Detecting magnetic defects, ensembles, and gluon topological confinement

Luis E. Oxman
IF-UFF

September 2016

Dual superconductivity ('t Hooft, Nambu, Mandelstam)

- Search for chromomagnetic quantum d.o.f. in pure YM that could capture the path integral measure:

Abelian projected monopoles, center vortices, correlated chains formed by them: Di Giacomo, Engelhardt \& Reinhardt, Faber, Greensite \& Olejnik...

- Search for effective dual models in a Higgs phase where the chromoelectric confining string is represented by a classical vortex solution: Baker, Konishi, Shifman, Suzuki, Tong...

Ensembles of Abelian monopoles and related models

- Abelian ensembles of monopole loops lead to Abelian effective field models

$$
\sum_{n} Z_{n-\text { loops }}=\sum_{n} Z_{n-\text { worldlines }}=2^{\text {nd }}-Q=\text { Field }- \text { path }- \text { int }
$$

(Halpern \& Siegel '77, Bardakci \& Samuel '78)

- In SU(3) YM: Linearizing with $\Lambda_{\mu \nu}$, Abelian projection + Abelian dominance hypothesis (D. Antonov, 2000)

$$
\begin{aligned}
& \Lambda_{\mu \nu}=\left(\partial_{\mu} \vec{\Lambda}_{\nu}-\partial_{\nu} \vec{\Lambda}_{\mu}\right) \cdot \vec{T}+\vec{B}_{\mu \nu} \cdot \vec{T} \quad, \quad \vec{\Lambda} \cdot \vec{T}=\Lambda_{\mu}^{1} T_{1}+\Lambda_{\mu}^{2} T_{2} \\
& \left(\partial_{\nu} \vec{B}_{\mu \nu}=0\right)
\end{aligned}
$$

$$
\langle W\rangle=\int[D \Lambda] e^{-\int d^{4} x \frac{1}{4 g^{2}}\left(\partial_{\mu} \vec{\Lambda}_{\nu}-\partial_{\nu} \vec{\Lambda}_{\nu}-\vec{J}_{\mu \nu}\right)^{2}} Z_{\alpha_{1}} Z_{\alpha_{2}} \ldots
$$

Abelian model:

$Z_{\alpha}=\int\left[D \psi_{\alpha}\right]\left[D \bar{\psi}_{\alpha}\right] e^{-\int d^{4} \times \bar{\psi}_{\alpha}\left[-D_{\alpha}^{2}+m^{2}\right] \psi_{\alpha}} \quad, \quad D_{\mu}^{\alpha}=\partial_{\mu}-i \vec{\alpha} \cdot \vec{\Lambda}_{\mu}$.

- $\vec{\alpha}$: the three positive roots (tuples) , $\vec{J}_{\mu \nu}=2 \pi 2 N \vec{w}_{\mathrm{e}} s_{\mu \nu}$ \vec{w}_{e} is a weight of the quark representation (A weight \vec{w} is defined by the eigenvalues of the Cartan generators T_{q} corresponding to one common eigenvector.

$$
\left.\left[T_{q}, T_{p}\right]=0 \quad, \quad T_{q} \text { eigenvector }=\left.\vec{w}\right|_{q} \text { eigenvector }\right)
$$

- $g=4 \pi N / g_{\mathrm{e}}$
- SSB for $m^{2}<0$, after including density-density interactions
- Center vortices couple with $B_{\mu \nu}$ Random surface models (Engelhardt \& Reinhardt, 2000)

N-ality

Via ensembles in the $S U_{\mathrm{e}}(N)$ YM theory

- Center vortices (two-dimensional worldsheets) and chains formed by center vortices correlated with monopoles (loops).

$$
W_{\mathrm{f}}\left[A_{\mu}^{\mathrm{e}}\right]=\left(e^{i \frac{2 \pi}{N}}\right)^{\text {link }} W_{\mathrm{f}}[P] \quad \text { vs. } \quad W_{\mathrm{a}}\left[A_{\mu}^{\mathrm{e}}\right]=W_{\mathrm{a}}[P]
$$

