Confinement, nonAbelian monopoles, and 2D CP(N-I) model on
 finite space interval

```
K. Konishi (Univ. Pisa/INFN, Pisa)
```


Plan of the talk

- Confinement as dual superconductor of nonAbelian variety
- Status of nonAbelian monopoles. Hints from N=2 Susy gauge theories and how to understand them semiclassically
- Quantum CPN-I model on finite-width worldstrip

Renoranalizaton-group flow
(RG)

Confinement is a "failed" (or deformed) infrared-fixed point CFT

- Deformation by some relevant operator
- Confinement and symmetry breaking explained by the deg. of freedom describing CFT
- They are often topological solitons (kinks, monopoles - EM duality), rather than the particles in UV
- Type and details of the confinement phase the IR deg. of freedom and their interactions
- NonAbelian monopoles - strongly coupled CFT - could describe confinement (nonAbelian dual superconductor)

QCD?

- Abelian dual superconductor (dynamical Abelianization) ?

$$
\begin{aligned}
S U(3) \rightarrow U(1)^{2} & \rightarrow \mathbf{1} \\
\langle M\rangle & \neq 0
\end{aligned} \quad \text { 't Hooft, Nambu, Mandelstam's0 }
$$

Doubling of the meson spectrum (*)

$$
\begin{equation*}
\Pi_{1}\left(U(1)^{2}\right)=\mathbf{Z} \times \mathbf{Z} \tag{*}
\end{equation*}
$$

Is If confinement and XSB both induced by

$$
S U_{L}\left(N_{F}\right) \times S U_{R}\left(N_{F}\right) \rightarrow S U_{V}\left(N_{F}\right)
$$

$$
\text { Accidental } \mathrm{SU}\left(\mathrm{~N}_{\mathrm{F}}{ }^{2}\right) \text { : too many } \mathrm{NG} \text { bosons }
$$

- Non-Abelian monopole condensation ?

$$
S U(3) \rightarrow S U(2) \times U(1) \rightarrow \mathbf{1}
$$

Q

$$
\Pi_{1}(S U(2) \times U(1))=\mathbf{Z} \quad \text { but }
$$

Non-Abelian monopoles expected to be strongly coupled (no sign flip of b_{0})

Concept of nonAbelian monopoles turned out to be peculiarly evasive - Difficulties

- Difficulty for us, not for Nature ...
but the fact is ...

$\mathcal{N}=2$ SQCD (exact solutions): they are ubiquitous

- Abelian dual superconductivity

- Non-Abelian monopole condensation
$\operatorname{SU}(\mathrm{N}), \mathrm{N}_{\mathrm{F}}$ quarks
$S U(N) \Rightarrow S U(r) \times U(1) \times U(1) \times \ldots . \quad r \leq N_{F} / 2$
r vacua are local, IR free theories
Solve apparently the problem of too-many-NG bosons!
- Non-Abelian monopoles interacting strongly

SCFT of highest criticality, EHIY (Eguchi-Hori-Ito-Yang) vacua

Effective degrees of freedom in the quantum r vacuum of softly broken

 $N=2 S Q C D$$$
\left(r \leq N_{f} / 2\right)
$$

	$S U(r)$	$U(1)_{0}$	$U(1)_{1}$	\ldots	$U(1)_{N-r-1}$	$U(1)_{B}$
$N_{F} \times \mathcal{M}$	$\underline{\mathbf{r}}$	1	0	\ldots	0	0
M_{1}	$\underline{\mathbf{1}}$	0	1	\ldots	0	0
\vdots	\vdots	\vdots	\vdots	\ddots	\vdots	\vdots
M_{N-r-1}	$\underline{\mathbf{1}}$	0	0	\ldots	1	0

The massless non-Abelian and Abelian monopoles and their charges at the r vacua
-"Colored dyons" do exist !!!

