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Plan of the talk

• Confinement as dual superconductor of nonAbelian 
variety

• Status of nonAbelian monopoles.  Hints from N=2 Susy 
gauge theories and how to understand them 
semiclassically

• Quantum CPN-1  model on finite-width worldstrip
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review and

recent results

new





Confinement is a “failed” (or 
deformed)  infrared-fixed point CFT   

• Deformation by some relevant operator

• Confinement and symmetry breaking explained by the deg. of 
freedom describing CFT

• They are often topological solitons (kinks, monopoles - EM duality), 
rather than the particles in UV

• Type and details of the confinement phase                                   
the IR deg. of freedom and their interactions

• NonAbelian monopoles - strongly coupled CFT - could describe 
confinement  (nonAbelian dual superconductor)



• Abelian dual superconductor  (dynamical Abelianization)  ? 

SU(3)! U(1)2 ! 1

hMi 6= 0

 Doubling of the meson spectrum    (*)

‘t Hooft, Nambu, Mandelstam ’80

☞    If  confinement and XSB both induced by      

 Accidental SU(NF2 ) : too many NG bosons  

SUL(NF )⇥ SUR(NF )! SUV (NF )

☞

• Non-Abelian monopole condensation  ? 

SU(3)! SU(2)⇥ U(1)! 1

☞ Problems (*)  avoided   

 Non-Abelian monopoles expected to be strongly coupled  (no sign flip of b0)

�Ma
b ⇥ = �a

b �

⇧1(U(1)2) = Z⇥ Z

⇧1(SU(2)⇥ U(1)) = Z

QCD? 

(**)

  Hint that  (**) also solved by non Abelian monopoles    

but



Concept of nonAbelian monopoles turned out to be
 peculiarly evasive  -  Difficulties

but the fact is … 
• Difficulty for us, not for Nature …



   𝒩=2 SQCD (exact solutions):  they are ubiquitous

• Abelian dual superconductivity    ✔ 
Seiberg-Witten,

... ... ...
 

SU(2) with NF  = 0, 1,2,3 
    monopole condensation ⇒ confinement & dyn symm. breaking   

• Non-Abelian monopole condensation         ✔ 

SU(N)  𝒩 =2  SYM  :   SU(N)  ⇒  U(1)N-1  

SU(N)  ⇒  SU(r) x U(1) x U(1) x ....  

• Non-Abelian monopoles interacting strongly   ! 

Argyres,Plesser,Seiberg,’96 

Hanany-Oz, ’96

Carlino-Konishi-Murayama ‘00

Beautiful, but don’t look like QCD

Beautiful, but don’t look like 

QCD

r  vacua are local, IR free theories 
Solve apparently the problem of too-many-NG bosons!

SCFT of highest criticality, EHIY (Eguchi-Hori-Ito-Yang) vacua Beautiful and interesting

Argyres,Plesser,Seiberg,Witten, 

Eguchi-Hori-Ito-Yang,  ’96

SU(N),  NF  quarks 

r ≤ NF /2
Shifman-Yung ’10-’13

Argyres-Seiberg, Gaiotto-Seiberg-Tahcikawa  ’07, ’11   

Giacomelli-Konishi ’12, ’13,  

Bolognesi, Giacomelli, Konishi, ‘15



Effective degrees of freedom in the
quantum r vacuum of softly broken 

N=2 SQCD

• “Colored dyons”  do exist !!!

• they carry flavor  q.n.

• 〈qi α〉= v  δi α  ➯    U(Nf) ➡ U(r) x U(Nf -r) 

(r ≤ Nf  / 2 )

Seiberg-Witten ’94 

Argyres,Plesser,Seiberg,’96 

Hanany-Oz, ’96

Carlino-Konishi-Murayama ‘00

The e↵ective action of Seiberg-Witten correctly describes the low-energy excitations: the

exactly massless Nambu-Golstone bosons of the symmetry breaking (3) and their superpartners.

Unlike the light flavored standard QCD, the massless Nambu-Goldstone bosons do not carry

the quantum numbers of the remaining unbroken SU(2). There are also light but massive dual

photon and dual photino of the order of
p

µ⇤, which arise as a result of the dual Higgs mechanism.

All these light particles are to be interpreted as gauge invariant states (they are asymptotic

states); the presence of the original quarks degrees of freedom can be detected in the flavor

quantum numbers (1), which can be nicely understood as the result of Jackiw-Rebbi dressing of

the Abelian monopoles due

3 Dynamical Abelianization

The low energy theory describes massless monopoles and Abelian dual gauge fields coupled

minimally to them.

4 The quantum r vacua of SU(N) SQCD

The classical and quantum moduli space of the vacua of the N = 2 supersymmetric SU(N)

QCD has been first studied systematically by Argyres, Plesser and Seiberg and by others. Of

particular interest is the r-vacua characterized by an e↵ective low-energy SU(r)⇥U(1)N�r gauge

symmetry. When the adjoint scalar mass µ �2 term is added, which breaks supersymmetry to

N = 1, the only vacua that survive are those where certain massless monopole multiplets appear.

The massless Abelian (Mk) and non-Abelian monopoles (M) carry charges given in the Table

SU(r) U(1)0 U(1)1 . . . U(1)N�r�1 U(1)B

NF ⇥M r 1 0 . . . 0 0

M1 1 0 1 . . . 0 0
...

...
...

...
. . .

...
...

MN�r�1 1 0 0 . . . 1 0

Table 1: The massless non-Abelian and Abelian monopoles and their charges at the r vacua at

the root of a “non-baryonic” r-th Higgs branch.
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CONFINEMENT 13

r=1

r = nf /2
- - -

Non Abelian monopoles

Abelian monopoles

(Non-baryonic)
Higgs Branches

Baryonic
Higgs Branch

Coulomb
Branch

Dual
Quarks

QMS of N=2 SQCD (SU(n) with nf quarks)

r=0

<Q> 0

< >  0

N=1 Confining vacua (with   2 perturbation)

N=1 vacua (with   2 perturbation) in free magnetic phase

SCFT

Φ
Φ

Φ ≠
m = mcr

next
slide

Di Pietro, Giacomelli ’11



CONFINEMENT 14

Non Abelian monopoles

Higgs Branches

Special
Higgs Branch

Coulomb
Branch

Dual
Quarks

QMS of N=2 USp(2n) Theory with nf Quarks

<Q> 0

< >  0

N=1 Confining vacua (with   2 perturbation)

N=1 vacua (with   2 perturbation) in free magnetic phase

SCFT
SCFT of 

highest criticality 
EHIY point

non-Lagrangian
Carlino-Konishi-Murayama ‘00Φ

Φ
Φ

m ≠ 0

previous
slide

(m = 0)

(Universality)
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Recent developments 

• S-duality in SCFT at    g = ∞    e.g. SU(N) w/ NF = 2N

• Argyres-Seiberg S-duality applied to SCFT (IR f.p.) of
   highest criticality (EHIY) 

• GST duality generalized to USp(2N), SO(N)
Gaiotto-Seiberg-Tachikawa ’11

Giacomelli  ’12

• GST duality and confinement

• Colliding r-vacua and EHIY in SU(N)    

Giacomelli, Di Pietro  ’11

Argyres-Seiberg  ’07

N=2 SCFT’s 

Witten,Gaiotto, Seiberg, Argyres, 

Tachikawa, Moore, Maruyoshi, ...  ...
       

’09 - ’12

Bolognesi, Giacomelli, Konishi, ‘15

• N=1 deformation of  AD vacua and confinement

Giacomelli-Konishi ’12, ’13 



Two interesting hints: 

• N=2  USp(2N) with NF =4 with GST duality broken to N=1

hM0i 6= 0 ! hMii 6= 0, (i = 1, 2, . . . 4)

confinement XSB

• N=2  SU(N) with NF at singular AD vacua,  deformed to N=1

Strongly-coupled nontrivial SCFT

Giacomelli-Konishi ’12, ’13 

Bolognesi, Giacomelli, Konishi, ‘15

Free SCFT described by massless mesons
N=1

Off AD
Massless mesons ~ NG bosons

“New Confinement Phases from Singular SCFT”



Understand NA monopoles from semiclassical picture 

The key task: 

(How the old  “difficulties” solved) 



Hierarchical (gauge) symmetry breaking 

• Color-flavor locked  HC+F  symmetric vacuum 

• High-energy system (v2 ≈ 0) has regular monopoles if π2 (G/H) ≠ 1

• Low-energy system (v1 ≈ ∞) has vortices if π1 (H) ≠ 1

G
h�i=v1�! H

hqi=v2�! 1, v1 � v2

absent in the full theory 

 if π1 (G)=1 

absent in the full theory

 as π2 (G)=1

• NonAbelian vortex       e.g.   CPN-1 , H=SU(N) 

 ➪   NonAbelian monopoles

Make these ideas concrete

B(z,t) B(t)

 ➮  Vortex ends at monopoles / monopoles confined  

’03-’13

Hanany,Tong,

Auzzi, Bolognesi,Evslin,Konishi,Yung 

Shifman, Yung,    Sakai. NItta et. al.



Figure 1: A pictorial representation of the exact homotopy sequence, (3.1), with the leftmost figure
corresponding to �2(G/H).

taken into account, having mass large but not infinite (Fig. 2). The low-energy vortices become
unstable also through heavy monopole pair productions which break the vortices in the middle
(albeit with small, tunneling rates [40]), which is really the same thing. Note that, even if the
e�ect of such string breaking is neglected, a monopole-vortex-antimonopole configuration is not
topologically stable anyway: its energy would become smaller if the string becomes shorter (so
such a composite, generally, will get shorter and shorter and eventually disappear).

However, this does not mean that such a monopole-vortex-antimonopole configuration cannot
be dynamically stabilized, or that they are not relevant as physical configurations. A rotation
can stabilize easily such a monopole-vortex-antimonopole configuration dynamically. After all,
we believe that the real-world mesons are quark-string-antiquark bound states of this sort, the
endpoints rotating almost with a speed of light! An excited meson can and indeed do decay
through a quark pair production into states made of two lighter mesons. Only the lightest mesons
are truly stable. The same occurs with our monopole-vortex-antimonopole configurations. The
lightest such systems, after the rotation modes are appropriately quantized, are truly stable
bound states of solitons, even though they cannot be simply described as static, semiclassical
configurations.

Our model is thus a reasonably faithful (dual) model of the quark confinement in QCD.