Via effective dual YMH models

- $\operatorname{SU}(N) \rightarrow Z(N)$ SSB
- $\mathcal{M}=S U(N) / Z(N)=\operatorname{Ad}(S U(N))$
- $\Pi_{1}(\operatorname{Ad}(S U(N)))=Z(N) \Rightarrow$ the confining string is a Center string: $3 D$ static vortices that minimize an effective energy functional
- they confine fundamental quarks to form normal hadrons
- M. Baker, J. S. Ball \& F. Zachariasen '97, introduced a dual model with gauge group $S U(3)$ and three adjoint Higgs fields, and computed the interquark potential.
- A class of Yang-Mills-Higgs (YMH)

$$
\begin{aligned}
& \frac{1}{2}\left\langle D_{\mu} \psi_{I}, D^{\mu} \psi_{l}\right\rangle+\frac{1}{4 g^{2}}\left\langle F_{\mu \nu}-J_{\mu \nu}, F^{\mu \nu}-J^{\mu \nu}\right\rangle-V_{\mathrm{Higgs}}\left(\psi_{l}\right) \\
& D_{\mu}=\partial_{\mu}-i\left[\Lambda_{\mu},\right] \quad, \quad F_{\mu \nu}=\partial_{\mu} \Lambda_{\nu}-\partial_{\nu} \Lambda_{\mu}-i\left[\Lambda_{\mu}, \Lambda_{\nu}\right]
\end{aligned}
$$

- $\psi_{I} \in \mathfrak{s u}(N)$ is a set of adjoint Higgs fields. I is a flavour index
- For $S U(N) \rightarrow Z(N)$, the manifold of absolute minima $\left(\phi_{1}, \phi_{2}, \ldots\right) \in \mathcal{M} / U_{\phi_{I}} U^{-1}=\phi_{I}$ iff $U \in Z(N)$
- Minimum number of flavours is N

SU(N): normal glue

Center strings can be labelled by the magnetic weights $\vec{\beta}$ of the different group representations, Konishi-Spanu (2001).
The asymptotic behavior is locally a pure gauge (but not globally),

$$
S=e^{i \varphi \vec{\beta} \cdot \vec{T}} \quad, \quad \vec{\beta}=2 N \vec{w} \quad, \quad \vec{\beta} \cdot \vec{T}=\left.\vec{\beta}\right|_{q} T_{q}
$$

For the fundamental representation we have N weights \vec{w}_{i}
(fundamental colours), $\vec{\beta}_{1}+\cdots+\vec{\beta}_{N}=\overrightarrow{0}$
They are associated with the simplest center strings

$$
e^{i 2 \pi \vec{\beta}_{i} \cdot \vec{T}}=e^{i 2 \pi / N}
$$

N -ality for Infinite adjoint center string: An asymptotic behavior $S \sim e^{i \varphi 2 N \vec{\alpha} \cdot \vec{T}}$ is a closed loop in $S U(N)$. As $\Pi_{1}(S U(N))=0$, it can be continuously deformed into $S \sim /$ at the origin.

SU(3): normal state

Finite center string induced by fundamental sources $\vec{w},-\vec{w}$

or by three fundamental sources $\vec{w}_{1}, \vec{w}_{2}, \vec{w}_{3}, \quad S=e^{i \chi_{1} \overrightarrow{\beta_{1}} \cdot \vec{T}} e^{i \chi_{2} \overrightarrow{\beta_{2}} \cdot \vec{T}}$

$$
\vec{\beta}_{c_{1}}+\vec{\beta}_{c_{2}}+\vec{\beta}_{c_{3}}=0 \quad\left(\vec{\beta}_{1}+\vec{\beta}_{2}=-\vec{\beta}_{3}\right)
$$

$\vec{J}_{\mu \nu}=2 \pi 2 N \vec{w} s_{\mu \nu}$. Static sources:

$$
s_{0 i}=0, s_{i j}=-\epsilon_{i j k} \int d s \frac{d x_{k}}{d s} \delta^{(3)}(x-x(s))
$$

$$
\begin{aligned}
& S=e^{i \varphi \vec{\beta} \cdot \vec{T}} \quad, \quad \vec{\beta}=2 N \vec{w} \quad, \quad \Lambda_{i}=a(\rho) i S \partial_{i} S^{-1} \quad \text { (locally) }
\end{aligned}
$$