- they carry flavor q.n.
- $\left\langle q^{i} \alpha\right\rangle=v \delta^{i}{ }_{\alpha} \Rightarrow U\left(N_{f}\right) \Rightarrow U(r) \times U\left(N_{f}-r\right)$

QMS of $\mathrm{N}=2$ SQCD ($\mathrm{SU}\left(\mathrm{n}\right.$) with nf_{f} quarks)

Recent developments

$N=2$ SCFT'S
Witten, Gaiotto, Seiberg, Argyres,
Tachikawa
'09-12

- S-duality in SCFT at

$$
g=\infty
$$

e.g. $\operatorname{SU}(\mathrm{N}) \mathrm{w} / \mathrm{N}_{\mathrm{F}}=2 \mathrm{~N}$

- Argyres-Seiberg S-duality applied to SCFT (IR f.p.) of highest criticality (EHIY)
- GST duality generalized to $\operatorname{USp}(2 \mathrm{~N}), \mathrm{SO}(\mathrm{N})$

Giacomelli ' 12

- Colliding r-vacua and EHIY in $\operatorname{SU}(\mathrm{N})$

Giacomelli, Di Pietro '11
Giacomelli-Konishi' ${ }^{\prime}$,' 13

- GST duality and confinement
- $\mathrm{N}=\mathrm{I}$ deformation of AD vacua and confinement

Two interesting hints:

- $N=2 U S p(2 N)$ with $N F=4$ with GST duality broken to $N=1$

$$
\begin{aligned}
& \left\langle M_{0}\right\rangle \neq 0 \rightarrow\left\langle M_{i}\right\rangle \neq 0, \quad(i=1,2, \ldots 4) \\
& \text { confinement } \quad \text { XSB }
\end{aligned}
$$

$$
\begin{aligned}
& .4) \\
& \text { "New Confinement Phases from Singular SCFT } \\
& \text { Giacomelli-Konishi } 12,13
\end{aligned}
$$

- $N=2 S U(N)$ with N_{F} at singular AD vacua, deformed to $N=I$

Strongly-coupled nontrivial SCFT

\cdots Free SCFT described by massless mesons
$N=1$
\rightarrow Massless mesons \sim NG bosons
Off AD

The key task:

Understand NA monopoles from semiclassical picture (How the old "difficulties" solved)

Hierarchical (gauge) symmetry breaking

$$
G \xrightarrow{\langle\phi\rangle=v_{1}} H \xrightarrow{\langle q\rangle=v_{2}} 1, \quad v_{1} \gg v_{2}
$$

- Color-flavor locked $\mathrm{H}_{\mathrm{C}+\mathrm{F}}$ symmetric vacuum
- Low-energy system $\left(v_{\mathrm{l}} \approx \infty\right)$ has vortices if $\Pi_{1}(H) \neq 1$
- High-energy system $\left(v_{2} \approx 0\right)$ has regular monopoles if $\pi_{2}(G / H) \neq 1$
\Rightarrow Vortex ends at monopoles / monopoles confined
- NonAbelian vortex e.g. $C^{N-1}, H=S U(N)$
\Rightarrow NonAbelian monopoles
$B(z, t) \quad B(t)$

Homotopy group exact sequence

$$
\cdots \rightarrow \pi_{2}(G) \rightarrow \pi_{2}(G / H) \rightarrow \pi_{1}(H) \rightarrow \pi_{1}(G) \rightarrow \cdots
$$

e.g. $G=S U(N), U S p(2 N)$: $\quad \pi_{1}=I \Rightarrow$ No Dirac monopoles
$\mathrm{G}=\mathrm{SO}(\mathrm{N}) \quad \pi_{1}=\mathrm{Z}_{2}, \mathrm{Z}_{2}$ monopoles; $\mathrm{G}=\mathrm{SU}(\mathrm{N}) / \mathrm{Z}_{\mathrm{N}}: \mathrm{Z}_{\mathrm{N}}$ monopoles;

Apply to physics:

$$
G \xrightarrow{v_{1}} H \xrightarrow{v_{2}} 1
$$

The model: $\mathrm{SU}(\mathrm{N}+\mathrm{I})$ ($\mathrm{N}=2$ susy inspired), $\quad \mathrm{N}_{\mathrm{F}}=\mathrm{N}$

$$
\mathcal{L}=-\frac{1}{4}\left(F_{\mu \nu}\right)^{2}+\left|\mathcal{D}_{\mu} \phi\right|^{2}+\sum_{I=1}^{N_{F}}\left|\mathcal{D}_{\mu} q_{I}\right|^{2}-V(\phi, q)
$$

$$
\langle\phi\rangle=\left\langle\phi^{A} T^{A}\right\rangle=\frac{v_{1}}{N+1}\left(\begin{array}{ll}
N & \\
& -\mathbb{1}_{N}
\end{array}\right)
$$

$$
\left\langle q_{I}^{a}\right\rangle=v_{2} \delta_{I}^{a}=v_{2} \mathbb{1}_{N}
$$

$$
v_{1} \gg v_{2}
$$

$$
S U(N+1)_{\text {color }} \otimes S U(N)_{\text {flavor }} \xrightarrow{v_{1}}(S U(N) \times U(1))_{\text {color }} \otimes S U(N)_{\text {flavor }} \xrightarrow{v_{2}} S U(N)_{C+F}
$$