It is crucial in our argument that the monopoles of high-energy theory and the vortices of
low-energy theory are both BPS only approximately; in other words, they are almost BPS but
not exactly.6 They are unstable in the full theory. But the fact that there exists a limit (of a
large ratio of the mass scales, v1

v2
⌅ ⇧) in which these solitons become exactly BPS and stable,

means that the magnetic flux through the surface of a small sphere surrounding the monopole
and the vortex magnetic flux through a plane perpendicular to the vortex axis, must match
exactly. These questions (the flux matching) have been discussed extensively already in [19].

Our argument, applied to the simplest case, G = SO(3), and H = U(1), is precisely
the one adopted by ’t Hooft [1] in his pioneering paper, to argue that there must be a regular
monopole of charge two (with respect to the Dirac’s minimum unit): as the vortex of winding
number k = 2 must be trivial in the full theory (with �1(SO(3)) = Z2), such a vortex must
end at a regular monopole. What is new here, as compared to the case discussed by ’t Hooft [1] is
that now the unbroken group H is non-abelian and that the low-energy vortices carry continuous,

6The importance of non-BPS soliton configurations have also been emphasized by Strassler [16].
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Homotopy group exact sequence

The gauge field equations take a slightly more complicated form than in the U(N) model
(2.1):

⇧z (��1⇧z̄ �) = �
g2

N

2
Tr ( ta ��1 q q†) ta �

e2

4N
Tr ( ��1q q† � 1), � = S S†.(2.33)

The last equation reduces to the master equation Eq. (2.10) in the U(N) limit, gN = e.

The advantage of the moduli matrix formalism is that all the moduli parameters appear in
the holomorphic, moduli matrix H0(z). Especially, the transformation property of the vortices
under the color-flavor diagonal group can be studied by studying the behavior of the moduli
matrix.

3 Topological stability, vortex-monopole complex and con-
finement

The fact that there must be a continuous set of monopoles, which transform under the color-flavor
SU(N) group follows from the following exact homotopy sequence

· · · ⌅ �2(G) ⌅ �2(G/H) ⌅ �1(H) ⌅ �1(G) ⌅ · · · (3.1)

where �2(G) = �1(G) = ⇧, in the system under consideration, G = SU(N + 1), H =
SU(N)⇥U(1)

ZN
⇤ U(N). (Fig. 1). The nontrivial configuration of the scalar field can be inter-

preted as representing �2(G/H) while the gauge field consfiguration can be classified according
to �1(H) [42]. It follows that

�2

�
SU(N + 1)

U(N)

⇥
= �2(CP N) ⇤ �1(U(N)) = Z : (3.2)

each nontrivial element of �1(U(N)) is associated with a nontrivial element of �2(
SU(N+1)

U(N)
).

Recalling that the latter represents the topological classification of gauge and scalar fields, this
result is consistent as the theory does not admit Dirac monopoles: all monopoles are regular ’t
Hooft-Polyakov monopoles.

However, there is something of a puzzle: when the small VEV’s are taken into account, which
break the “unbroken” gauge group completely, these monopoles must disappear somehow. A
related puzzle is this: the low-energy theory develops vortices since H is completely broken. The
vortex flux is quantized by (in our case, with H = SU(N)⇥U(1)

ZN
)

�1(H) = Z. (3.3)

Again, when the massive monopoles associated with the breaking G ⌅ H are taken into
account, ı.e., in the full theory, the vortices visible and stable in the low-energy approximation
must disappear, as �1(G) = ⇧.

Actually, these two apparent puzzles are the two faces of a medal. The solution is that the
massive monopoles are confined by the vortices and disappear from the spectrum; on the other
hand, the vortices of the low-energy theory end at the heavy monopoles once the latter are

9

   e.g.   G=SU(N), USp(2N):      π1   = 1 ⇒ No Dirac monopoles   　　　(Wu-Yang)

  G=SO(N)   π1 =Z2  ,  Z2  monopoles;       G=SU(N)/ZN  :  ZN   monopoles; 

‘t Hooft

SO(3)/U(1)

Apply to physics:

Abstract

It is argued that the dual transformation of non-Abelian monopoles
occurring in a system with gauge symmetry breaking G �⌅ H is to
be defined by setting the low-energy H system in Higgs phase, so that
the dual system is in confinement phase. The transformation law of the
monopoles follows from that of monopole-vortex mixed configurations in
the system (with a large hierarchy of energy scales, v1 ⇤ v2)

G
v1�⌅ H

v2�⌅ 1,

under an unbroken, exact color-flavor diagonal symmetry HC+F ⇥ H̃ .
The transformation property among the regular monopoles character-
ized by �2(G/H), follows from that among the non-Abelian vortices
with flux quantized according to �1(H), via the isomorphism �1(G) ⇥
�1(H)/�2(G/H). Our idea is tested against the concrete models –
softly-broken N = 2 supersymmetric SU(N), SO(N) and USp(2N)
theories, with appropriate number of flavors. The results obtained in the
semiclassical regime (at v1 ⇤ v2 ⇤ �) of these models are consis-
tent with those inferred from the fully quantum-mechanical low-energy
e�ective action of the systems (at v1, v2 ⇥ �).



The model:   SU(N+1)  (N=2 susy inspired),    NF =N

The new SU(N) quantum number of the monopole arises as the isotropy group of the CP N−1

moduli space of monopole-vortex complex solutions, following from the exact color-flavor sym-

metry of the original gauge system. The monopole transforms in the fundamental representation

of this SU(N). Fluctuation of the monopole SU(N) charge excites the well-known non-Abelian

vortex zero modes, which propagate as massless particles in the 2D worldsheet. One way of stat-

ing this result is that the non-normalizable 3D gauge zero modes of the monopole, when dressed

by flavor charges, turn into normalizable 2D modes on the vortex world sheet.

The new SU(N) symmetry is a result of the color-flavor combined transformations acting on

the soliton monopole-vortex configurations: it is a nonlocal field transformation in the original

gauge theory. Nevertheless, in the dual description the new SU(N) acts locally on the monopole.

This is typical of electromagnetic duality.

This SU(N) charge of the monopole is a confined charge, as the excitation does not propagate

outside the monopole-vortex-antimonopole complex. The M − V − M̄ complex is a singlet as a

whole. The monopoles appear as confined objects, the vortex playing the role of the confining

string. This is correct as the original SU(N) gauge system is in a completely broken, Higgs

phase. The dual system must be in confinement phase.

The following is an attempt to make these ideas a little more concrete.

2 The model

Our aim is to study a simplest possible model which realizes the hierarchical symmetry breaking

(1) in which the light matter and gauge fields interact with the monopole arising from the higher-

mass symmetry breaking. The action can be taken in the form,

L = −1

4
(Fµν)

2 + |Dµφ|2 +
NF
∑

I=1

|DµqI |2 − V (φ, q) , (6)

where φ is a scalar field in the adjoint representation of SU(N +1), qI , where I = 1, 2, . . . , NF =

N , are a set of scalar fields in the fundamental representation. Inspired by the N = 2 theories,

we take

V =
∑

A

∣

∣

∣
µφA + λ q†I TAqI

∣

∣

∣

2
+
∑

I,i

∣

∣(TAφA + mI)ij qI
j

∣

∣

2
. (7)

where m1, m2, . . .mN are the (bare) masses of the scalar fields q, and µ ≪ |mI |. The quartic

coupling λ does not play a particular role in our discussion below, and will be set to unity. In

order to attain the minimum of the potential, V = 0, the scalar field qI is either a non vanishing

3

freedom is ubiquitous in strongly interacting nonAbelian gauge theories. What is lacking still is

the understanding of these quantum objects, or in other words, of their semi-classical origin.

It is our aim in this paper to take a few more steps towards elucidating the mysteries of

nonAbelian duality. For this purpose we study a system with hierarchical symmetry breaking 3

SU(N + 1)color ⊗ SU(N)flavor
v1−→ (SU(N) × U(1))color ⊗ SU(N)flavor

v2−→ SU(N)C+F , (1)

with

v1 ≫ v2 , (2)

as done in [?]-[?]. The homotopy group associated with the gauge symmetry breaking,

Π2(SU(N + 1)/SU(N) × U(1)) ∼ (3)

supports monopoles with quantized magnetic charges, whereas the low-energy U(N) symmetry

breaking with

Π1(SU(N) × U(1)) ∼ (4)

implies vortices. As neither of them exists in the full theory,

Π2(SU(N + 1)) = Π1(SU(N + 1)) = , (5)

the vortex must end: the endpoints are the monopoles. The fact that neither monopole or

vortex exist as stable solitons of the full theory does not prevent us from investigating these

configurations. The idea is to keep the mass-scale hierarchy v1 ≫ v2 as strong as we wish,

so that the concept of monopole or vortex is as good as any approximation used in physics 4.

Consistency of such an approximation requires however a precise connection between the 3D

soliton monopole and 2D soliton vortex. The idea is to exploit this connection, in the system

with a global color-flavor SU(N) symmetry, in order to infer the properties of the monopoles

from the better understood nonAbelian vortices. In such a context, the monopoles acquire exact

non-Abelian quantum numbers, which is not the näıve unbroken SU(N) charge which suffers

from the topological obstruction, the difficulty of the nonnormalizable gauge zero modes, colored

clouds, etc. [?, ?].

3Althoug for definiteness we consider the SU(N) gauge theory here, the idea of hierarchical symmetry breaking

and the monopole-vortex connection in a color-flavor locked vacuum can naturally be extended to other gauge

theories such as SO(2N) or USp(2N) [?, ?]. Such an extension is straightforward but interesting: the monopoles

transform according to spinor representations of the dual Spin(2N) or SO(2N + 1), respectively, in these cases
4Of course, quantization of the radial and rotational motions of the monopoles can stabilize such a system

dynamically, without need of the hierarchy, v1 ≫ v2.