Adjoint sources $\vec{\alpha},-\vec{\alpha}$ at a finite distance. $\vec{J}_{\mu \nu}=2 \pi 2 N \vec{\alpha} s_{\mu \nu}$

$$
S_{\mathrm{Abe}}=e^{i \varphi 2 N \vec{\alpha} \cdot \vec{T}}
$$

N-ality in effective YMH models

The roots are the weights of the adjoint representation, which acts via commutators

$$
\begin{gathered}
{\left[T_{q}, E_{\alpha}\right]=\left.\vec{\alpha}\right|_{q} E_{\alpha} \quad, \quad \vec{\alpha}=\vec{w}-\vec{w}^{\prime}} \\
S_{\text {non-Abe }}=e^{i \varphi \vec{\beta} \cdot \vec{T}} W(\gamma) e^{-i \varphi \vec{\beta}^{\prime} \cdot \vec{T}} \\
W(\gamma)=e^{i \gamma \sqrt{N} T_{\alpha}}
\end{gathered}
$$

γ, φ are bipolar angles

N -ality in effective YMH models

$$
\begin{aligned}
& e^{i \varphi \vec{\beta} \cdot \vec{\tau}} W(\gamma) e^{-i \varphi \vec{\beta}^{\prime} \cdot \vec{T}} \\
& W(\gamma)=e^{i \gamma \sqrt{N} T_{\alpha}}
\end{aligned}
$$

$$
\text { - } \gamma \sim 0: S_{\text {non-Abe }} \sim e^{i \varphi 2 N \vec{\alpha} \cdot \vec{T}}
$$

N-ality in effective YMH models

$$
\begin{aligned}
& e^{i \varphi \vec{\beta} \cdot \vec{T}} W(\gamma) e^{-i \varphi \vec{\beta}^{\prime} \cdot \vec{T}} \\
& W(\gamma)=e^{i \gamma \sqrt{N} T_{\alpha}}
\end{aligned}
$$

- $\gamma \sim \pi$:

$$
W^{-1}(\pi) \vec{w} \cdot \vec{T} W(\pi)=\vec{w}^{\prime} \cdot \vec{T}
$$

Weyl transformation

$$
S_{\text {non-Abe }} \sim W(\pi)
$$

(complete screening by dynamical adjoint monopoles)

Hybrid QCD spectrum

- Lattice calculations predict a rich spectrum of exotic mesons
- Some of them correspond to $q g \bar{q}^{\prime}$ hybrid mesons: a nonsinglet colour pair and a valence gluon that form a colourless state.
- Currently searched by a collaboration based at the Jefferson Lab (GlueX)

Figure: From B. Ketzer 2012

SU(3): hybrid state

Induced by fundamental sources $\vec{w},-\vec{w}^{\prime}$, with $\vec{w} \neq \vec{w}^{\prime}$

LEO, 2012

SU(N): hybrid center string/dual monopole/center string

Infinite object: (θ, ϕ are spherical angles)

$$
S=e^{i \varphi \vec{\beta} \cdot \vec{T}} W(\theta) \quad, \quad W(\theta)=e^{i \theta \sqrt{N} T_{\alpha}} \quad, \quad \vec{\alpha}=\vec{w}-\vec{w}^{\prime}
$$

Around the north pole,

$$
S \sim e^{i \varphi \vec{\beta} \cdot \vec{T}}
$$

Around the south pole, $W(\pi)$ is a Weyl reflection,

$$
S \sim W(\pi) e^{i \varphi \vec{\beta}^{\prime} \cdot \vec{T}}
$$

(gauge transformations act on the left)

- A well-defined mapping for the local Cartan directions on S^{2}

$$
n_{q}=S T_{q} S^{-1} \quad, \quad q=1, \ldots, N-1
$$

- The gauge invariant monopole charge is obtained from the (dual) field strength projection along the local Cartan directions n_{q}

$$
\vec{Q}_{m}=2 \pi 2 N\left(\vec{w}-\vec{w}^{\prime}\right)=2 \pi 2 N \vec{\alpha}
$$

- This monopole can be identified with a valence gluon with adjoint colour $\vec{\alpha}=\vec{w}-\vec{w}^{\prime}$
- Valence gluons are confined: \mathcal{M} is a compact group. $\Pi_{2}(\mathcal{M})=\Pi_{2}(A d(G))=0, G=S U(N) \Rightarrow$ there are no isolated dynamical adjoint monopoles
- Stable: One-to-one mapping between $\Pi_{2}\left(\frac{\operatorname{Ad}(G)}{\operatorname{Ad}(H)}\right)$ and loops in $\Pi_{1}(A d(H)), H=U(1)^{N-1}$, that are trivial when seen as loops in $\Pi_{1}(A d(G))=Z(N)$

