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Short abstract:

• We give a manifestly gauge-invariant description of the Higgs mechanism in the
operator level, without relying on spontaneous symmetry breaking which is signaled by
a non-vanishing vacuum expectation value ⟨ϕ⟩ of the scalar field ϕ.
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§ Introduction: SSB, NG boson and Higgs mechanism
Spontaneous symmetry breaking (SSB) is an important concept in physics.

SSB occurs when the lowest energy state or the vacuum is degenerate.⊙
SSB of global continuous symmetry G = U(1) in the complex scalar field theory

Lcs = ∂µϕ
∗∂µϕ− V (ϕ∗ϕ), V (ϕ∗ϕ) =

λ

2

(
ϕ∗ϕ− µ2

λ

)2

, ϕ ∈ C, λ > 0. (1)

The Lagrangian Lcs has the global U(1) symmetry: ϕ(x)→ eiθϕ(x).
V V

θv

unbroken U(1) symmetry (µ2 ≤ 0): =⇒ SSB of U(1) symmetry (µ2 > 0):
⟨ϕ(x)⟩ = 0 ⟨ϕ(x)⟩ = v ̸= 0

For ϕ(x) = |ϕ(x)|eiπ(x)/v ∈ C
• flat direction: π(x)→ massless Nambu-Goldstone particle
• curved direction: |ϕ(x)| → massive Higgs particle,
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⊙
What happens in the gauge field theory with the local continuous symmetry?

First, we consider the U(1) gauge-scalar theory:

LAH =− 1

4
FµνF

µν + (Dµϕ)
∗(Dµϕ)− V (ϕ∗ϕ), V (ϕ∗ϕ) =

λ

2

(
ϕ∗ϕ− µ2

λ

)2

, ϕ ∈ C,

Fµν = ∂µAν − ∂νAµ, Dµ = ∂µ − iqAµ, (2)

• The local U(1) gauge symmetry is completely broken spontaneously by choosing a
vacuum with the non-vanishing VEV of the scalar field: ⟨ϕ(x)⟩ = v/

√
2 ̸= 0.

|Dµϕ|2 = |∂µϕ− iqAµϕ|2 → | − iqAµ⟨ϕ(x)⟩|2 + ... =
1

2
(qv)2AµA

µ + ..., (3)

• The massless Nambu-Goldstone particle π (boson) must be generated, but it
disappears. It is absorbed into the massless gauge boson Aµ to form the massive
vector boson as supplying the longitudinal component.
• The Brout-Englert-Higgs (Guralnik-Hagen-Kibble) mechanism or Higgs phenomenon
is one of the most well-known mechanisms by which gauge bosons acquire their masses.
• This is a model for superconductor. The superconductivity is understood from the
SSB of U(1) gauge symmetry. The Meisser effect is just the Anderson-Schwinger
mechanism.
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⊙
The spontaneous breaking of gauge symmetry is a rather misleading terminology.

The lattice gauge theory à la Wilson gives a well-defined gauge theory without gauge
fixing. The Elitzur theorem tells us that the local continuous gauge symmetry cannot
break spontaneously, if no gauge fixing is introduced. The VEV ⟨ϕ⟩ of ϕ is rigorously
zero regardless of the shape of the scalar potential V :

⟨ϕ⟩ = 0, (4)

• Therefore, we are forced to fix the gauge to cause the non-zero VEV. Even after the
gauge fixing, however, we still have the problem. Whether SSB occurs or not depends
on the gauge choice.
In non-compact U(1) gauge-Higgs model, the SSB occurs ⟨ϕ⟩ ̸= 0 only in the Landau
gauge α = 0, and no SSB occur ⟨ϕ⟩ = 0 in all other covariant gauges with α ̸= 0, as
rigorously shown [KK85,BN86]. In axial gauge, ⟨ϕ⟩ = 0 for compact models [FMS80].