2

Sca
lar

 VEV
S

adjoint fundamental

we take

V =
∑

A

∣

∣

∣
µ φA + λ q†I TAqI

∣

∣

∣

2
+

∑

I,i

∣

∣(TAφA + mI)ij qI
j

∣

∣

2
. (8)

where m1, m2, . . .mN are the (bare) masses of the scalar fields q, and µ ≪ |mI |. The quartic

coupling λ does not play a particular role in our discussion below, and will be set to unity. In

order to attain the minimum of the potential, V = 0, the scalar field qI is either a non vanishing

eigenvector of the φ with eigenvalue, mI , or must vanish. We shall take the equal mass limit,

m1 = m2 = . . . = mN = m0 and choose to work in the vacuum with

⟨φ⟩ = ⟨φATA⟩ = m0

(

N

− N

)

(9)

⟨φ⟩ = ⟨φATA⟩ =
v1

N + 1

(

N

− N

)

(10)

breaking the SU(N + 1) gauge symmetry to SU(N) × U(1). An inspection of the second term

of the potential shows that the first (color) component of the scalars qI becomes massive for all

I (with vanishing VEV), with mass

v1 ≡ m0(N + 1), (11)

and decouples at mass scales lower than that. The other components are nontrivial eigenvectors

qI of φ. Nf = N eigenvectors can be taken to be orthogonal to each other, ⟨qa
I ⟩ = cI δa

I . The first

term tells

tr tA
∑

I

( qI q† I) = 0 , tA ⊂ SU(N), (12)

that is,
∑

I qI q† I ∝ N . In other words, all cI ’s are equal. Their normalization is fixed by the

A = 0 (see Eq. (13)) term to be

⟨qa
I ⟩ = v2 δa

I , v2 ≡
√

2(N + 1)µm0 ≪ v1 . (13)

showing that the gauge symmetry is completely broken at low energies, leaving however the

color-flavor diagonal symmetry SU(N)C+F unbroken.

3 Point: the monopole

Let us write the VEV of φ as

φ(x) = v1 M(x), ⟨M⟩ =

√

2N

N + 1
T (0), T (0) =

1
√

2N(N + 1)

(

N

− N

)

. (14)

4

v1 � v2

****

⟨qa
I ⟩ = v2 δa

I = v2 N (165)

35

monopole

Chandrasekhar Chatterjee & KK  ‘14

vortex



The monopole-vortex soliton complex at large distances 

The monopole is pointlike

The vortex is a line

Figure 1: The magnetic field in the monopole-vortex-antimonopole soliton complex. Taken from Cipri-

ani, et. al. [17]

Monopole
VortexAntimonopole

Figure 2: The monopole, vortex and anti-monopole complex of the preceding Figure, seen from large

distances.

whereas the relevant nonvanishing gauge fields are Cµ, and (bµ)i
j of the form,

(bµ)i
j =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

(bµ)1
1

(bµ)2
2

. . .

(bµ)N
N

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (57)

The monopole term is of the form,

(Pµ)
i
j =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

−Nµ/2

0
. . .

0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (58)

Note the matched orientation in color for the vortex and monopole, (56) and (58). The scalar
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Figure 1: The magnetic field in the monopole-vortex-antimonopole soliton complex. Taken from Cipri-

ani, et. al. [17]

Monopole
VortexAntimonopole

Figure 2: The monopole, vortex and anti-monopole complex of the preceding Figure, seen from large

distances.

whereas the relevant nonvanishing gauge fields are Cµ, and (bµ)i
j of the form,

(bµ)i
j =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

(bµ)1
1

(bµ)2
2

. . .

(bµ)N
N

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (57)

The monopole term is of the form,

(Pµ)
i
j =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

−Nµ/2

0
. . .

0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (58)

Note the matched orientation in color for the vortex and monopole, (56) and (58). The scalar

13

Cipriani, Dorigoni, Gudnason, Konishi, 

Michelini,      ‘11

B(z,t)



• Write down the vortex solutions

• The monopole degrees of freedom ~ the winding  

As the system admits the topological defect (the monopole), we need to retain the degrees of

freedom corresponding to the nontrivial winding

⇧
2

(SU(N + 1)/U(N)) =

that is,

M(x) =

r

2N

N + 1
U(x)T (0) U †(x), Tr (T (0))2 =

1

2
. (14)

The M(x) (U(x)) field defines the direction of the symmetry breaking,

SU(N + 1)/U(N) ⇠ CPN , (15)

and can be expressed by a complex (N + 1)-component vector field z(x) as

M = z z̄ � 1

N + 1
, z̄ z = 1. (16)

By introducing the N + 1 orthonormal eigenvectors of M , z(x) and ei(x) (i = 1, 2, . . . N) with

eigenvalues,
N

N + 1
, � 1

N + 1
, � 1

N + 1
, . . . , � 1

N + 1
,

U(x) can be written as

U(x) =
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B
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@
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B

@
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e
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0

B

B

@

eN

1

C

C

A

1

C

C

A

. (17)

The za and eai can be thought of as local vielbeins [25].

The gauge field can be taken so as to satisfy the so-called Cho gauge [26]

(Dµ�)/v1 = DµM = @µM � ig [Aµ,M ] = 0 , (18)

which amounts to the low-energy (large distance) approximation where the monopole appears as

a point. Namely, only the winding directions, SU(N + 1)/SU(N) ⇥ U(1) ⇠ CPN , are kept as

the dynamical degrees of freedom associated with the monopole. Explicitly, we take the gauge

field in the form,

Aµ = Cµ M(x) +
i

g
[M(x), @µM(x)] + Bµ, (19)

where

Ba
µ b =

N
X

i,j=1

eai b
i
µ j ē

j
b , a, b = 1, 2, . . . , N + 1 . (20)

Cµ is the Abelian gauge field in the direction of the scalar VEV, biµ j are the components of the

gauge fields of the ”unbroken” SU(N), and i [M(x), @µM(x)]/g represents the monopole field. It

can be easily checked that the connection (19) indeed satisfies the gauge condition Eq. (18).
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where m
1

,m
2

, . . .mN are the (bare) masses of the scalar fields q, and µ ⌧ |mI |. The quartic

coupling � does not play a particular role in our discussion below, and will be set to unity. In

order to attain the minimum of the potential, V = 0, the scalar field qI is either a non vanishing

eigenvector of the � with eigenvalue, mI , or must vanish. We shall take the equal mass limit,

m
1

= m
2

= . . . = mN = m
0

and choose to work in the vacuum with

h�i = h�ATAi = m
0

 

N

� N

!

(9)

breaking the SU(N + 1) gauge symmetry to SU(N) ⇥ U(1). An inspection of the second term

of the potential shows that the first (color) component of the scalars qI becomes massive for all

I (with vanishing VEV), with mass

v
1

⌘ m
0

(N + 1), (10)

and decouples at mass scales lower than that. The other components are nontrivial eigenvectors

qI of �. Nf = N eigenvectors can be taken to be orthogonal to each other, hqaI i = cI �aI . The first

term tells

tr tA
X

I

( qI q
† I) = 0 , tA ⇢ SU(N), (11)

that is,
P

I qI q
† I / N . In other words, all cI ’s are equal. Their normalization is fixed by the

A = 0 (see Eq. (13)) term to be
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2

�aI , v
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⌘
p
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⌧ v
1

. (12)

showing that the gauge symmetry is completely broken at low energies, leaving however the

color-flavor diagonal symmetry SU(N)C+F unbroken.

3 Point: the monopole

Let us write the VEV of � as
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As the system admits the topological defect (the monopole), we need to retain the degrees of

freedom corresponding to the nontrivial winding
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The za and eai can be thought of as local vielbeins [25].

The gauge field can be taken so as to satisfy the so-called Cho gauge [26]

(Dµ�)/v1 = DµM = @µM � ig [Aµ,M ] = 0 , (18)

which amounts to the low-energy (large distance) approximation where the monopole appears as

a point. Namely, only the winding directions, SU(N + 1)/SU(N) ⇥ U(1) ⇠ CPN , are kept as

the dynamical degrees of freedom associated with the monopole. Explicitly, we take the gauge

field in the form,

Aµ = Cµ M(x) +
i

g
[M(x), @µM(x)] + Bµ, (19)

where

Ba
µ b =

N
X

i,j=1

eai b
i
µ j ē

j
b , a, b = 1, 2, . . . , N + 1 . (20)

Cµ is the Abelian gauge field in the direction of the scalar VEV, biµ j are the components of the

gauge fields of the ”unbroken” SU(N), and i [M(x), @µM(x)]/g represents the monopole field. It

can be easily checked that the connection (19) indeed satisfies the gauge condition Eq. (18).

5

• Study the vortex-monopole solutions of generic orientation  

degenerate mass, which apparently belong to the fundamental representation of the SU(N). A

closer examination however reveals the well-known di�culties (e.g., the topological obstruction

[14]). Any deeper understanding of the non-Abelian monopole notion necessarily involves an

exact flavor symmetry, as is fairly well known, and our following discussion is precisely based on

such a consideration.

The gauge field tensor can be calculated straightforwardly:

(Fµ⌫)
a
b = (@µA⌫ � @⌫Aµ � ig [Aµ, A⌫ ])

a
b (32)

= za {Mµ⌫

2
+

N

N + 1
Cµ⌫}z̄b + eai {(Kµ⌫)

i
j �

1

N + 1
Cµ⌫�

i
j + (bµ⌫)

i
j + (hµ⌫)

i
j} ē

j
b

where

Cµ⌫ = @µC⌫ � @⌫Cµ, Mµ⌫ ⌘ @µN⌫ � @⌫Nµ, Nµ ⌘ 2i

g
z̄a@µz

a ; (33)

(Kµ⌫)
i
j = @µ(P⌫)

i
j � @⌫(Pµ)

i
j � i g [Pµ, P⌫ ]

i
j , (Pµ)

i
j =

i

g
ēia@µe

a
j ; (34)

bµ⌫ = @µb⌫ � @⌫bµ � i g [bµ, b⌫ ] ; hµ⌫ = �ig ([Pµ, b⌫ ]� [P⌫ , bµ]) . (35)

4 The matter coupling: vortex and the low-energy e↵ec-

tive action

The scalar matter fields q in the fundamental representation of SU(N + 1) (“squarks”) can be

decomposed as

qaI (x) = za�I + eai ⌘
i
I , (36)

where

a = 1, 2, . . . , N + 1 , i = 1, 2, . . . , N , I = 1, 2, . . . Nf = N , (37)

namely, into the component parallel to the symmetry breaking direction, z, (see Eq. (15)) and

those orthogonal to it, eai ’s.

As one sees from the fact that

U † qI = U †(z�I + e⌘I) =

0

B

B

B

B

B

@

�I

⌘1I
...