Double sources (double Wilson loops) in SU(2)

Two negative (up) and two positive (down) fundamental sources:
$S_{\text {non-Abe }}=e^{i \varphi \beta T_{1}} W(\gamma) e^{i \varphi \beta T_{1}}$

- $\gamma \sim 0: S_{\text {non-Abe }} \sim e^{i \varphi 2 \beta T_{1}}$
- $\gamma \sim \pi: S_{\text {non-Abe }} \sim W(\pi)$

$$
W^{-1}(\pi) T_{1} W(\pi)=-T_{1}
$$

The inner fundamental quarks are partially screened by dynamical adjoint monopoles

Gauge fixing in pure YM

Laplacian-center gauge
Faber, Greensite \& Olejnik; de Forcrand \& Pepe (2001)
$-$

$$
\mathcal{A}_{\mu} \rightarrow f_{l} \rightarrow \operatorname{Ad}(S)
$$

-

$$
U_{\mathrm{e}} \mathcal{A}_{\mu} U_{\mathrm{e}}^{-1}+i U_{\mathrm{e}} \partial_{\mu} U_{\mathrm{e}}^{-1} \rightarrow U_{\mathrm{e}} f_{l} U_{\mathrm{e}}^{-1} \rightarrow \operatorname{Ad}\left(U_{\mathrm{e}} S\right)
$$

- Impose a condition on S
- S is extracted from a polar decomposition $f_{l}=S q_{l} S^{-1}$ in term of "modulus" q_{I} and "phase" S variables
- For three adjoint fields f_{1}, f_{2}, f_{3} in $S U(2)$ this corresponds to the usual polar decomposition of a 3×3 matrix

Lattice:

- Lowest eigenfunctions of the adjoint covariant Laplacian

$$
\mathcal{D}_{\mu} \mathcal{D}_{\mu} f_{l}=\lambda_{l} f_{l} \quad, \quad \mathcal{D}_{\mu}=\partial_{\mu}-i\left[\mathcal{A}_{\mu},\right]
$$

Continuum: LEO \& Santos-Rosa, 2015

$$
\begin{gathered}
\mathcal{D}_{\mu} \mathcal{D}_{\mu} f_{l}=\ldots \quad \text { set of coupled eqs. } \quad \frac{\delta S_{\mathrm{aux}}}{\delta f_{l}}=0 \\
1=\int\left[D f_{l}\right] \operatorname{det}\left(\frac{\delta^{2} S_{\mathrm{aux}}}{\delta f_{l} \delta f_{J}}\right) \delta\left(\frac{\delta S_{\mathrm{aux}}}{\delta f_{l}}\right) \\
{\left[D f_{l}\right]=\left[D q_{l}\right][D S] \quad, \quad \sum_{l}\left[q_{l}, u_{l}\right]=0}
\end{gathered}
$$

- S could have defects
- $S \sim S^{\prime}$ if there is a regular $U_{\mathrm{e}} / S^{\prime}=U_{\mathrm{e}} S$
- Gauge fixed config. become partitioned into sectors $\mathcal{V}\left(S_{0}\right)$
- They are labelled by representatives S_{0} that could be singular

$$
A_{\mu}^{\mathrm{e}} \rightarrow \operatorname{Ad}\left(S_{0}\right)=R_{0}
$$

If $P_{\mu} \in \mathcal{V}(I)$, then, something that is locally,

$$
\left.A_{\mu}^{\mathrm{e}}\right|_{\mathrm{loc}}=S_{0} P_{\mu} S_{0}^{-1}+i S_{0} \partial_{\mu} S_{0}^{-1}
$$

($P_{\mu} / A_{\mu}^{\mathrm{e}}$ is regular) is in $\mathcal{V}\left(S_{0}\right)$. Defining \langle,$\rangle as \operatorname{Tr}$ in the adjoint:

$$
S_{\mathrm{YM}}=\int d^{4} x \frac{1}{4 g_{\mathrm{e}}} \operatorname{Tr}\left(F_{\mu \nu}^{\mathrm{e}} F_{\mu \nu}^{\mathrm{e}}\right)
$$