• After imposing the gauge fixing condition for the original local gauge group G,
a global subgroup H ′ remains unbroken. Such a global symmetry H ′ is called the
remnant global gauge symmetry. Only a remnant global gauge symmetry H ′ of the
local gauge symmetry G can break spontaneously to cause the Higgs phenomenon.
However, such subgroup H ′ is not unique and the location of the breaking in the phase
diagram depends on the remnant global gauge symmetries in the gauge-Higgs model.

4



The relevant numerical evidences are given on a lattice for different remnant symmetries
allowed for various confinement scenarios.[GOZ04][CG08]
Moreover, the transition occurs in the regions where the Fradkin-Shenker-Osterwalder-
Seiler theorem assures us that there is no transition in the phase diagram.

=⇒ The above observations indicate that the Higgs mechanism should be characterized
in a gauge-invariant way without breaking the original gauge symmetry. [It is obvious
that the non-vanishing VEV of the scalar field is not a gauge-invariant criterion of SSB.]

We show that a gauge boson can acquire the mass in a gauge-invariant way without
assuming spontaneous breakdown of gauge symmetry which is signaled by the non-
vanishing VEV of the scalar field.

The Higgs phenomenon can be described even without such SSB. The spontaneous
symmetry breaking is sufficient but not necessary for the Higgs mechanism to work.

=⇒ Remember that quark confinement is realized in the unbroken gauge symmetry
phase with mass gap.

Thus, the gauge-invariant description of the Higgs mechanics can shed new light on
the complementarity between confinement phase and Higgs phase.
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§ Conventional Higgs mechanism due to SSB

We consider G = SU(N) Yang-Mills-Higgs theory with the gauge-invariant Lagrangian:

LYMH =− 1

4
Fµν(x) ·Fµν(x) +

1

2
(Dµ[A ]ϕ(x)) · (Dµ[A ]ϕ(x))− V (ϕ(x) · ϕ(x)).

(1)

We assume that the adjoint scalar field ϕ(x) = ϕA(x)TA has the fixed radial length,

ϕ(x) · ϕ(x) ≡ ϕA(x)ϕA(x) = v2. (2)

The Yang-Mills field Aµ(x) = A A
µ (x)TA and ϕ(x) obey the gauge transformation:

Aµ(x)→ U(x)Aµ(x)U
−1(x) + ig−1U(x)∂µU

−1(x),

ϕ(x)→ U(x)ϕ(x)U−1(x), U(x) ∈ G = SU(N). (3)

Notice that ϕ(x) · ϕ(x) is a gauge-invariant combination. The covariant derivative
Dµ[A ] := ∂µ − ig[Aµ, ·] transforms Dµ[A ]→ U(x)Dµ[A ]U−1(x).
Notation: For the Lie-algebra valued quantities A = A ATA and B = BATA

A ·B := 2tr(A B) = A ABB2tr(TATB) = A ABA (A = 1, ..., N2 − 1). (4)
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First, we recall the conventional description for the Higgs mechanism.
If ϕ(x) acquires a non-vanishing VEV ⟨ϕ(x)⟩ = ⟨ϕ⟩ = ⟨ϕA⟩TA, then

Dµ[A ]ϕ(x) := ∂µϕ(x)− ig[Aµ(x),ϕ(x)]→ −ig[Aµ(x), ⟨ϕ⟩] + ..., (5)

and

LYMH →−
1

2
trG{Fµν(x)Fµν(x)} − g2trG{[A µ(x), ⟨ϕ⟩][Aµ(x), ⟨ϕ⟩]}+ ...

=− 1

2
trG{Fµν(x)Fµν(x)} − g2trG{[TA, ⟨ϕ⟩][TB, ⟨ϕ⟩]}A µA(x)A B

µ (x). (6)

To break spontaneously the local continuous gauge symmetry G by realizing the non-
vanishing VEV ⟨ϕ⟩ of the scalar field ϕ, we choose the unitary gauge in which ϕ(x) is
pointed to a specific direction ϕ(x)→ ϕ∞ uniformly over the spacetime.