⌘NI

1

C

C

C

C

C

A

, (38)

� and ⌘’s are nothing but the scalar field components in the singular gauge of the monopole (in

which the adjoint scalar field does not wind and approaches a fixed VEV in all directions). The

8

degenerate mass, which apparently belong to the fundamental representation of the SU(N). A

closer examination however reveals the well-known di�culties (e.g., the topological obstruction

[14]). Any deeper understanding of the non-Abelian monopole notion necessarily involves an

exact flavor symmetry, as is fairly well known, and our following discussion is precisely based on

such a consideration.

The gauge field tensor can be calculated straightforwardly:

(Fµ⌫)
a
b = (@µA⌫ � @⌫Aµ � ig [Aµ, A⌫ ])

a
b (32)

= za {Mµ⌫

2
+

N

N + 1
Cµ⌫}z̄b + eai {(Kµ⌫)

i
j �

1

N + 1
Cµ⌫�

i
j + (bµ⌫)

i
j + (hµ⌫)

i
j} ē

j
b

where

Cµ⌫ = @µC⌫ � @⌫Cµ, Mµ⌫ ⌘ @µN⌫ � @⌫Nµ, Nµ ⌘ 2i

g
z̄a@µz

a ; (33)

(Kµ⌫)
i
j = @µ(P⌫)

i
j � @⌫(Pµ)

i
j � i g [Pµ, P⌫ ]

i
j , (Pµ)

i
j =

i

g
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= massless components of q

There are however some local and global symmetries which are left intact. In order to fix the

idea, let us take the monopole in the (a, b) = 1, 2 color subspace. That is, we choose particular

monopole orientation with i = 1, in (26), (30), (31). In this case the only nonvanishing component

of Pµ is:

P 1

' 1

=
i

g
ē1 @'e1 = � i

g
z̄ @'z =

1� cos ✓

2g
, P j

µ i = 0, i 6= 1, or j 6= 1 . (50)

The action Eq. (42), Eq. (43) is invariant under

(i) a local U(1) symmetry:

⌘i ! ei↵⌘i, Cµ ! Cµ � � @µ↵ , � = (N + 1)/g ; (51)

(ii) a local U(1) symmetry:

⌘ ! U⌘, bµ ! U(bµ �
i

g
@µ)U

† , U =

 

ei(N�1)� 0

0 e�i�
N�1

!

, (52)

(iii) a local SU(N � 1) symmetry:

⌘ ! U⌘, bµ ! U(bµ �
i

g
@µ)U

† , U =

 

1 0

0 VN�1

!

, (53)

(ii), (iii) are subgroups of the local SU(N) group broken by the particular orientation of the

monopole.

Finally, the action is invariant under

(iv) a global flavor SU(N)F symmetry:

⌘ ! ⌘ U †, U 2 SU(N) . (54)

All the local ((i)-(iii)) and global ((iv)) symmetries are broken by the VEV of the scalars ⌘,

Eq. (48). However there remains

(v) an exact global color-flavor diagonal SU(N) symmetry

⌘ ! U ⌘ U †, Pµ ! U Pµ U †, bµ ! U bµ U †, U 2 SU(N) . (55)

Note that Kµ⌫ , bµ⌫ , hµ⌫ all transform covariantly under Eq. (55).

In particular, the invariance of the action under (v) requires that, together with the light matter

and gauge fields, the monopole Pµ = (i/g) ē @µe be also transformed with U .
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Figure 1: The magnetic field in the monopole-vortex-antimonopole soliton complex. Taken from Cipri-

ani, et. al. [20]

already been made), and the vortex is a line, without width (see Fig. 2). Implementing this last

approximation the scalar field takes the form,

(⌘)iI = v
2

 

ei 0

0 N�1

!

, (56)

whereas the relevant nonvanishing gauge fields are Cµ, and (bµ)ij of the form,

(bµ)
i
j =

0

B

B

B

B

B

@

(bµ)1
1

(bµ)2
2

. . .

(bµ)NN

1

C

C

C

C

C

A

. (57)

The monopole term is of the form,

(Pµ)
i
j =

0

B

B

B

B

B

@

�Nµ/2

0
. . .

0

1

C

C

C

C

C

A

. (58)

Note the matched orientation in color for the vortex and monopole, (56) and (58). The scalar

kinetic term in the action (42) takes the form,

Lscalar =
X

I,j

�

�

�

�

�

�

�

�

�

8

>

>

<

>

>

:

@µ � ig
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B

@

(bµ)1
1

(bµ)2
2

. . .

1

C

C

A

+ ig

0

B

B

@

�Nµ/2

0
. . .

1

C

C

A

+
ig Cµ

N + 1
1N

9

>

>

=

>

>

;

j

i

⌘iI

�

�

�

�

�

�

�

�

�

2

.

(59)
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• Study low-energy effective action for   

U = U(z, t) ⇢ SU(N)

SU(N � 1)⇥ U(1)
⇠ CPN�1

U(z, t)
For pure vortex  ’03-’13

Hanany,Tong,

Auzzi, Bolognesi,Evslin,Konishi,Yung 

Shifman, Yung, 

Gudnason, Jiang, Konishi ‘10



The result:   

The monopole-vortex soliton complex described by a
low-energy action

or

B(x3, x0)|x3=xM 3
= BM(x0) ; B(x3, x0)|x3=xM 3

= BM(x0) . (132)

This follows from the fact that the orientational zeromode of the monopole-vortex complex arises

from the simultaneous SU(N)C+F rotations of the monopole and other fields, (72).

By introducing the complex unit N -component vector nc (c = 1, 2, . . . , N):

nc =

(

X− 1
2

BX− 1
2

)

=
1√

1 + B†B

(

1

B

)

(133)

the vortex effective action above can be put into the familiar SU(N) form of the CP N−1 sigma

model,

S2D = 2f

∫

Σ

d2xDαn
c †Dαn

c, Dαn
c ≡ {∂α − (n†∂αn)}nc, n†n = 1 (134)

and similarly for the monopole action:

S1D = γ

∫

K=M,M̄

dtD0n
c †
K D0n

c
K , (135)

together with the boundary condition

nc(x)|x=xM ,x
M̄

= nc
K . (136)

7 Discussion

Summarizing, we have studied the vortex-monopole complex soliton configurations, in a theory

with a hierarchical gauge symmetry breaking, so that the vortex ends at the monopole or an-

timonopole arising from the higher-mass scale symmetry breaking. The model studied has an

exact color-flavor diagonal SU(N)C+F symmetry unbroken in the bulk vacuum. The individual

vortex-monopole soliton breaks it, acquiring orientational CP N−1 zeromodes. Their fluctuations

are described by an effective CP N−1 action defined on the worldstrip, the boundaries being the

monopole and antimonopole worldlines; in other words, the effective action is a 2D CP N−1 model

with boundaries, with the boundary condition (136), plus the monopole 1D CP N−1 action. The

boundary variable nc is a freely varying function of the worldline position, and acts as the source

or sink of the excitation in the worldsheet.

This illustrates the phenomenon mentioned in the Introduction. Color fluctuation of an

endpoint monopole, which suffers from the non-normalizability of the associated gauge zeromodes

[21] and would remain stuck (the famous failure of the näıve nonAbelian monopole concept),

escapes from the imprizonment as the color is mixed with flavor in a color-flavor locked vacuum,

26
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Figure 3: Worldsheet strip Σ spanned between the worldlines of the monopole and antimonopole.

in the vortex-monopole worldsheet Σ, while indicating with i the other two coordinates of the

plane perpendicular to the vortex length. See Fig. 3. For a straight vortex in the ẑ direction,

α = 3, 0 whereas i = 1, 2. By assumption B, hence U , is a slowly varying function of xα. It is

not difficult to show 7 that A(B)
α is oriented in the direction

A(B)
α ∝ ∂α(UTU †)UTU † = 2U(U †∂αU)⊥ U †, (77)

in color-flavor mixed space, where

(U †∂αU)⊥ =
1

2
(U †∂αU − T U †∂αU T ) . (78)

(U †∂αU)⊥ is just the Nambu-Goldstone modes [25, 26] in a fixed vortex background (70); as the

vortex-monopole rotates (72), one has to rotate them in order to keep them orthogonal to the

latter.

The effect is to produce the electric and magnetic fields lying in the plane perpendicular to

the vortex direction, Fiα, along the vortex.

By using the orthogonality relations

trΠB ∂α(UTU †) = tr ΠB ∂α(UTU †)UTU † = 0, (79)

7Ai and
∑

I ηIη
†
I have both the form a1 + a2 UTU†, where a1,2 are some functions of the transverse variables

xi. ∂α acts only on U . Repeated use of

∂α(UTU†)UTU† UTU† = ∂α(UTU†), [∂α(UTU†)UTU†,UTU†] = 2 ∂α(UTU†)

and (UTU†)2 = in Eq. (76) yields Eq. (77).
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The monopole contribution to the effective action can be found as follows. Near a pointlike

monopole, J0 = 4π
g
δ3(r), and the magnetic field G0i is the solution of Eq. (112):

Bmonopole
i (r) =

1

g
∂i

e−gv2r

r
. (130)

Note that at distances larger than the vortex width, 1/gv2, this component is screened and dies

out; the magnetic field G0i is instead dominated by the constant vortex configuration. On the

other hand, near the monopole this is a standard Coulomb field. As J0 fluctuates in time in

color-flavor,

J0Π → J0Π + const. J0∂0Π, (131)

G0i, i = 1, 2, 3, acquire a component in the ∂0Π direction, around the monopole, in order to

maintain Eq. (112) satisfied. It gives a singular contribution:

γ ∼
∫

d3x
3
∑

i=1

G0iG
0i =

1

2m2

∫

d3x
∑

i

(Bmonopole
i (r))2 =

2π

m2g2

∫

dr

r2
, (132)

in the coefficient of the fluctuation amplitude, ∂0Π ∂0Π. The singularity is regularized at the

distances ∼ 1/gv1 where the monopole turns smoothly into the regular ’t Hooft-Polyakov con-

figuration. Therefore the integral in Eq. (132) is dominated by the radial region between 1/gv1

and 1/gv2, over which the moduli parameter B(r, t) is regarded as constant. The 4D integration

here factorizes into 4 = 3 + 1. The monopole contribution to the effective action is therefore

S1D = γ

∫

i=M,M̄

dt X−1∂0B
†(ri, t)Y

−1∂0B(ri, t) , γ ∼ 2πv1

g3v2
2

∼ M

m2
, (133)

where M = v1/g is the monopole mass and m = gv2 is the W boson masses of the lower mass

scale symmetry breaking.