$F_{\mu \nu}\left(A^{\mathrm{e}}\right)=R_{0}\left(F_{\mu \nu}(P)-H_{\mu \nu}\left(R_{0}\right)\right) R_{0}^{-1} \quad, \quad H_{\mu \nu}\left(R_{0}\right)=i R_{0}^{-1}\left[\partial_{\mu}, \partial_{\nu}\right] R_{0}$
Gauge transf. (left action with regular U_{e}): $\quad S_{0} \rightarrow U_{\mathrm{e}} S_{0}$ $F_{\mu \nu}\left(A^{\mathrm{e}}\right)$ rotates and $H_{\mu \nu}\left(R_{0}\right)$ is left invariant

Inequiv. config. (right action with regular \tilde{U}^{-1}): $\quad S_{0}^{\prime}=S_{0} \tilde{U}^{-1}$

- if \nexists regular $U_{\mathrm{e}} / S_{0} \tilde{U}^{-1}=U_{\mathrm{e}} S_{0}$,

$$
\mathcal{V}\left(S_{0}\right) \rightarrow \mathcal{V}\left(S_{0}^{\prime}\right)
$$

- $H_{\mu \nu}\left(R_{0}^{\prime}\right)=\tilde{R} H_{\mu \nu}\left(R_{0}\right) \tilde{R}^{-1}$
- Center vortices are also labelled by the weights of the fundamental representation. Example $S_{0}=e^{i \chi \vec{\beta} \cdot \vec{T}}$,
$-\mathcal{H}_{\mu \nu}\left(R_{0}\right)=2 \pi \vec{\beta} \cdot \vec{M} \oint d^{2} \sigma_{\mu \nu} \delta^{(4)}\left(x-\bar{y}\left(\sigma_{1}, \sigma_{2}\right)\right) \quad, \quad M_{q}=\operatorname{Ad}\left(T_{q}\right)$
$\left(\mathcal{H}_{\mu \nu}=\frac{1}{2} \epsilon_{\mu \nu \rho \sigma} H_{\mu \nu}\right)$
- Open center vortex worldsheets with different weights $\vec{\beta}, \overrightarrow{\beta^{\prime}}$ can be matched by monopoles. Only using a Weyl transf., at each junction, there is a contribution

$$
-\partial_{\nu} \mathcal{H}_{\mu \nu}\left(R_{0}\right)=2 \pi 2 N \vec{\alpha} \cdot \vec{M} \oint_{C} d y_{\mu} \delta^{(4)}(x-y)
$$

- Inequivalent configuration (right action): at each junction,

$$
\begin{gathered}
-D_{\nu}(\tilde{Z}) \mathcal{H}_{\mu \nu}\left(R_{0}^{\prime}\right)=2 \pi 2 N \tilde{R} \vec{\alpha} \cdot \vec{M} \tilde{R}^{-1} \oint_{C} d y_{\mu} \delta^{(4)}(x-y) \\
D_{\mu}(\tilde{Z})=\partial_{\mu}-i\left[\tilde{Z}_{\mu}, \cdot\right] \quad, \quad \tilde{Z}_{\mu}=i \tilde{R} \partial_{\mu} \tilde{R}^{-1}
\end{gathered}
$$

Ensemble of monopoles with non-Abelian d.o.f.

Motivated by:

$$
\begin{aligned}
& e^{-\int d^{4} \times \frac{1}{4 g_{e}^{2}} \operatorname{Tr}\left(F_{\mu \nu}^{\mathrm{e}} F_{\mu \nu}^{\mathrm{e}}\right)} \\
& \quad=\int\left[D \Lambda_{\mu \nu}\right] e^{-\int d^{4} \times \frac{1}{4 g^{2}} \operatorname{Tr} \Lambda_{\mu \nu}^{2}} e^{\frac{i}{2} \frac{1}{4 \pi N} \int d^{4} \times \operatorname{Tr} \Lambda_{\mu \nu}\left(\mathcal{F}_{\mu \nu}(P)-\mathcal{H}_{\mu \nu}\left(R_{0}^{\prime}\right)\right)}
\end{aligned}
$$

- A non-Abelian Hodge decomposition

$$
\Lambda_{\mu \nu}=D_{\mu}(\tilde{Z})\left(\Lambda_{\nu}-\tilde{Z}_{\nu}\right)-D_{\nu}(\tilde{Z})\left(\Lambda_{\mu}-\tilde{Z}_{\mu}\right)+B_{\mu \nu} \quad, \quad D_{\nu}(\tilde{Z}) B_{\mu \nu}=0
$$

- Only monopoles (attached to unobservable Dirac worldsheets)
- Dress the monopoles with phenomenological information
- Simplest properties of looplike objects: tension, stiffness and interactions (S_{m})