By this procedure the original gauge symmetry G is not completely broken. Indeed,
there may exist a subgroup H (of G) which does not change ϕ∞.
This is the partial SSB G→ H: the mass is provided for the coset G/H (broken parts),
while the mass is not supplied for the H-commutative part of Aµ:

LYMH → −
1

2
trG{Fµν(x)Fµν(x)} − (gv)2trG/H{A µ(x)Aµ(x)}. (7)
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Thus the theory reduces to a gauge theory with the residual gauge group H.

For G = SU(2), by taking the usual unitary gauge

⟨ϕ∞⟩ = vT3, or ⟨ϕA
∞⟩ = vδA3, (8)

the kinetic term generates the mass term,

− g2v2trG{[TA, T3][TB, T3]}A µAA B
µ =

1

2
(gv)2(A µ1A 1

µ + A µ2A 2
µ ). (9)

U(1)

  SU(2)/U(1) =S  
2~

x

φ(x) ∋

• The off-diagonal gluons A 1
µ ,A

2
µ acquire the same mass MW := gv,

• The diagonal gluon A 3
µ remains massless.

Even after taking the unitary gauge (8),
U(1) gauge symmetry described by A 3

µ still remains
as the residual local gauge symmetry H = U(1),
which leaves ϕ∞ invariant
(the local rotation around the axis of the scalar field ϕ∞).

Thus, the SSB is sufficient for the Higgs mechanism to take place.
But, it is not clear whether the SSB is necessary or not for the Higgs mechanism to
work. This description depends on the specific gauge.
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§ Gauge-invariant Higgs mechanism: SU(2) case
Next, we give a gauge-invariant description for the Higgs mechanism.
• We construct a composite vector field Wµ(x) from Aµ(x) and ϕ(x) by

Wµ(x) := −ig−1[ϕ̂(x),Dµ[A ]ϕ̂(x)], ϕ̂(x) := ϕ(x)/v. (1)

• We find that the kinetic term of the Yang-Mills-Higgs model is identical to the “mass
term” of the vector field Wµ(x):

1

2
Dµ[A ]ϕ(x) ·Dµ[A ]ϕ(x) =

1

2
M2

WW µ(x) ·Wµ(x), MW := gv, (2)

as far as the constraint (ϕ ·ϕ = 1) is satisfied. This fact is shown explicitly G = SU(2),

g2v2W µ ·Wµ =v−22tr([ϕ,Dµ[A ]ϕ][ϕ,Dµ[A ]ϕ])

=v−2{(ϕ · ϕ)(Dµ[A ]ϕ ·Dµ[A ]ϕ)− (ϕ ·Dµ[A ]ϕ)(ϕ ·Dµ[A ]ϕ)}
=(Dµ[A ]ϕ) · (Dµ[A ]ϕ), (3)

where we have used the constraint (ϕ ·ϕ ≡ v2) and ϕ ·Dµ[A ]ϕ = ϕ ·∂µϕ+ϕ · (gAµ×
ϕ) = gAµ · (ϕ×ϕ) = 0, with ϕ ·∂µϕ = 0 following from differentiating the constraint.
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• Remarkably, the above “mass term” of Wµ is gauge invariant, since Wµ obeys the
adjoint gauge transformation:

Wµ(x)→ U(x)Wµ(x)U
−1(x). (4)

Therefore, Wµ becomes massive without breaking the original gauge symmetry.
The above Wµ gives a gauge-independent definition of the massive gluon mode in the
operator level.
The SSB of gauge symmetry is not necessary for generating the mass of Wµ.
(We do not need to choose a specific vacuum from all possible degenerate ground
states distinguished by the direction of ϕ.)