The total effective action is a 2D CP N−1 theory with boundaries,

S = S2D + S1D
M + S1D

M̄ . (134)

There is a nontrivial constraint on the variable B(xµ): on the boundary where the worldsheet

meets the monopole worldline, the CP N−1 variable matches:

B(x(σ, τ))|σ=0,π = BM,M̄(t(τ)) , (135)

or

B(x3, x0)|x3=xM 3
= BM(x0) ; B(x3, x0)|x3=xM 3

= BM(x0) . (136)

This follows from Eq. (72), i.e., from the fact that the orientational zeromode of the monopole-

vortex complex arises from the simultaneous SU(N)C+F rotations of the monopole and the light

fields.
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Eq. (120) can be solved for G(B) βi by setting
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and substituting it into Eq. (120) and recalling Eq. (119). One finds after a simple calculation
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1 + x2
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defined on the worldstrip, Σ. Note that the original 4D integration factorized into 2+2, because
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 ☞   CPN-1  sigma model on finite worldstrips

The quantum fluctuations of  n    
S. Bolognesi, K. Ohashi  & KK  ‘16

Mini-review:  The standard CPN-1  sigma model in 2D :   

1 Introduction

The non linear CPN�1 sigma model in two dimensions has been extensively studied in the

past starting from the works [1, 2]. It has many properties in common with QCD in four

dimensions, such as asymptotic freedom, mass gap, confinement and the existence of a

topological sector. Moreover it has the advantage of being solvable in the large-N limit.

Recently the CPN�1 sigma model appeared in the study of low energy e↵ective action on

certain topological solitons such as the non-Abelian string [3, 4, 5].

In this paper we study the large-N solution of the bosonic CPN�1 model on a finite

interval of length L with various types of boundary conditions. The periodic boundary

condition has been previously studied as a thermal compactification in [6, 7] and more

recently in [8]. One key feature for the solvability of this model is that the periodic

compactification preserves translational invariance.

The problem with the Dirichlet boundary condition in a finite interval has been studied

recently in [9] by using a translational invariance Ansatz, where two possible phases were

found: a confinement phase with mass generation at large L and a Higgs phase for a shorter

string L < L
crit

⇠ 1/⇤.

It is the purpose of the present paper to examine in depth the bosonic CPN�1 model

on a finite-width strip, with Dirichlet or Neumann conditions at the space boundaries.

The exact functional saddle-point equations will be studied in the large N limit, with no

a priori assumption about the translational invariance. It will be seen that while with the

periodic boundary condition the translational invariance Ansatz is indeed consistent with

the full set of equations of motion, the generalized gap equations cannot be satisfied by a

translational invariant (constant) mass-generation Ansatz when the D-D or N-N boundary

condition is used. The solution which satisfies the full set of equations is found numerically,

for various values of L.

Contrary to a claim made in [9] we find that the system has a unique phase, which

smoothly approaches the “confinement phase” in the large L limit. The physical reason for

this result may be found in the fact that, for small L, the system reduces in the infrared

(the large wavelength) limit e↵ectively to a one-dimensional (quantum mechanics) system

where we do not expect to find any phase transitions.

2 CPN�1 sigma model on a finite space interval

The classical action for the CPN�1 sigma model is given by

S =

Z
dxdt ((D

µ

n
i

)⇤Dµn
i

� �(n⇤
i

n
i

� r)) , (2.1)

2

where ni with i = 1, . . . , N are N complex scalar fields and the covariant derivative is

D
µ

= @
µ

� iA
µ

. Configurations related by a U(1) gauge transformation z
i

! ei↵z
i

are

equivalent: the U(1) gauge field A
µ

does not have a kinetic term in the classical action. �

is a Lagrange multiplier that enforces the classical condition

n⇤
i

n
i

= r , (2.2)

where r is the “size” of the CPN�1 manifold, which is the radius of S2 sphere for N = 2,

and can also be expressed in terms of the coupling constant by

r =
4⇡

g2
. (2.3)

Since n appears only quadratically in the Lagrangian, it can be integrated out in the

partition function

Z =

Z
[dA

µ

][d�][dn
i

][dn⇤
i

] eiS =

Z
[dA

µ

][d�] eiSe↵ , (2.4)

thus leaving an e↵ective action for A
µ

and �:

S
e↵

=

Z
d2x

�
N tr log(�D⇤

µ

Dµ + �)� �r
�
. (2.5)

The condition of stationarity with respect to � leads to the gap equation which is conve-

niently written in the Euclidean formulation as

r �N tr

✓
1

�@2

⌧

� @2

x

+m2

◆
= 0 , (2.6)

where we have set A
µ

= 0 and � = m2. An expectation value of � provides a mass for

the n
i

particles (here we assumed a constant vacuum expectation value for �; see however

below). On the infinite line the spectrum is continuous and the gap equation reads

r = N

Z
⇤

UV

0

kdk

2⇡

1

k2 +m2

=
N

4⇡
log

✓
⇤2

UV

+m2

m2

◆
, (2.7)

leading to the well-known scale-dependent renormalized coupling

r(µ) =
4⇡

g(µ)2
' N

2⇡
log

⇣µ
⇤

⌘
(2.8)

and to a dynamically generated mass, which in the case of the infinite line can be taken to

coincide with the dynamical scale ⇤,

m = ⇤ . (2.9)
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Finite strings and generalized gap equations

Boundary conditions: 

2.1 Generalized gap equations

The CPN�1 theory on a finite interval of length L, 0 < x < L will now be considered. For

this problem the boundary conditions must be specified. One possibility is the Dirichlet

boundary condition which, up to a U(N) transformation, is the following constraint on the

boundary

D-D : n
1

(0) = n
1

(L) =
p
r , n

i

(0) = n
i

(L) = 0 , i > 1 . (2.10)

For simplicity and for definiteness, we take in this paper the n
i

field in the same direction

in the CPN�1 space at the two boundaries. Another possibility is the Neumann boundary

condition

N-N : @
x

n
i

(0) = @
x

n
i

(L) = 0 . (2.11)

We consider in detail the three possible combinations D-D, N-N and periodic boundary

conditions. More possibilities are open for the choice of classical boundary condition but,

for reasons to be clarified later, there is no need to list all of them.

The N fields can be separated into a classical component � ⌘ n
1

and the rest, ni

(i = 2, . . . , N). Integrating over the N � 1 remaining fields yields the following e↵ective

action

S
e↵

=

Z
d2x

�
(N � 1) tr log(�D

µ

Dµ + �) + (D
µ

�)⇤Dµ� � �(|�|2 � r)
�
. (2.12)

One can take � real and set the gauge field to zero, and consider the leading contribution

at large N only. The total energy can formally be written as

E = N
X

n

!
n

+

Z
L

0

�
(@

x

�)2 + �(�2 � r)
�
dx , (2.13)

where !2

n

are the eigenvalues of the following operator

��@2

x

+ �(x)
�
f
n

(x) = !2

n

f
n

(x) , (2.14)

and f
n

are the corresponding eigenfunctions. The eigenfunctions f
n

can be taken to be

real and orthonormal

Z
L

0

dx f
n

(x)f
m

(x) = �
nm

. (2.15)

The expression for the energy (2.13) is not regularized yet, it still contains quadratic,

linear and logarithmic divergences with the UV cuto↵. For the moment we shall work with

this formally divergent expression for the energy. The eigenfunctions f
n

’s satisfy also the
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Generalized gap equations
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this formally divergent expression for the energy. The eigenfunctions f
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1X
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f
n
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n

(x0) =
X

n2Z

⇣
�(x� x0 + 2nL)⌥ �(x+ x0 + 2nL)

⌘
, (2.16)

where ⌥ refers respectively to the Dirichlet or Neuman conditions. Note that for x, x0 2
[0, L], only the first term �(x�x0) is relevant; other terms guarantee that the completeness

condition is consistent with the boundary condition (the mirror image method).

The two functions �(x) and �(x) must be determined by extremizing the energy (2.13).

Varying the action with respect to �(x) one gets

@2

x

�(x)� �(x)�(x) = 0 . (2.17)

In a translationally invariant system (i.e. with constant � and �) this equation reduces to

�� = 0. This implies that either one of the condensates � or � must vanish. It follows that

there are in general two possible distinct phases which are generally called “confinement

phase” (� 6= 0, � = 0) or “Higgs phase” (� = 0, � 6= 0). In a non-translational invariant

5
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system there is no net distinction between these two phases since in general both �(x) and

�(x) are di↵erent from zero.

The variation of the spectrum of the operator (3.39) for �(x) ! �(x) + ��(x) is given

by

�!2

n

=

Z
L

0

dx ��(x)f
n

(x)2 , (2.18)

to first order in ��(x), as can be seen easily from (3.39). The variation of the energy (2.13)

with respect to �(x) then gives

N

2

X

n

f
n

(x)2

!
n

+ �(x)2 � r = 0 . (2.19)

We find it convenient to separate this equation into a constant part (the average in x) plus

a non-constant part with zero integral. First write �2 as

�2 = e�2 +
1

L

Z
L

0

�2dx ,

Z
L

0

e�2dx = 0 . (2.20)

Eq. (2.19) can thus be separated into the one for the constant part

N

2L

X

n

1

!
n

+
1

L

Z
L

0

�2dx� r = 0 , (2.21)

and another for the non-constant part

N

2

X

n

1

!
n

✓
f
n

(x)2 � 1

L

◆
+ e�2 = 0 . (2.22)

So the three equations to be solved for �(x) and �(x) are (2.17), (2.21) and (2.22). Only

Eq. (2.21) needs to be regularized since it contains a logarithmic divergence with the UV

cuto↵.