The monopole-vortex soliton complex at large distances

The monopole is pointlike
The vortex is a line

$$
B(z, t)
$$

-The monopole degrees of freedom \sim the winding

$$
\begin{array}{rlr}
\phi(x)=v_{1} M(x) & M(x)=\sqrt{\frac{2 N}{N+1}} U(x) T^{(0)} U^{\dagger}(x), \quad \operatorname{Tr}\left(T^{(0)}\right)^{2}=\frac{1}{2} \\
& S U(N+1) / U(N) \sim C P^{N} & T^{(0)}=\frac{1}{\sqrt{2 N(N+1)}}\left(\begin{array}{ll}
N & \\
-\mathbb{1}_{N}
\end{array}\right)
\end{array}
$$

-Write down the vortex solutions

$$
\begin{aligned}
& \text { ortex solutions } \\
& \qquad U^{\dagger} q_{I}=U^{\dagger}\left(z \chi_{I}+e \eta_{I}\right)=\left(\begin{array}{c}
\chi_{I} \\
\eta_{I}^{1} \\
\vdots \\
\eta_{I}^{N}
\end{array}\right) \quad \eta^{\prime} \mathrm{s}=\text { massless components of } \mathrm{q} \\
& \\
& (\eta)_{I}^{i}=v_{2}\left(\begin{array}{cc}
e^{i \psi} & 0 \\
0 & \mathbb{1}_{N-1}
\end{array}\right)
\end{aligned}
$$

- Study the vortex-monopole solutions of generic orientation

$$
\begin{aligned}
& \eta \rightarrow \mathcal{U} \eta \mathcal{U}^{\dagger}, \quad P_{\mu} \rightarrow \mathcal{U} P_{\mu} \mathcal{U}^{\dagger}, \quad b_{\mu} \rightarrow \mathcal{U} b_{\mu} \mathcal{U}^{\dagger}, \quad \mathcal{U} \in S U(N) \\
& \mathcal{U}=\mathcal{U}(z, t) \subset \frac{S U(N)}{S U(N-1) \times U(1)} \sim C P^{N-1} \\
& \text { - Study low-energy effective action for } \mathcal{U}(z, t)
\end{aligned}
$$

The result:

The monopole-vortex soliton complex described by a low-energy action

$$
\begin{aligned}
& S=S^{2 D}+S_{M}^{1 D}+S_{\bar{M}}^{1 D} \\
& S^{2 D}=2 f \int_{\Sigma} d^{2} x \mathcal{D}_{\alpha} n^{c \dagger} \mathcal{D}_{\alpha} n^{c}, \quad \mathcal{D}_{\alpha} n^{c} \equiv\left\{\partial_{\alpha}-\left(n^{\dagger} \partial_{\alpha} n\right)\right\} n^{c}, \quad n^{\dagger} n=1 \\
& S^{1 D}=\gamma \int_{K=M, \bar{M}} d t \mathcal{D}_{0} n_{K}^{c \dagger} \mathcal{D}_{0} n_{K}^{c}, \\
& \quad f=\frac{2 \pi}{m^{2}} \int_{0}^{\infty} d \rho \rho\left(\partial_{\rho} \mathcal{B}^{(v o r)}\right)^{2}
\end{aligned}
$$

$$
\gamma \sim \frac{2 \pi v_{1}}{g^{3} v_{2}^{2}} \sim \frac{M}{m^{2}}
$$

$C P^{N}$ vs $C P^{N-I}$

The quantum fluctuations of n

CPN ${ }^{-1}$ sigma model on finite worldstrips
Mini-review: The standard CPN ${ }^{-1}$ sigma model in 2D :

$$
\begin{aligned}
& \qquad S=\int d x d t\left(\left(D_{\mu} n_{i}\right)^{*} D^{\mu} n_{i}-\lambda\left(n_{i}^{*} n_{i}-r\right)\right), \quad(i=1,2, \ldots, N) \\
& \quad \int \mathcal{D} \lambda(x) \quad n_{i}^{*} n_{i}=r, \quad r=\frac{4 \pi}{g^{2}} . \\
& Z=\int\left[d A_{\mu}\right][d \lambda]\left[d n_{i}\right]\left[d n_{i}^{*}\right] e^{i S}=\int\left[d A_{\mu}\right][d \lambda] e^{i S_{\text {eff }}}, \quad S_{\text {eff }}=\int d^{2} x\left(N \operatorname{tr} \log \left(-D_{\mu}^{*} D^{\mu}+\lambda\right)-\lambda r\right) \\
& \text { - Asymptotically free } \\
& \text { - } \mathrm{n} \text { field mass generated } \quad \lambda=m^{2} \quad r-N \operatorname{tr}\left(\frac{1}{-\partial_{\tau}^{2}-\partial_{x}^{2}+m^{2}}\right)=0
\end{aligned}
$$