How is this description related to the conventional one?
• Despite its appearance of Wµ,
the independent internal degrees of freedom
of Wµ = (W A

µ ) (A = 1, 2, 3) is equal to dim(G/H) = 2, since

φ(x)

x

W
1
(x) W 2(x)

SU(2)/U(1) S
2

=~

µ µ

Wµ(x) · ϕ(x) = 0. (5)

Notice that this is a gauge-invariant statement. Thus, Wµ(x) represent the massive
modes corresponding to the coset space G/H components as expected. [We understand
the residual gauge symmetry left in the partial SSB: G = SU(2)→ H = U(1).]
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In fact, by taking the unitary gauge ϕ(x)→ ϕ∞ = vϕ̂∞, Wµ reduces to

Wµ(x)→ −ig−1[ϕ̂∞,Dµ[A ]ϕ̂∞] =[ϕ̂∞, [ϕ̂∞,Aµ(x)]]

=Aµ(x)− (Aµ(x) · ϕ̂∞)ϕ̂∞. (6)

Then Wµ agrees with the off-diagonal components for the specific choice ϕ̂A
∞ = δA3:

W A
µ (x)→

{
A a

µ (x) (A = a = 1, 2)

0 (A = 3)
. (7)

The constraint ϕ · ϕ = v2 represents the vacuum manifold in the target space of the
scalar field ϕ. The scalar field ϕ subject to the constraint ϕ ·ϕ = v2 is regarded as the
Nambu-Goldstone modes living in the flat direction at the bottom of the potential
V (ϕ), giving the degenerate lowest energy states.
Therefore, the massive field Wµ is formed by combining the massless (would-be)
Nambu-Goldstone modes with the original massless Yang-Mills field Aµ.
This corresponds to the conventional explanation that the gauge boson acquires the
mass by absorbing the Nambu-Goldstone boson appeared in association with the SSB.
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This suggests that the original gauge field Aµ is separated into two pieces:

Aµ(x) = Vµ(x) + Wµ(x). (8)

By definition, Vµ(x) transforms under the gauge transformation just like Aµ(x):

Vµ(x)→ U(x)Vµ(x)U
−1(x) + ig−1U(x)∂µU

−1(x). (9)

According to the definition of Wµ(x), it is shown that Wµ(x) = 0 is equivalent to

Dµ[V ]ϕ̂(x) = 0. (10)

Using (5) and (10), we find that Vµ is constructed from Aµ and ϕ as [Manton (1977)]

Vµ(x) =cµ(x)ϕ̂(x) + ig−1[ϕ̂(x), ∂µϕ̂(x)], cµ(x) := Aµ(x) · ϕ̂(x). (11)

In the unitary gauge ϕ(x) → ϕ∞ = vϕ̂∞, ϕ̂A
∞ = δA3, Vµ agrees with the diagonal

component

Vµ(x)→ (Aµ(x) · ϕ̂∞)ϕ̂∞ →

{
0 (A = a = 1, 2)

A 3
µ (x) (A = 3)

. (12)
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Thus, the above arguments go well in the topologically trivial sector.
The topologically non-trivial sector is discussed later.

• First, we introduce Vµ(x) and Wµ(x) as composite field operators of Aµ(x) and ϕ̂(x).

• Then we regard a set of field variables {cµ(x),Wµ(x), ϕ̂(x)} as obtained from

{Aµ(x), ϕ̂(x)} based on change of variables:

{cµ(x),Wµ(x), ϕ̂(x)} ← {Aµ(x), ϕ̂(x)}. (13)

• Finally, we identify cµ(x), Wµ(x) and ϕ̂(x) with the fundamental field variables
(independent up to the constraint (2)) for describing the massive Yang-Mills theory
anew.
(Here fundamental means that the quantization should be performed with respect to
those variables {cµ(x),Wµ(x), ϕ̂(x)} which appear in the path-integral measure.)
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According to the decomposition Aµ(x) = Vµ(x) + Wµ(x),
the field strength Fµν(x) of the gauge field Aµ(x) is decomposed as