For later use we provide a relation between the expression
P

n

f

n

(x)

2

!

n

that appears in

the generalized gap equation and the Euclidean propagator. The Euclidean propagator

satisfies
✓
� @2

@⌧ 2
� @2

@x2

+ �(x)

◆
D(x, ⌧ ; x0, ⌧ 0) =

= �(⌧ � ⌧ 0)
X

n2Z

⇣
�(x� x0 + 2nL)⌥ �(x+ x0 + 2nL)

⌘
(2.23)

6

• Coupled equations for �(x), �(x)

�(x) ! {!n, fn(x)}, n = 1, 2, . . . ,1

{!n, fn(x)} ! �(x)                                  ,  regularizing UV div 
and renormalizing r (g)    

�(x) ! �(x)

(*)



Strategy:  solve the eqs recursively   cfr. Hartree’s equation

 in atomic physics

(1) Give some trial potential 

(2)  Solve for (n = 1, 2, . . . n
max

)

UV cutoff

(3)  Cancel the UV divergences against  r

be satisfi
ed by the class

ical fi
eld
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and Appe
ndix

A.
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In that
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s x = 0, L
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al po

ints,
the quan

tum
fluctu
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s are

e↵ect
ive there

, as
well

as at any
other

point
, and

our resul
ts (3.12

) and
(3.13

) do not

apply
. Suc

h syste
m has b

een recen
tly studi

ed in [8].

3.2
Numerica

l sol
utio

ns for �(x)
and

�(x)

The
method

we em
ploy

to solve
the s

et of
equa

tions
(2.17

), (2.
21),

and (2.22
) num

erica
lly

is as
follow

s. W
e firs

t intr
oduc

e a finite
cuto↵

nm

a

x

on the n
umber o

f modes.
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ly,
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(2.21
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be re
gular
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. (2.8
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=
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⇡
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(3.17
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recur
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the c

orres
pond

ing value
of �
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✏
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be satisfied by the classical field 1, independently of the type of the boundary condition.

The numerical solutions found below, indeed, hold true both for the case of the D-D and

the N-N boundary conditions. See also the remarks after Eq. (3.21) and Appendix A.

Finally we note that the case of a periodic boundary condition is qualitatively di↵erent.

In that case, the points x = 0, L are not special points, the quantum fluctuations are

e↵ective there, as well as at any other point, and our results (3.12) and (3.13) do not

apply. Such system has been recently studied in [8].

3.2 Numerical solutions for �(x) and �(x)

The method we employ to solve the set of equations (2.17), (2.21), and (2.22) numerically

is as follows. We first introduce a finite cuto↵ n
max

on the number of modes. Accordingly,

equation (2.21) can be regularized as (see Eq. (2.8)) 2
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⇡

L
. (3.17)

The algorithm we use here to find the solution, somewhat reminiscent of Hartree’s equations

in atomic physics, is a recursive procedure in which at each step k one has a certain function

�
k

(x), with some initial �
0

(x) satisfying (3.13). Given �
k

(x), the Schrödinger equation

(3.39) is solved to give {!
n

, f
n

(x)} for the desired number of modes; (2.22) and (3.16) are

then used to find the corresponding value of �2
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:
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1Note that in the large N approximation we are working in, ”quantum fluctuations” of the � field are
suppressed by 1/N as compared to those of ni, i 6= 1, as well as to its classical mode.

2A careful change of the regularization gives the factor 2 in front of µ(n
max

) so that it is consistent
with Eq.(2.9). Omitting higher modes larger than n
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introduces a translation between the two UV cut-o↵ parameters ✏ and µ(n
max

) as 1/✏ = µe

� . Therefore,
Eq.(2.30) giving ⇤ is translated as

r =
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⇤
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which is nothing but the gap equation discussed by Milekhin [9]. Here, taking into account

the consistency with Eq.(2.9) for infinite string, the dynamical scale ⇤ can be introduced

as

r =
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ln
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� �

◆
$ ⇤ =

2
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� 8⇡2

Ng2
� �

◆
(2.30)

where � is the Euler-Mascheroni constant. The second term in the last line of Eq. (2.29)

comes from the infinite mirror poles:
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One can verify that Eq. (2.29) gives the local extremum (maximum) of the total energy

(2.13)

E = lim
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with respect to m2, under the translational-invariance Ansatz.

However, the problem is that an additional equation, (2.22), must be satisfied as well.

The left hand side, using e� = 0 (under the assumption of translational invariance), is just
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which is equal to, by using (2.25),
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This is clearly not zero: Eq. (2.22) is not satisfied by a constant m.

For N-N boundary conditions and � = m2 constant the eigenmodes are

f
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2

L
cos
⇣n⇡x

L

⌘
, !

n
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⌘
2

+m2 , n � 0 , n 2 Z (2.35)
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(4)  Finite equation for �(x)

�k(x), (k = 1, 2, ...)

{!n, fn(x)}k
k= iteratio

n steps

be satisfied by the classical field 1, independently of the type of the boundary condition.

The numerical solutions found below, indeed, hold true both for the case of the D-D and

the N-N boundary conditions. See also the remarks after Eq. (3.21) and Appendix A.

Finally we note that the case of a periodic boundary condition is qualitatively di↵erent.

In that case, the points x = 0, L are not special points, the quantum fluctuations are

e↵ective there, as well as at any other point, and our results (3.12) and (3.13) do not

apply. Such system has been recently studied in [8].

3.2 Numerical solutions for �(x) and �(x)

The method we employ to solve the set of equations (2.17), (2.21), and (2.22) numerically

is as follows. We first introduce a finite cuto↵ n
max

on the number of modes. Accordingly,

equation (2.21) can be regularized as (see Eq. (2.8)) 2

N

2L

n

maxX

n=1

1

!
n

+
1

L

Z
L

0

�2dx� N

2⇡
log

✓
2µ(n

max

)

⇤

◆
= 0 , (3.16)
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The algorithm we use here to find the solution, somewhat reminiscent of Hartree’s equations

in atomic physics, is a recursive procedure in which at each step k one has a certain function
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(x), with some initial �
0

(x) satisfying (3.13). Given �
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(x), the Schrödinger equation

(3.39) is solved to give {!
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then used to find the corresponding value of �2
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1Note that in the large N approximation we are working in, ”quantum fluctuations” of the � field are
suppressed by 1/N as compared to those of ni, i 6= 1, as well as to its classical mode.

2A careful change of the regularization gives the factor 2 in front of µ(n
max

) so that it is consistent
with Eq.(2.9). Omitting higher modes larger than n
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introduces a translation between the two UV cut-o↵ parameters ✏ and µ(n
max

) as 1/✏ = µe

� . Therefore,
Eq.(2.30) giving ⇤ is translated as
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(5)  Use Eq. (*)  to find  �k+1(x)

(6)  Go back to the step (2) … (5)  to find �k+2(x) ,  and repeat the procedure, until

(7) A self consistent solution   {�k(x),�k(x)} ' {�k+1(x),�k+1(x)}

is reached

Mathematica
 Version 10.3



A subtlety:  the behavior of                  near x=0, L�(x),�(x)

D-D  or N-N boundary cds   ➮  :     (by e.g. WKB)

�(x) ⇠ 1

2x

2
log

1
x

; �

2
(x) ⇠ N

2⇡

log

1

x

, x ⇠ 0

• At finite x (far from the boundaries) the UV divergences in  
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⌘
, (2.16)

where ⌥ refers respectively to the Dirichlet or Neuman conditions. Note that for x, x0 2
[0, L], only the first term �(x�x0) is relevant; other terms guarantee that the completeness

condition is consistent with the boundary condition (the mirror image method).

The two functions �(x) and �(x) must be determined by extremizing the energy (2.13).

Varying the action with respect to �(x) one gets

@2

x

�(x)� �(x)�(x) = 0 . (2.17)

In a translationally invariant system (i.e. with constant � and �) this equation reduces to

�� = 0. This implies that either one of the condensates � or � must vanish. It follows that

there are in general two possible distinct phases which are generally called “confinement

phase” (� 6= 0, � = 0) or “Higgs phase” (� = 0, � 6= 0). In a non-translational invariant

system there is no net distinction between these two phases since in general both �(x) and

�(x) are di↵erent from zero.

The variation of the spectrum of the operator (2.14) for �(x) ! �(x) + ��(x) is given

by
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0

dx ��(x)f
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to first order in ��(x), as can be seen easily from (2.14). The variation of the energy (2.13)

with respect to �(x) then gives
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We find it convenient to separate this equation into a constant part (the average in x) plus

a non-constant part with zero integral. First write �2 as

�2 = e�2 +
1

L

Z
L

0

�2dx ,
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Eq. (2.19) can thus be separated into the one for the constant part
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• Near x ~ 0, L,  

(as in the standard 2D  CP(N-1) model:  UV div is a local phenomenon ! )
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[0, L], only the first term �(x�x0) is relevant; other terms guarantee that the completeness
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cannot diverge  (no 2D “space”)

• There the classical filed  n1(x) = �(x) comes to rescue!   ➮  (%) 

(%) 



The result

or

Figure 4: On the left
p

�(x), on the right �(x)2/N . These plots are rescaled in order to keep ⇤ = 1 fixed

and for L = 1, 2, 3, 4. The constant line on the left figure is ⇤.

Figure 5: These plots are: on the top-left is
p
�(L/2), on the top-right �(L/2)2/N , on the bottom-left

log
⇣p

�(L/2)� ⇤2

/⇤
⌘
and on the bottom-right log

�
�

2(L/2)/N
�
. These plots are obtained for various

values of L keeping ⇤ = 1.

The values of the fields at the middle point of the interval are given in Figure 5 where

in the bottom line are the corresponding logarithmic plots to show better the rate of

convergence to the confinement phase. A linear fit to the logarithmic plots at large L,
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CPN-1  sigma model on finite worldstrip:  summary

• Unique solution of the generalized gap equation (funct. saddle point eqn) 

• No “Higgs” phase   (                                                        )  existsh�i = 0; h�(x)i = const ⇠ ⇤

cfr. M
ilekhin ‘14

• The standard 2D  CPN-1  system emerging at large   L     (                             )

• Exactly the same result holds for D-D and N-N boundary conditions 

• Interpolates a 1D system (QM) at  L <       to a  2D QFT   at  L=  
1

⇤
1

• The dynamical breaking of  SU(N) symmetry does not occur   Cfr. p. 6   

• With the periodic boundary condition,  a phase transition at L~  

• No phase transition at  L ~   
1

⇤

1

⇤ Shifman - Yung  ‘15

� ⇠ ⇤2 , � = 0



Conclusion:
• NonAbelian monopole concept consistent with quantum mechanics 

• Monopoles ~ N of  unbroken SU(N)= isometry group of CP(N-1) (Fig p. 17)        

• Nonlocal transformations - typical of EM duality

• Quark confinement  = dual Higgs phase of nonAbelian variety:  

•  Monopoles (nonAbelian and strongly coupled) condense,  induce 
confinement and trigger XSB

The idea

 ✔ 

 ✔ 

 ✔ 

to be pursued • Difficulty for us, not for Nature !!