Let us consider

$$
\begin{gathered}
Z=\sum_{\text {ensemble }} e^{-S_{\mathrm{m}}} e^{-S_{G}-S_{H}} \\
S_{G}=\int d^{4} \times \frac{1}{4 g^{2}} \operatorname{Tr}\left(D_{\mu}(\tilde{Z})\left(\Lambda_{\nu}-\tilde{Z}_{\nu}\right)-D_{\nu}(\tilde{Z})\left(\Lambda_{\mu}-\tilde{Z}_{\mu}\right)\right)^{2} \\
S_{H}=-i \int d s \frac{d x_{\mu}}{d s} \operatorname{Tr}\left(\Lambda_{\mu}-\tilde{Z}_{\mu}\right) \tilde{R}(\vec{\alpha} \cdot \vec{M}) \tilde{R}^{-1}
\end{gathered}
$$

$\vec{\alpha}: N(N-1) / 2$ positive values.
The variable \tilde{U} is similar to that appearing in the Skyrme model through the combination \tilde{Z}_{μ}. Under,

$$
\begin{aligned}
\tilde{U} & \rightarrow U \tilde{U} \quad(\tilde{R} \rightarrow R \tilde{R}) \\
\Lambda_{\mu} & \rightarrow R \Lambda_{\mu} R^{-1}+i R \partial_{\mu} R^{-1}
\end{aligned}
$$

S_{G} and S_{H} are left invariant.

Non-Abelian coupling

- Analyze one $\vec{\alpha}$-sector. For the highest weight $\vec{\alpha}$,

$$
\frac{d x_{\mu}}{d s} \operatorname{Tr}\left(\Lambda_{\mu}-\tilde{Z}_{\mu}\right) \tilde{R}(\vec{\alpha} \cdot \vec{M}) \tilde{R}^{-1} \Lambda_{\mu}^{A}=\frac{d x_{\mu}}{d s} I_{A} \Lambda_{\mu}^{A}-i z_{c} \dot{\bar{z}}_{c}
$$

$I_{A}=\left.M_{A}\right|_{c d} \bar{z}_{c} z_{d} \quad, \quad z=\tilde{R} u_{\alpha} \quad, \quad u_{\alpha}$ is the weight vector

- A worldline with non-Abelian coupling: Balachandran et al.

$$
' 77: \quad I_{A}=\left.R\left(T_{A}\right)\right|_{c d} \bar{z}_{c} z_{d}
$$

- An ensemble with non-Abelian coupling: Santos Rosa, Teixeira \& LEO (2014)

$$
\begin{aligned}
& Z=\int[D \phi] e^{-W[\phi]} \sum_{n} Z_{n} \\
& Z_{n}=\int[D m]_{n} \exp \left[-\sum_{k=1}^{n} \int_{0}^{L_{k}} d s_{k}(\cdot)_{k}\right] \quad, \quad u_{\mu}=\frac{d x_{\mu}}{d s} \in S^{3} \\
& (\cdot)=\mu+\frac{1}{2}\left(\bar{z}_{c} \dot{z}_{c}-\dot{\bar{z}}_{c} z_{c}\right)+\frac{1}{2 \kappa} \dot{\mu}_{\mu} \dot{u}_{\mu}-i u_{\mu} I_{A} \Lambda_{\mu}^{A}(x)+\phi(x)+I_{A} \phi^{A}(x)
\end{aligned}
$$

$$
\begin{gathered}
{[D m]_{n} \equiv \frac{1}{n!} \int_{0}^{\infty} \frac{d L_{1}}{L_{1}} \frac{d L_{2}}{L_{2}} \cdots \frac{d L_{n}}{L_{n}} \int d v_{1} d v_{2} \ldots d v_{n} \int\left[D v\left(s_{1}\right)_{v_{1}, v_{1}} \ldots\left[D v\left(s_{n}\right)\right]_{v_{n}, v_{n}}\right.} \\
v: x, u, z \quad, \quad d v=d^{4} x d^{3} u d z d \bar{z}
\end{gathered}
$$

For smooth closed monopole worldlines

$$
\sum_{n} Z_{n}=e^{\int_{0}^{\infty} \frac{d L}{L} \int d v q(v, v, L)} \quad, \quad q\left(v, v_{0}, L\right)=\int[D v(s)]_{v, v_{0}} e^{-\int_{0}^{L} d s(\cdot)}
$$