Fµν[A ] :=∂µAν − ∂νAµ − ig[Aµ,Aν]

=Fµν[V ] + Dµ[V ]Wν −Dν[V ]Wµ − ig[Wµ,Wν]. (14)

By substituting this decomposition into the Yang-Mills-Higgs Lagrangian, we obtain

LYMH =− 1

4
Fµν[V ] ·Fµν[V ]

−1
4
(Dµ[V ]Wν −Dν[V ]Wµ)

2

+
1

2
Fµν[V ] · ig[W µ,W ν]− 1

4
(ig[Wµ,Wν])

2

+
1

2
M2

WW µ ·Wµ, Dµ[V ] := ∂µ − ig[Vµ, ·]. (15)

The field Wµ has the ordinary kinetic term and the mass term. Therefore, there is a
massive vector pole in the propagator of Wµ (after a certain gauge fixing). Thus, Wµ

is not an auxiliary field, but is a propagating field with the mass MW (up to possible
quantum corrections).
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§ Confined massive phase: SU(2) case
Finally, we discuss the implications for quark confinement.
The field strength Fµν[V ](x) of Vµ(x) is shown to be proportional to ϕ̂(x):

Fµν[V ](x) =ϕ̂(x){∂µcν(x)− ∂νcµ(x) +Hµν(x)},

Hµν(x) := ig−1ϕ̂(x) · [∂µϕ̂(x), ∂νϕ̂(x)], (1)

We can introduce the Abelian-like SU(2) gauge-invariant field strength fµν by

fµν(x) :=ϕ̂(x) ·Fµν[V ](x) = ∂µcν(x)− ∂νcµ(x) +Hµν(x). (2)

In the low-energy E ≪MW or the long-distance r ≫M−1
W region, we can neglect Wµ.

Then the dominant low-energy modes are described by the restricted Yang-Mills theory:

L rest
YM = −1

4
Fµν[V ] ·Fµν[V ] = −1

4
fµνfµν. (3)⊙

In the low-energy E ≪ MW or the long-distance r ≫ M−1
W region, the massive

components Wµ(x) become negligible and the other restricted fields become dominant.
This is a phenomenon called the “Abelian” dominance in quark confinement. [’tHooft
81, Ezawa-Iwazaki 82]
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The “Abelian” dominance in quark confinement is understood as a consequence of
the Higgs mechanism for the relevant (or equivalent) Yang-Mills-Higgs model in the
gauge-invariant way.⊙

In the Yang-Mills-Higgs model, Aµ(x) and ϕ(x) are independent field variables.
However, the Yang-Mills theory should be described by Aµ(x) alone and hence ϕ must
be supplied by the gauge field Aµ(x) due to the strong interactions.
[In other words, the scalar field ϕ should be given as a (complicated) functional of the
gauge field.]

This is achieved by imposing the constraint which we call the reduction condition.
We choose e.g.,

χ(x) := [ϕ̂(x),Dµ[A ]Dµ[A ]ϕ̂(x)] = 0⇐⇒ Dµ[V ]Wµ(x) = 0. (4)

This condition is gauge covariant, χ(x)→ U(x)χ(x)U−1(x).
The reduction condition plays the role of eliminating the extra degrees of freedom
introduced by the radially fixed scalar field into the Yang-Mills theory, since

χ(x) · ϕ̂(x) = 0. (5)

See Kondo et al., Phys. Report 579, 1–226 (2015), arXiv:1409.1599 [hep-th].
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⊙
Fortunately, the reduction condition is automatically satisfied in the level of field

equations. We introduce a Lagrange multiplier field λ(x) to incorporate the constraint

L ′
YMH = LYMH + λ(x)

(
ϕ(x) · ϕ(x)− v2

)
. (6)

Then the field equations are obtained as

δS′
YMH

δλ(x)
=ϕ(x) · ϕ(x)− v2 = 0, (7)