THE END



Non-Abelian monopoles

H: non-Abelian

 2 m· e ∈ Z

“Monopoles are multiplets of H  (GNO)”

cfr.

∼

<Φ> = v = h · T

(Dirac)

The normalization of the generators can be chosen [4] so that the metric of the

root vector space is10

gij =
∑

roots

αiαj = δij. (A.4)

The Higgs field vacuum expectation value (VEV) is taken to be of the form

φ0 = h · T, (A.5)

where h = (h1, . . . , hrank(G)) is a constant vector representing the VEV. The root

vectors orthogonal to h belong to the unbroken subgroup H .

The monopole solutions are constructed from various SU(2) subgroups of G that

do not commute with H ,

S1 =
1

√
2α2

(Eα + E−α); S2 = −
i

√
2α2

(Eα − E−α); S3 = α∗ · T, (A.6)

where α is a root vector associated with a pair of broken generators E±α. α∗ is a

dual root vector defined by

α∗ ≡
α

α · α
. (A.7)

The symmetry breaking (A.1) induces the Higgs mechanism in such an SU(2) sub-

group, SU(2) → U(1). By embedding the known ’t Hooft-Polyakov monopole

[34, 27] lying in this subgroup and adding a constant term to φ so that it behaves

correctly asymptotically, one easily constructs a solution of the equation of motion

[6, 19]:

Ai(r) = Aa
i (r, h · α) Sa; φ(r) = χa(r, h · α) Sa + [ h − (h · α) α∗] · T, (A.8)

where

Aa
i (r) = ϵaij

rj

r2
A(r); χa(r) =

ra

r
χ(r), χ(∞) = h · α (A.9)

is the standard ’t Hooft-Polyakov-BPS solution. Note that φ(r = (0, 0, ∞)) = φ0.

10In the Cartan basis the Lie algebra of the group G takes the form

[Hi, Hk] = 0, (i, k = 1, 2, . . . , r); [Hi, Eα] = αi Eα; [Eα, E−α] = αi Hi;

(A.2)

[Eα, Eβ] = Nαβ Eα+β (α + β ̸= 0). (A.3)

αi = (α1, α2, . . .) are the root vectors.
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significantly relaxed in cases in which the unbroken group is smaller. In this way one

finds that the only real restriction is that the number of flavors be at least equal to

2r if the monopole transforms in the fundamental representation of SU(r). (See

e.g., Eq.(3.2).)

3 Quantum Nonabelian Monopoles

The above example of the SU(N + 1) model nicely illustrates the fact that

a semiclassical treatment alone is not enough to ensure that the set of apparently

degenerate monopoles associated with the symmetry breaking G
⟨φ⟩̸=0−→ H are truly

nonabelian. The reason is that the “unbroken” gauge group H may well dynamically

break down to an abelian subgroup. If this occurs, one has only an approximately

degenerate set of monopoles whose masses differ by e.g., O( Λ2

⟨φ⟩). For this reason, the

very concept of nonabelian monopoles is never really semi-classical, in sharp contrast

to the case of abelian monopoles. Only if the “unbroken” gauge group H is not further

broken dynamically do the unconfined (topologically stable) nonabelian monopoles

and dual gauge bosons appear in the quantum theory.

Another subtlety is that it is in general not justified to study the system G
⟨φ⟩̸=0−→ H

with a nonabelian subgroup H as a limiting situation of a maximal breaking, -

G
⟨φ⟩̸=0−→ U(1)R, where R is the rank of the group G, by letting some of the eigen-

values of ⟨φ⟩ to coincide, as is sometimes done in the literature. To do so would

introduce fictitious degrees of freedom corresponding to massless, infinitely extended

“solitons”. In this limit all fields tend to constant values and so in fact these are not

solitons at all. Indeed, in the case G = SU(N), such “massless monopoles” do not

represent any topological invariant as the fundamental group of any restored SU(N)

is trivial.2

It is hardly possible to overemphasize the importance of the fact [4, 6, 19] that

nonabelian monopoles, if they exist quantum mechanically, transform as irreducible

multiplets of the dual group H̃ , not under H itself. Monopoles transforming under

2This is analogous to what would happen to the ’t Hooft - Polyakov monopole of the spontaneously

broken SU(2)
v−→U(1) theory, if one were to apply the semi-classical formulae näıvely in the limit

v → 0. We believe that this fact, together with the fact that the magnetic monopoles are multiplets

of the dual of H (see the following paragraph), are responsible for some difficulties found in such an

approach [10].
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The normalization of the generators can be chosen [?] so that the metric of the

root vector space is10

gij =
∑

roots

αiαj = δij. (A.4)

The Higgs field vacuum expectation value (VEV) is taken to be of the form

φ0 = h · T, (A.5)

where h = (h1, . . . , hrank(G)) is a constant vector representing the VEV. The root

vectors orthogonal to h belong to the unbroken subgroup H .

The monopole solutions are constructed from various SU(2) subgroups of G that

do not commute with H ,

S1 =
1

√
2α2

(Eα + E−α); S2 = −
i

√
2α2

(Eα − E−α); S3 = α∗ · T, (A.6)

where α is a root vector associated with a pair of broken generators E±α. α∗ is a

dual root vector defined by

α∗ ≡
α

α · α
. (A.7)

The symmetry breaking (??) induces the Higgs mechanism in such an SU(2) sub-

group, SU(2) → U(1). By embedding the known ’t Hooft-Polyakov monopole [?, ?]

lying in this subgroup and adding a constant term to φ so that it behaves correctly

asymptotically, one easily constructs a solution of the equation of motion [?, ?]:

Ai(r) = Aa
i (r, h · α) Sa; φ(r) = χa(r, h · α) Sa + [ h − (h · α) α∗] · T, (A.8)

where

Aa
i (r) = ϵaij

rj

r2
A(r); χa(r) =

ra

r
χ(r), χ(∞) = h · α (A.9)

is the standard ’t Hooft-Polyakov-BPS solution. Note that φ(r = (0, 0, ∞)) = φ0.

The mass of a BPS monopole is then given by

M =

∫
dS · Tr φ B, B =

ri(S · r)

r4
. (A.10)

10In the Cartan basis the Lie algebra of the group G takes the form

[Hi, Hk] = 0, (i, k = 1, 2, . . . , r); [Hi, Eα] = αi Eα; [Eα, E−α] = αi Hi;

(A.2)

[Eα, Eβ] = Nαβ Eα+β (α + β ̸= 0). (A.3)

αi = (α1, α2, . . .) are the root vectors.
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H   generated by 
∼ H H

U(N) U(N)

SU(N) SU(N)/Z

SO(2N) SO(2N)

SO(2N+1) USp(2N)

∼

N

For the cases SO(N +2) ⌥ SO(N)⇤U(1) and USp(2N +2) ⌥ USp(2N)⇤
U(1), where TrHi Hj = C ⇤ij, one finds

M =
4⌃ C h · ��

g
=

4 ⌃ v

g
, (A.14)

while for SO(2N) ⌥ SU(N) ⇤ U(1), SO(2N + 1) ⌥ SU(N) ⇤ U(1), and

USp(2N) ⌥ SU(N) ⇤ U(1), the mass is

M =
8⌃ C h · ��

g
=

8 ⌃ v

g
. (A.15)

In order to get the U(1) magnetic charge11 (the last column of Table 3), we first

divide by an appropriate normalization factor in the mass formula Eq.(A.10)

Fm =

⇤
dS ·

Tr ⌥ B

N�

=

⇤
dS · B(0), B =

ri(S · r)

r4
, (A.16)

as was done in Eq.(2.14). The result, which is equal to 4⌃gm by definition, gives the

magnetic charge. The latter must then be expressed as a function of the minimum

U(1) electric charge present in the given theory, which can be easily found from the

normalized (such that Tr T (a) T (a) = 1
2
) form of the relevant U(1) generator.

For example, in the case of the symmetry breaking, SO(2N) ⌥ U(N), the

adjoint VEV is of the form, ⌥ =
⌦

4N v T (0), where T (0) is a 2N ⇤ 2N block-

diagonal matrix with N nonzero submatrices i⇥
4N

�
0 1

�1 0

⇥
. Dividing the mass

(A.15) by
⌦

N v and identifying the flux with 4⌃gm one gets gm = 2⇥
N g

. Finally,

in terms of the minimum electric charge of the theory e0 = g⇥
4N

( which follows from

the normalized form of T (0) above) one finds

gm =
2

⌦
N g

=
2

N
·

1

2 e0

. (A.17)

The calculation is similar in other cases.

The asymptotic gauge field can be written as

Fij = ⌅ijk

rk

r3
(⇥ · T), 2 ⇥ · � � Z (A.18)

11In this calculation it is necessary to use the generators normalized as Tr T (a) T (b) = 1
2
⇤ab, such

that B = B(0) T (0) + . . . .
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Goddard-Nuyts-Olive, E.Weinberg, Lee,Yi,  

Bais, Schroer, .... ‘77-80

∼

root vectors

Back to p.4
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Difficulties

➀ Topological obstructions       

e.g.,  SU(3) ➝ SU(2)×U(1)    ⇒
∄ monopoles ∼ (2, 1   )  ∗

“No colored dyons exist”  

② Non-normalizable gauge zero modes:   

 Monopoles not multiplets of H 

The real issue: 
how do they transform under  H ?

∼

cfr.
Jackiw-Rebbi

Flavor Q.N. of monopoles
via 

fermion zeromodes

N.B. :  H and H relatively nonlocal
∼

Φ = diag(v,v,-2v)

↵

 Weinberg, ’82,’96 Coleman, Nelson, ‘84 Dorey... ’96 

Coleman, ...  ’81

Abouelsaad et.al. ‘83 

Back to p.5



(a) (b)

Figure 4: The behavior of the magnetic field in the soliton complex near the monopole region. In (a) is
shown a stream line plot while the intensity of the magnetic field is also shown in (b) by means of the
color scheme. For negative values of the cylindrically radial coordinate ρ the plot is simply a mirror, i.e. in
order to illustrate a cross section of the system.