- n fields confined by the Coulomb force
- Model of QCD?

$$
r=N \int_{0}^{\Lambda_{\mathrm{UV}}} \frac{k d k}{2 \pi} \frac{1}{k^{2}+m^{2}}=\frac{N}{4 \pi} \log \left(\frac{\Lambda_{\mathrm{UV}}^{2}+m^{2}}{m^{2}}\right)
$$

$$
\begin{gathered}
r(\mu)=\frac{4 \pi}{g(\mu)^{2}} \simeq \frac{N}{2 \pi} \log \left(\frac{\mu}{\Lambda}\right) \\
m=\Lambda
\end{gathered}
$$

Finite strings and generalized gap equations

Boundary conditions:

$$
\begin{array}{ll}
\text { D-D }: & n_{1}(0)=n_{1}(L)=\sqrt{r}, \quad n_{i}(0)=n_{i}(L)=0, \quad i>1 . \\
\text { N-N }: & \partial_{x} n_{i}(0)=\partial_{x} n_{i}(L)=0 .
\end{array}
$$

Separating $\quad n_{1}=\sigma \quad$ and integrating over $n_{i}, \quad(i=2,3, . . N) \quad$ (Large N approximation)

$$
\begin{aligned}
S_{\mathrm{eff}} & =\int d^{2} x\left((N-1) \operatorname{tr} \log \left(-D_{\mu} D^{\mu}+\lambda\right)+\left(D_{\mu} \sigma\right)^{*} D^{\mu} \sigma-\lambda\left(|\sigma|^{2}-r\right)\right) \\
E & =N \sum_{n} \omega_{n}+\int_{0}^{L}\left(\left(\partial_{x} \sigma\right)^{2}+\lambda\left(\sigma^{2}-r\right)\right) d x, \quad\left(-\partial_{x}^{2}+\lambda(x)\right) f_{n}(x)=\omega_{n}^{2} f_{n}(x)
\end{aligned}
$$

Generalized gap equations

$$
\begin{aligned}
& \partial_{x}^{2} \sigma(x)-\lambda(x) \sigma(x)=0 \\
& \frac{N}{2} \sum_{n} \frac{f_{n}(x)^{2}}{\omega_{n}}+\sigma(x)^{2}-r=0
\end{aligned}
$$

- Coupled equations for $\lambda(x), \sigma(x)$

$$
\begin{aligned}
& \lambda(x) \rightarrow\left\{\omega_{n}, f_{n}(x)\right\}, n=1,2, \ldots, \infty \\
& \left\{\omega_{n}, f_{n}(x)\right\} \rightarrow \sigma(x), \text { regularizing UV div } \\
& \text { and renormalizing } \mathrm{r}(\mathrm{~g})
\end{aligned}
$$

$$
\sigma(x) \rightarrow \lambda(x)
$$

Strategy: solve the eqs recursively

(I) Give some trial potential $\quad \lambda_{k}(x), \quad(k=1,2, \ldots)$
(2) Solve for $\left\{\omega_{n}, f_{n}(x)\right\}_{k} \quad\left(n=1,2, \ldots n_{\max }\right)$
(3) Cancel the UV divergences against r

$$
r=\frac{4 \pi}{g^{2}}=\frac{N}{2 \pi} \log \frac{2 \mu\left(n_{\max }\right)}{\Lambda}
$$

(4) Finite equation for $\sigma(x)$

$$
\sigma_{k}^{2}=-\frac{N}{2} \sum_{n} \frac{1}{\omega_{n}}\left(f_{n, k}(x)^{2}-\frac{1}{L}\right)-\frac{N}{2 L} \sum_{n=1}^{n_{\max }} \frac{1}{\omega_{n, k}}+\frac{N}{2 \pi} \log \left(\frac{2 \mu\left(n_{\max }\right)}{\Lambda}\right) .
$$