δS′
YMH

δA µ(x)
=Dν[A ]Fνµ(x)− ig[ϕ(x),Dµ[A ]ϕ(x)] = 0, (8)

δS′
YMH

δϕ(x)
=−Dµ[A ]Dµ[A ]ϕ(x)− 2ϕ(x)V ′(ϕ(x) · ϕ(x)) + 2λ(x)ϕ(x) = 0. (9)

The reduction condition is automatically satisfied:
Dµ(8) =⇒ 0 = Dµ[A ]Dν[A ]Fνµ = igDµ[A ][ϕ,Dµ[A ]ϕ] = ig[ϕ,Dµ[A ]Dµ[A ]ϕ]
[ϕ, (9)] =⇒ [ϕ,Dµ[A ]Dµ[A ]ϕ] = [ϕ,−2ϕV ′(ϕ · ϕ) + 2λϕ] = 0
The equivalence between the Yang-Mills-Higgs theory and the Yang-Mills theory is
expected to hold only when the scalar field is radially fixed. If we include the radial
degree of freedom for the scalar field, the equivalence is lost. Indeed, the radial degree
of freedom for the scalar field corresponds to the Higgs particle with a non-zero mass.
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§ Conclusion and discussion⊙
We have reconsidered the description of the Brout-Englert-Higgs mechanism or

Higgs mechanism by which a gauge boson acquires the mass.

• We have given a manifestly gauge-invariant description of the Higgs mechanism in
the operator level, which does not rely on spontaneous symmetry breaking which is
signaled by a non-vanishing vacuum expectation value of the scalar field. This gives a
gauge-independent explanation of the Higgs phenomenon.

• For the Higgs mechanism to work, the spontaneous symmetry breaking is sufficient
but not necessary.⊙

This enables us to discuss the confinement-Higgs complementarity from a new
perspective. Because the original gauge symmetry is retained at any stage.

• The SU(2) Yang-Mills theory in the gapped (confined) phase is “equivalent” to the
Yang-Mills-Higgs theory with a radially fixed adjoint scalar field in the Higgs phase
which was considered to be associated to the SSB: G = SU(2)→ H = U(1).

• The “Abelian” dominance in quark confinement of the Yang-Mills theory is understood
as a consequence of the Higgs mechanism for the “equivalent” Yang-Mills-Higgs model.
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Perspective:
• The case of larger gauge groups SU(N) (N ≥ 3) will be treated in a subsequent
paper. In particular, some interesting cases
SU(3)→ U(1)× U(1), SU(3)→ U(2),
and
SU(2)× U(1)→ U(1) will be discussed in detail.

Thank you very much
for your attention.
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⊙
The Yang-Mills-Higgs model includes the parameters specifying the potential besides

the gauge coupling. They are arbitrary and hence the mass gap of the theory is not
uniquely determined.

In the Yang-Mills theory, indeed, the mass MW can be generated in a dynamical way,
e.g., by a gauge-invariant vacuum condensation ⟨W µ ·Wµ⟩ so that M2

W ≃ ⟨W µ ·Wµ⟩
due to the quartic self-interactions −1

4(ig[Wµ(x),Wν(x)])
2 among Wµ(x) field, in sharp

contrast to the ordinary Yang-Mills-Higgs model. The analytical calculation for such a
condensate was done in [?]. Moreover, the mass MW has been measured by numerical
simulations on the lattice in [?] (see also section 9.4 of [?]) as

MW ≃ 2.69
√
σphys ≃ 1.19GeV, (1)

where σphys is the string tension of the linear potential in the quark-antiquark potential.⊙
The mass MW is used to show the existence of confinement-deconfinement phase

transition at a finite critical temperature Tc, separating confinement phase with vanishing
Polyakov loop average at low temperature and deconfinement phase with non-vanishing
Polyakov loop average at high temperature [?]. The critical temperature Tc is obtained
from the calculated ratio Tc/MW for a given value of MW , which provides a reasonable
estimate.