Figure 5: The magnetic field in the complete monopole-vortex-antimonopole soliton complex. For negative
values of the cylindrically radial coordinate ρ the plot is simply a mirror, i.e. in order to illustrate a cross
section of the system.
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values of the cylindrically radial coordinate ρ the plot is simply a mirror, i.e. in order to illustrate a cross
section of the system.
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(a) gauge profile function f(ρ, z) (b) gauge profile function ℓ(ρ, z)

(c) scalar profile function 1
√

2
s(ρ, z) (d) squark profile function q(ρ, z)

Figure 3: The behavior of the four profile functions for the gauge and scalar fields of Eq. (3.57). Note that
the gauge and squark fields approach quickly the familiar vortex behavior: the gauge field is strongest
along the vortex core where the squark field drops to zero. Note also that between the figures for ℓ(ρ, z)
and for q(ρ, z) the z axis is inverted in order to exhibit better their non-trivial (ρ, z) dependence. Away
from the monopole-vortex complex all scalar fields reach quickly and uniformly their vacuum expectation
values.
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But this allows a direct description of IR physics !!

vacua gives rise [19] to even r vacua

✓

Nf

0

◆

+

✓

Nf

2

◆

+ . . .

✓

Nf

Nf

◆

= 2Nf�1 (2.2)

whereas the other vacuum splits into odd r vacua, with the total multiplicity
✓

Nf

1

◆

+

✓

Nf

3

◆

+ . . .

✓

Nf

Nf � 1

◆

= 2Nf�1 . (2.3)

Due to the exact 2N+2�Nf
symmetry of the massless theory, the singular (EHIY) point actually

appears 2N + 2�Nf times, and the number of the vacua for generic µ, mi is given by (2N + 2�
Nf ) 2Nf�1.

A recent study [3] by one of us, made following closely the analysis by Gaiotto, Seiberg,

Tachikawa [2], has shown that this SCFT can be analyzed by introducing two di↵erent set of

scalings for the scalar VEVs ui ⌘ h�ii (the Coulomb branch coordinates) around the singular

point:

ui ⇠ ✏2i
B , (i = 1, . . . , N � n + 2); uN�n+2+i ⇠ ✏2+2i

A , (i = 0, . . . , n� 2), (2.4)

(Nf = 2n) such that ✏2N+4�2n
B = ✏2

A. The infrared physics of this system is then [3]

(i) U(1)N�n Abelian sector, with massless particles charged under each U(1) subgroup.

(ii) The (in general, non-Lagrangian) A sector with global symmetry SU(2)⇥ SO(4n).

(iii) The B sector is free and describes a doublet of hypermultiplets. The flavor symmetry of

this system is SU(2). In contrast to the SU(N) cases studied in [2], the Coulomb moduli

coordinate now includes u1. We interpret this as representing a low energy e↵ective U(1)

gauge field coupled to this hypermultiplet.

(iv) SU(2) gauge fields coupled weakly to the SU(2) flavor symmetry of the last two sectors.

For general Nf these still involve non-Lagrangian SCFT theory (A sector), and it is not obvious

how the µ Tr �2 deformation a↵ects the system. In a particular case n = 2 (USp(2N) theory with

Nf = 4), however, the A sector turns out to be free and describe four doublets of SU(2). This

system may be symbolically represented, ignoring the U(1)N�n Abelian sector which is trivial,

as

1 � SU(2)� 4 . (2.5)

3

and dyons in an infinite-coupling regime, therefore making their physical interpretation highly

nontrivial.

In the work by Gaiotto, Seiberg and Tachikawa [2] the elegant S-dual description discovered

by Argyres and Seiberg [1] for such “infinitely strongly coupled” SCFT’s is applied to those

SCFT’s appearing as infrared fixed points of N = 2 SU(N) SQCD with even number of flavors,

Nf = 2n, solving some earlier puzzles. Their analysis has subsequently been generalized by

one of us [3] to more general class of gauge theories such as USp(2N) and SO(N) with various

Nf . These developments enable us to study new types of confining systems arising from the

deformation of the strongly critical SCFT’s.

The purpose of the present paper is to discuss a few example of the confining vacua arising

this way.

2 USp(2N), Nf = 4

The first example we consider is the N = 2 supersymmetric USp(2N) theory with Nf = 2n

matter hypermultiplets, perturbed by an adjoint scalar mass term, µTr⇥2. In the massless limit

(mi = 0, i = 1, . . . , 2n) the theory which survives1 is an interacting SCFT with global symmetry

SO(2Nf ), first discussed by Eguchi et. al. [32]. This theory is described by a singular Seiberg-

Witten curve,

xy2 ⇤
�
xn(x� �2

n)
⇥2 � 4�4x2n = x2n(x� �2

n � 2�2)(x� �2
n + 2�2). (2.1)

at �2
n = ±2�2, that is y2 ⇤ x2n. The theory at either of these two Tchebyshev vacua 2 is not

described with a local Lagrangian, as relatively nonlocal massless fields appear simultaneously.

Also,

The strategy adopted in [19] was to “resolve” this vacuum, by introducing generic, nearly equal

quark masses mi alongside the adjoint scalar mass µ. By requiring the factorization property

of the Seiberg-Witten curve to be maximally Abelian type (criterion for N = 1 supersymmetric

vacua), this point is found to split into various r vacua which are local SU(r)⇥ U(1)N�r gauge

theories, identical to those appearing in the infrared limit of SU(N) SQCD (the universality of

the conformal infrared fixed points). At small nearly equal masses mi, one of the Tchebyshev

1The other set of vacua, at the special point of the Coulomb moduli space, are not confining and will not be
considered here.

2We called these vacua this way as [19] the remaining N + 1� n finite vacuum moduli can be determined by
use of a Tchebyshev polynomial à la Douglas-Shenker. The first n� 1 �a’s have been set to 0 in (2.1).

2

For

the GST dual is (both the A and B sectors are free doublets) :
Giacomelli, Konishi  ‘12,’13

the effects of  mi  and  μ Φ2    perturbation can be studied with the superpotential:   

cfr.    UV Lagrangian: 

W = µTr�2 +
1p
2
Qi

a�a
bQi

c Jbc +
mij

2
Qi

aQj
b Jab

Eq. (3.8) and Eq. (3.9) are satisfied by construction; Eq. (3.7) gives for a = b = 1, 2, . . . r:

did̃i −
1

nc

∑

k

dkd̃k = µ mi ; (3.19)

from which one finds that
∑

k

dkd̃k =
nc

nc − r
µ

r
∑

k=1

mk (3.20)

and

did̃i = µ mi +
1

nc − r
µ

r
∑

k=1

mk (di > 0) . (3.21)

On the other hand, Eq. (3.7) for a = b = r + 1, r + 2, . . . nc gives

∑

k

dkd̃k = nc µ c . (3.22)

This is compatible with Eq. (3.20) because of (3.15).

A solution with a given r leaves a local SU(nc − r) invariance. Thus each of them counts as a

set of nc − r solutions (Witten’s index). In all, therefore, there are

N =

min {nf ,nc−1}
∑

r=0

(nc − r)

(
nf

r

)

(3.23)

classical solutions. (For r = 0, Qi
a = Q̃b

i = 0, Φ = 0 is obviously a solution with full SU(nc)

invariance.)

For nc = 2 the formula (3.23) reproduces the known result (N = 2+nf ) as can be easily verified.

Note that when nf is equal to or less than nc the sum over r is done readily, and Eq. (3.23) is

equivalent to

N1 = (2 nc − nf ) 2nf−1, (nf ≤ nc) . (3.24)

3.2 Semi-Classical Vacua in USp(2nc)

The superpotential reads in this case

W = µ TrΦ2 +
1√
2

Qi
aΦa

bQi
c Jbc +

mij

2
Qi

aQj
b Jab , (3.25)

where J = iσ2 ⊗ 1nc and

m = −iσ2 ⊗ diag (m1, m2, . . . , mnf
) . (3.26)

In the mi → 0 and µ → 0 limit, the global symmetry is SO(2nf ) × Z2nc+2−nf
× SUR(2).

The vacuum equations are:

[Φ, Φ†] = 0 ; (3.27)
∑

i

(Qi†
a Qi

b − Qi†
nc+bQ

i
nc+a) = 0 ;

∑

i

Qi†
a Qi

nc+b = 0 ; (3.28)
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Correct flavor symmetry for all {m} 

• mi   = m    :     SU(4) x U(1) ;    

• mi   = 0    :     SO(8) ;       etc.,    

U(1)

For general Nf these still involve non-Lagrangian SCFT theory (A sector), and it is not obvious

how the µ TrΦ2 deformation affects the system. In a particular case n = 2 (USp(2N) theory

with Nf = 4), however, the A sector turns out to describe four free doublets of SU(2). This

system may be symbolically represented, ignoring the U(1)N−n Abelian sector which is trivial,

as

1 − SU(2) − 4 . (2.5)

The effect of µ Φ2 deformation of this particular theory can then be analyzed straightforwardly

by using the superpotential

√
2 Q0ADQ̃0 +

√
2 Q0φQ̃0 +

4
∑

i=1

√
2 QiφQ̃i + µADΛ + µ Trφ2 +

4
∑

i=1

mi QiQ̃
i , (2.6)

For equal and nonvanishing masses the system has SU(4)×U(1) flavor symmetry. In the massless

limit the symmetry gets enhanced to SO(8), in accordance with the symmetry of the underlying

USp(2N) theory.

The vacuum equations are:

√
2 Q0Q̃0 + µΛ = 0 ; (2.7)

(
√

2φ+ AD)Q̃0 = Q0 (
√

2φ+ AD) = 0 ; (2.8)

√
2

[

1

2

4
∑

i=1

Qa
i Q̃

i
b −

1

4
δa
b QiQ̃

i +
1

2
Qa

0Q̃
0
b −

1

4
δa
b Q0Q̃

0

]

+ µφa
b = 0 ; (2.9)

(
√

2φ+ mi) Q̃i = Qi (
√

2φ+ mi) = 0, ∀i . (2.10)

The first tells that Q0 ̸= 0. By gauge choice

Q0 = Q̃0 =

(

2−1/4
√
−µΛ

0

)

(2.11)

so that

1

2
Qa

0Q̃
0
b −

1

4
(Q0Q̃

0) δa
b =

(−µΛ)

4
√

2
τ 3 . (2.12)

The second equation can be satisfied by adjusting AD.

As in the mi = 0 case discussed in [6] (see also [7]) we must discard the solution

φ = a τ 3, a =
Λ

4
, Qi = Q̃i = 0, ∀i (2.13)
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