(5) Use Eq. (*) to find $\lambda_{k+1}(x)$
(6) Go back to the step (2) \ldots (5) to find $\lambda_{k+2}(x)$, and repeat the procedure, until
(7) A self consistent solution $\quad\left\{\sigma_{k}(x), \lambda_{k}(x)\right\} \simeq\left\{\sigma_{k+1}(x), \lambda_{k+1}(x)\right\}$ is reached

A subtlety: the behavior of $\lambda(x), \sigma(x)$ near $\mathbf{x}=\mathbf{0}, \mathbf{L}$
D-D or N-N boundary cds \triangleleft : (by e.g.WKB)

$$
\lambda(x) \sim \frac{1}{2 x^{2} \log \frac{1}{x}} ; \quad \sigma^{2}(x) \sim \frac{N}{2 \pi} \log \frac{1}{x}, \quad x \sim 0
$$

- At finite \times (far from the boundaries) the UV divergences in

$$
\frac{N}{2} \sum_{n} \frac{f_{n}(x)^{2}}{\omega_{n}} \quad \text { is cancelled by } \mathbf{r} \text { in } \quad \frac{N}{2} \sum_{n} \frac{f_{n}(x)^{2}}{\omega_{n}}+\sigma(x)^{2}-r=0
$$

(as in the standard 2D $\mathrm{CP}(\mathrm{N}-\mathrm{I})$ model: UV div is a local phenomenon!)

- Near $\mathbf{x} \sim 0, \mathrm{~L}, \quad \frac{N}{2} \sum_{n} \frac{f_{n}(x)^{2}}{\omega_{n}} \quad$ cannot diverge (no 2D "space")
- There the classical filed $n_{1}(x)=\sigma(x)$ comes to rescue! $\Rightarrow(\%)$

The result

or
Figure 4: On the left $\sqrt{\lambda(x)}$, on the right $\sigma(x)^{2} / N$. These plots are rescaled in order to keep $\Lambda=1$ fixed and for $L=1,2,3,4$. The constant line on the left figure is Λ.

$$
\log \left(\sqrt{\left(\lambda(L / 2)-\Lambda^{2}\right)} / \Lambda\right)
$$

Figure 5: These plots are: on the top-left is $\sqrt{\lambda(L / 2)}$, on the top-right $\sigma(L / 2)^{2} / N$, on the bottom-left $\log \left(\sqrt{\lambda(L / 2)-\Lambda^{2}} / \Lambda\right)$ and on the bottom-right $\log \left(\sigma^{2}(L / 2) / N\right)$. These plots are obtained for various values of L keeping $\Lambda=1$.

CPN-1 sigma model on finite worldstrip: summary

- Unique solution of the generalized gap equation (funct. saddle point eqn)
- No "Higgs" phase $\quad(\langle\lambda\rangle=0 ; \quad\langle\sigma(x)\rangle=$ const $\sim \Lambda \quad)$ exists
- No phase transition at $\mathrm{L} \sim \frac{1}{\Lambda}$

- The standard 2D C^{N-1} system emerging at large $L \quad\left(\lambda \sim \Lambda^{2}, \sigma=0\right)$
- Exactly the same result holds for D-D and N-N boundary conditions
- Interpolates a ID system (QM) at $L<\frac{1}{\Lambda}$ to a 2D QFT at $L=\infty$
- The dynamical breaking of $\operatorname{SU}(\mathrm{N})$ symmetry does not occur Cfr.p. 6
- With the periodic boundary condition, a phase transition at $\mathrm{L} \sim \frac{1}{\Lambda}$

Conclusion:

- NonAbelian monopole concept consistent with quantum mechanics
- Monopoles $\sim \underline{N}$ of unbroken $\operatorname{SU}(N)=$ isometry group of $\mathrm{CP}(\mathrm{N}-\mathrm{I})$ (Fig.p. I7)
- Nonlocal transformations - typical of EM duality

The idea

- Quark confinement = dual Higgs phase of nonAbelian variety:
- Monopoles (nonAbelian and strongly coupled) condense, induce confinement and trigger XSB
to be pursued

THE END

Non-Abelian monopoles

$$
\begin{gathered}
G \stackrel{\langle\phi\rangle \neq 0}{ } \boldsymbol{H} \\
\mathrm{H}: \text { non-Abelian } \\
\boldsymbol{F}_{i j}=\epsilon_{i j k} \frac{r_{k}}{r^{3}}(\beta \cdot \mathrm{~T}), \quad 2 \beta \cdot \alpha \in \mathbb{Z}
\end{gathered}
$$

$$
\begin{aligned}
& \text { cfr. } \quad \text { (Dirac) } \\
& 2 \mathrm{~m} \cdot \mathrm{e} \in \mathrm{Z}
\end{aligned}
$$