20



⊙
Notice that we cannot introduce the ordinary mass term for the field Vµ , since it

breaks the original gauge invariance. But, another mechanism of generating mass for
the Abelian gauge field Gµ := cµ+hµ could be available, e.g., magnetic mass for photon
due to the Debye screening caused by magnetic monopoles, which yields confinement
and mass gap in three-dimensional Yang-Mills-Higgs theory as shown in [?]. Moreover,
the Abelian gauge field must be confined, which is a problem of gluon confinement.
In view of these, the full propagator of the Abelian gauge field must have a quite
complicated form, as has been discussed in e.g., [?].
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⊙
Notice that Hµν(x) is locally closed (dH = 0) and hence it can be locally exact

(H = dh) due to the Poincaré lemma. Then Hµν(x) has the Abelian potential hµ(x):

Hµν(x) =∂µhν(x)− ∂νhµ(x). (2)

Therefore, the SU(2) gauge-invariant Abelian-like field strength fµν is rewritten as

fµν(x) =∂µGν(x)− ∂νGµ(x), Gµ(x) := cµ(x) + hµ(x). (3)

We call cµ the electric potential and hµ the magnetic potential. Indeed, hµ agrees
with the Dirac magnetic potential, see section 6.10 of the review[Physics Reports].
We can define the magnetic–monopole current kµ(x) in a gauge-invariant way:

kµ(x) = ∂ν
∗fµν(x), (4)

where ∗ denotes the Hodge dual. The magnetic current kµ(x) is not identically zero,
since the Bianchi identity valid for cµ is violated by hµ.
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§ Decomposition of the Lagrangian

By using the expression for Vµ, the Lagrangian density is further rewritten into
the form which is completely rewritten in terms of the independent field variables
{Gµ(x),W

a
µ(x), ϕ̂

A(x)}:

LYMH =− 1

4
fµνfµν −

1

2
WµaQab

µνW
νb,

− 1

4
g2ϵab3ϵcd3W a

µW
b
νW

µcW νd

+
1

2
M2

WWµaW a
µ , (1)

where fµν = ∂µGν − ∂νGµ is the SU(2) invariant “Abelian-like” field strength and
Qab

µν (a, b = 1, 2) is defined by (see section 7 of the review)

Qab
µν :=gµνK

ab + 2igfµνϕ
A(TA)

ab,

Kab :=[−∂ρ∂ρ + g2GρGρ]δ
ab + g[2Gρ∂

ρ + ∂ρGρ]ϵ
ab. (2)
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§ Lattice Higgs-Confinement phase: SU(2)

γ

β

γ

β
*

*

Figure 1: The phase diagram of SU(2) gauge-Higgs model with the adjoint Higgs field.

Z(β, γ) =

∫ ∏
n∈L

dϕ(n)
∏
ℓ∈L

dUℓ exp{−βSW [U ]− γSH[ϕ,U ]}.

SW [U ] =
∑
P∈L

[1− tr(UP )/tr(1)], UP :=
∏
ℓ∈∂P

Uℓ,

SH[ϕ,U ] =
∑
n∈L

∑
µ

[1− ϕA(n)Uµ
AB(n)ϕ

B(n+ µ)],Uµ
AB(n) := tr[Uµ(n)TAU

†
µ(n)TB]/tr(1)
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§ Higgs mechanism in U(1) case
We use the representation: polar decomposition for a radially fixed scalar field:

ϕ(x) =
v√
2
eiπ(x)/v ∈ C, π(x) ∈ R,

=⇒Dµϕ = (∂µ − ieAµ)ϕ(x) = −
1√
2
iev

(
Aµ −

1

ev
∂µπ

)
eiπ/v.

