the phase angle
Worldline formalism and strong coupling limit:
change order of integration, partial integration over loops
and hopping parameter expansion
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Effective Polyakov Line Action
Indirect approach: Polyakov line action (SU(3) spin) model

fix Polyakov line holonomies U0(~x , 0) = Ux (temporal
gauge) and integrate out all other d.o.f.

eSP(Ux ) =
∫
DU0(~x , 0)DUkDψ

∏
x δ[Ux − U0(~x , 0)]eSL

derive SP at µ = 0, for µ > 0 we have (true to all orders of
strong coupling/hopping parameter expansion)

SµP(Ux ,U†x ) = Sµ=0
P [eNtµUx , e−NtµU†x ]

hard to compute exp[SP(Ux )] directly, but action ratios are
easily computed as expectation values → use relative
weights...
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Polyakov line actions from SU(3) LGT via relative weigthts

Relative Weights Method
S ′L . . .lattice action in temporal gauge with U0(~x , 0) = U ′x ,
compute the ratio

e∆SP = exp[SP(U ′x )]
exp[SP(U ′′x )] =

∫
DUkDψeS

′
L∫

DUkDψeS
′′
L

=
∫
DUkDψ exp[S ′L − S ′′L ]eS′′L∫

DUkDψeS
′′
L

≡ 〈exp[S ′L − S ′′L ]〉′′

Ux (λ) path through configuration space parametrized by λ

U ′x = Ux (λ0 + ∆λ/2),U ′′x = Ux (λ0 −∆λ/2)→ (dSPdλ )λ0 = ∆S
∆λ

derivatives of SP w.r.t. Fourier components ak of

Px ≡ 1
3TrUx =

∑
k akeikx
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Polyakov line actions from SU(3) LGT via relative weigthts

setting a particular momentum mode ak = 0, we construct
from the resulting configuration P̃x (f ≈ 1)

P ′x = (α + ∆α/2)eikx + f P̃x and P ′′x = (α−∆α/2)eikx + f P̃x

effective Polyakov line action motivated by heavy-dense
action, where h is some inverse power of hopping
parameter and satisfies the Pauli exclusion principle

Seff [Ux ] =
∑

x ,y PxK (x − y)Py

+p
∑

x log(1 + heµ/TTr [Ux ] + h2e2µ/TTr [U†x ] + h3e3µ/T )
log(1 + he−µ/TTr [Ux ] + h2e−2µ/TTr [U†x ] + h3e−3µ/T )

determine K (x − y) and h from fitting to lattice data

1
L3 (∂SP∂ak )ak=α = 2K (k)α + p

L3
∑

x (3heikx + 3h2e−ikx + c.c.)
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Fitting to lattice data
lattice momenta k = 2

√∑3
i=1 sin2(ki/2), ki = 2πmi/L,

where L = 16 and we use mode numbers
mi = (000), (100), (110), (200), (210), (300),
(311), (400), (322), (430), (333), (433), (443), (444), (554)

at k 6= 0, lowest order in h, we have

1
L3 (∂SP∂ak )ak=α = 2K (k)α

for k = 0 we gain precision by introducing an imaginary
chemical potential µ/T = eiθ → U ′(x , 0) = eiθP ′x and
U ′′(x , 0) = eiθP ′′x for various phase angles θ
to lowest order in h we then have

1
L3 (∂SP∂a0

)µ/T=iθ
a0=α = 2K (0)α + 6h cos θ
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Extracting K (x − y)
we fit K (k) to two straight lines

Kfit(k) =
{

c1 − c2k k ≤ k0
d1 − d2k k ≥ k0

fit parameters and k0 determined by χ2

Fourier transform using long-range cutoff rmax

K (x − y) =


1
L3

∑
k Kfit(k)eik·(x−y) |x − y | ≤ rmax

0 |x − y | > rmax

determine rmax by Fourier transforming back and fitting
K (0)
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Fitting to lattice data

1.9.2016 Roman HÖLLWIESER 16



Polyakov line actions from SU(3) LGT via relative weigthts

Results from PLA at µ = 0, β = 5.4,ma = 0.6
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Results from PLA at µ = 0, β = 5.2,ma = 0.35
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Results from PLA at µ = 0, β = 5.04,ma = 0.2
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Solve sign problem for the effective action

remaining sign problem can be solved by mean field theory
(see also Splittorff and Greensite, 2012)

treatment of SU(3) spin models at finite µ is a minor
variation of standard mean field theory at zero µ
basic idea is that each spin is effectively coupled to the
average spin on the lattice, not just nearest neighbors

S0
P = 1

9 [
∑

x ,y 6=xTrUxTrU†yK (x − y) +
∑

xTrUxTrU†xK (0)]

we introduce two magnetizations u, v for TrU and TrU†

TrUx = (TrUx − u) + u , TrU†x = (TrU†x − v) + v
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S0
P = 1

9
∑
x 6=0

K (x)[
∑
x

(vTrUx + uTrU†x )− uvL3]

+ 1
9

∑
x

Tr[Ux ]TrU†xK (0) + E0

with E0 =
∑

x ,y 6=x (TrUx − u)(TrU†y − v)K (x − y)

if we drop E0 the total action (including µ 6= 0) is local and
group integrations can be carried out analytically
parameters u and v are chosen such that E0 can be treated
as a perturbation, 〈E0〉 = 0 when u = 〈TrUx 〉, v = 〈TrU†x 〉
equivalent to the stationarity of the mean field free energy
with respect to variations in u and v → solve numerically
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Mean Field Results at β = 5.4,ma = 0.6
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Mean Field Results at β = 5.2,ma = 0.35
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Mean Field Results at β = 5.2,ma = 0.35
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Mean Field Results at β = 5.04,ma = 0.2
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Mean Field Results at β = 5.04,ma = 0.2
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Conclusions & Outlook
determined effective Polyakov line action for staggered
fermions with standard Wilson gauge action for a range of
gauge couplings and fermion masses on 163 × 4 lattices

good agreement for the Polyakov line correlators computed
in the effective theory and underlying lattice gauge theory
solved sign problem for the effective theory by mean field
and find a phase transition and correct density limit
...
determine quadratic, quasi-local center symmetry breaking
terms which may be important at finite chemical
potential...
go on to smaller quark masses...
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Questions?

Thank You &
Tareq Alhalholy, Derar Altarawneh, Michael Engelhardt, Manfried
Faber, Martin Gal, Jeff Greensite, Urs M. Heller, James Hettrick,
Andrei Ivanov, Thomas Layer, Štefan Olejnik, Luis Oxman, Mario
Pitschmann, Jesus Saenz, Thomas Schweigler, Wolfgang Söldner,

David Vercauteren, Markus Wellenzohn
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Metastable States in the PLA

Lüscher-Weisz gauge action at β = 7.0,ma = 0.3,Nt = 6

all spins coupled to all other spins, at least at Ns = 16
long-living metastable states, due to long-range couplings
PLA depends on starting point, "cold start"reproduces LGT
also solutions of the mean field equations are not unique
large u,v solutions have smallest free energy, but this is the
phase which does not correspond to LGT
unfortunate ambiguity for highly non-local SP , not a finite
density issue!
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Mean Field Results at β = 7.0,ma = 0.3
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