"Monopoles are multiplets of $\tilde{\mathrm{H}}$ (GNO)"

$$
\begin{aligned}
& \tilde{\mathrm{H}} \text { generated by } \quad \alpha^{*} \equiv \frac{\alpha}{\alpha \cdot \alpha} . \\
& <\Phi>=\mathrm{v}=\mathrm{h} \cdot \mathrm{~T}
\end{aligned}
$$

H	\tilde{H}
$\mathrm{U}(\mathrm{N})$	$\mathrm{U}(\mathrm{N})$
$\mathrm{SU}(\mathrm{N})$	$\mathrm{SU}(\mathrm{N}) / \mathrm{Z}^{N}$
$\mathrm{SO}(2 \mathrm{~N})$	$\widehat{\mathrm{SO}(2 \mathrm{~N})}$
$\mathrm{SO}(2 \mathrm{~N}+\mathrm{I})$	$\mathrm{USp}(2 \mathrm{~N})$

$$
\begin{gathered}
A_{i}(\mathrm{r})=A_{i}^{a}(\mathrm{r}, \mathrm{~h} \cdot \alpha) S_{a} ; \quad \phi(\mathrm{r})=\chi^{a}(\mathrm{r}, \mathrm{~h} \cdot \alpha) S_{a}+\left[\mathrm{h}-(\mathrm{h} \cdot \alpha) \alpha^{*}\right] \cdot \mathrm{T}, \\
S_{1}=\frac{1}{\sqrt{2 \alpha^{2}}}\left(E_{\alpha}+E_{-\alpha}\right) ; \quad S_{2}=-\frac{i}{\sqrt{2 \alpha^{2}}}\left(E_{\alpha}-E_{-\alpha}\right) ; \quad S_{3}=\alpha^{*} \cdot \mathrm{~T},
\end{gathered}
$$

Difficulties

(1) Topological obstructions

Abouelsaad et.al. 83

```
e.g., SU(3) }->\textrm{SU}(2)\timesU(1)\quad
    # monopoles ~ (2, I* )
```

"No colored dyons exist"

(2) Non-normalizable gauge zero modes:

Monopoles not multiplets of H

Weinberg,'82,'96 Coleman, Nelson,' 84 Dorey...' 96
The real issue: how do they transform under \tilde{H} ?
N.B. : H and H relatively nonlocal

N.B: H and H relative

(a) gauge profile function $f(\rho, z)$

(c) scalar profile function $\frac{1}{\sqrt{2}} s(\rho, z)$

(b) gauge profile function $\ell(\rho, z)$

(d) squark profile function $q(\rho, z)$

But this allows a direct description of IR physics !!

For $\quad U S p(2 N), N_{f}=4$
the GST dual is (both the A and B sectors are free doublets) :

$$
1-S U(2)-4 .
$$

$$
U(1)
$$

the effects of m_{i} and $\mu \phi^{2}$ perturbation can be studied with the superpotential:

$$
\sqrt{2} Q_{0} A_{D} \tilde{Q}^{0}+\sqrt{2} Q_{0} \phi \tilde{Q}^{0}+\sum_{i=1}^{4} \sqrt{2} Q_{i} \phi \tilde{Q}^{i}+\mu A_{D} \Lambda+\mu \operatorname{Tr} \phi^{2}+\sum_{i=1}^{4} m_{i} Q_{i} \tilde{Q}^{i}
$$

cfr. UV Lagrangian:

$$
\begin{aligned}
& W=\mu \operatorname{Tr} \Phi^{2}+\frac{1}{\sqrt{2}} Q_{a}^{i} \Phi_{b}^{a} Q_{c}^{i} J^{b c}+\frac{m_{i j}}{2} Q_{a}^{i} Q_{b}^{j} J^{a b} \\
& m=-i \sigma_{2} \otimes \operatorname{diag}\left(m_{1}, m_{2}, \ldots, m_{n_{f}}\right) .
\end{aligned}
$$

Correct flavor symmetry for all $\{\mathrm{m}\}$

- $m_{i}=m \quad: \quad S U(4) \times U(I)$;
- $m_{i}=0$: $S O(8)$; etc.,