=⇒(Dµϕ)
∗(Dµϕ) =

1

2
(ev)2

(
Aµ −

1

ev
∂µπ

)2

. (1)

The LAH is completely rewritten in terms of the massive field

Wµ := Aµ(x)−m−1∂µπ(x)→ LAH = −1
4
(∂µWν − ∂νWµ)

2 +
1

2
m2WµW

µ, (2)

The field Wµ has a gauge invariant representation written in terms of ϕ and Aµ:

Wµ(x) = ie−1ϕ̂∗(x)Dµϕ̂(x) = −ie−1ϕ̂(x)Dµϕ̂
∗(x), ϕ̂(x) := ϕ(x)/|ϕ(x)|. (3)

This representation is parameterization independent. Therefore, we can use also

ϕ(x) =
1√
2
[v + φ(x) + iχ(x)]. (4)
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It is shown that Wµ agrees with the Noether current Jµ associated to the U(1)
global gauge symmetry (up to an overall factor).

Jµ = ieϕ(Dµϕ)∗ = −M2Wµ. (5)

Since the Noether current Jµ is conserved ∂µJ
µ = 0, the Wµ satisfies the

(divergenceless) relation:

∂µW
µ = 0, (6)

which is the subsidiary condition for the massive field Wµ.

The conserved Noether charge is a generator of the U(1) global transformation:

δϕ(x) = [iθQ, ϕ(x)] = iθ

∫
ddy[J0(y), ϕ(x)] = iθeϕ(x). (7)

where J0 = ieϕΠϕ. This is consistent with no SSB:

⟨0|δϕ(x)|0⟩ = iθe⟨0|ϕ(x)|0⟩ = 0. (8)
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§ Non-Abelian mass term (complete SSB)

In the non-Abelian case, we add a gauge-invariant mass term Lm of the form:

Lm =
1

2
M2(A A

µ −KA
µ )(A

µA −KµA) = M2tr
{
(Aµ −Kµ)

2
}
, (1)

where the explicit form of Kµ(x) = KA
µ (x)TA is determined so that Lm is gauge

invariant. It must reduce to the extended Stückelberg field in the Abelian limit.Using
the element of the unitary group U , we define

Kµ(x) = ig−1U−1(x)∂µU(x). (2)

Then such a mass term is indeed written as [Kunimasa and Goto, 1967]

Lm =g−2M2tr
{
(U−1Dµ[A ]U)2

}
= g−2M2tr

{(
U−1(∂µU − igAµU)

)2}
. (3)

Here, if U is parameterized as

U(x) = ei
χ(x)
v , χ(x) = χA(x)TA, (4)

it turns out that χ corresponds to the Stückelberg field.
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§ Introducing the Higgs modes
We can introduce the Higgs mode ρ(x) by removing the constraint ϕ(x) · ϕ(x) = v2.
We introduce a unit field ϕ̂(x) satisfying ϕ̂(x) · ϕ̂(x) = 1 to separate ρ:

ϕ(x) = h(x)ϕ̂(x) = [v + ρ(x)]ϕ̂(x). (1)

Then the covariant derivative of ϕ reads

Dµ[A ]ϕ(x) = (∂µh(x))ϕ̂(x) + h(x)(Dµ[A ]ϕ̂(x)). (2)

The kinetic term of ϕ yields the mass term of Wµ, the kinetic term of ρ and interactions:

1

2
Dµ[A ]ϕ(x) ·Dµ[A ]ϕ(x) =

1

2
∂µh(x)∂µh(x) +

1

2
h(x)2(Dµ[A ]ϕ̂(x) ·Dµ[A ]ϕ̂(x))

=
1

2
∂µh(x)∂µh(x) +

1

2

h(x)2

v2
(gv)2W µ(x) ·Wµ(x),

=
1

2
∂µρ(x)∂µρ(x) +

1

2
M2

WW µ(x) ·Wµ(x) + g2vρ(x)W µ(x) ·Wµ(x) + ..., (3)

and the potential is calculated from

ϕ(x) · ϕ(x) = h(x)2 = [v + ρ(x)]2. (4)
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