$q\left(v, v_{0}, L\right)$: end-to-end probability, for a line of length L, to start at x_{0}, with tangent u_{0} and z_{0}, and end at x with u, z

- $[D z(s)]_{z, z_{0}}$ gives $\langle z| e^{-\hat{H} L}\left|z_{0}\right\rangle$

$$
\hat{H}=-i u_{\mu} \Lambda_{\mu}^{A} M_{c d}^{A} \hat{a}_{c}^{\dagger} \hat{a}_{d}+\phi^{A} M_{c d}^{A} \hat{a}_{c}^{\dagger} \hat{a}_{d}
$$

- \Longrightarrow in the exponent of $\sum_{n} Z_{n}$, there is a $\operatorname{Tr} e^{-\hat{H} L}$
- $\langle\phi| e^{-\hat{H} L}|\psi\rangle$:

$$
\int d z d \bar{z} d z_{0} d \bar{z}_{0} e^{-\frac{\overline{\bar{z}} \cdot \bar{z}}{2}} e^{-\frac{\bar{z}_{0} \cdot z_{0}}{2}} \bar{\phi}(z) \psi\left(\bar{z}_{0}\right) q\left(v, v_{0}, L\right)
$$

- $\langle b| e^{-\hat{H} L}|a\rangle$:
$Q^{b a}=\int d z d \bar{z} d z_{0} d \bar{z}_{0} e^{-\frac{\bar{z} \cdot z}{2}} e^{-\frac{\bar{z}_{0} \cdot z_{0}}{2}} z^{b} \bar{z}_{0}^{a} q\left(v, v_{0}, L\right)$
-

$$
\sum_{n} Z_{n}=e^{\int_{0}^{\infty} \frac{d L}{L} \int d^{4} x d^{3} u \operatorname{tr}[Q(x, x, u, u, L)]+\ldots}
$$

- $q\left(v, v_{0}, L\right)$ as continuum limit of a Chapman-Kolmogorov recurrence relation for diffusion in v-space
- The equilibrium theory of inhomogeneous polymers, G. H. Fredrickson (2006)

Line weight as polymer growth

From the probability
to get x, u, z with M monomers to the probability to get $x^{\prime}=x+u^{\prime} \Delta L, u^{\prime}, z^{\prime}$ with $M+1$

$$
\begin{aligned}
& q\left(v^{\prime}, v_{0}, L+\Delta L\right)=\int d^{3} u d z d \bar{z} \\
& \quad \times e^{-\mu \Delta L} e^{-\frac{1}{2 \kappa} \Delta L\left(\frac{u^{\prime}-u}{\Delta L}\right)^{2}} e^{\left(\bar{z}^{\prime}-\bar{z}\right) \cdot z} \\
& \quad \times e^{-\left[\phi-i u_{\mu}^{\prime} \Lambda_{\mu}^{A} M_{c d}^{A} \bar{z}^{\prime} z^{d}+\phi^{A} M_{c d}^{A} \bar{z}^{\prime} z^{d}\right] \Delta L} q\left(v, v_{0}, L\right) \\
& \vdots \\
& x_{0}, u_{0}, z_{0}
\end{aligned}
$$

First order in ΔL with finite $\kappa \rightarrow$ Fokker-Plank equation:
$\partial_{L} q=\left[-\mu-\phi(x)+\frac{\kappa}{\pi} \hat{L}_{u}^{2}-u_{\mu} \partial_{\mu}+\left(i u_{\mu} \Lambda_{\mu}^{A}-\phi^{A}\right) M_{c d}^{A} \bar{z}^{c} \frac{\partial}{\partial \bar{z}^{d}}\right] q$

Reduced Fokker-Plank equation

$$
\begin{gathered}
{\left[\left(\partial_{L}-(\kappa / \pi) \hat{L}_{u}^{2}+(\mu+\phi) 1+u \cdot D\right] Q\left(x, x_{0}, u, u_{0}, L\right)=0\right.} \\
Q\left(x, x_{0}, u, u_{0}, 0\right)=\delta\left(x-x_{0}\right) \delta\left(u-u_{0}\right) 1
\end{gathered}
$$

where $\left.Q\right|^{c d}=Q^{c d}, 1$ is a $\mathcal{D} \times \mathcal{D}$ identity matrix $\left(\mathcal{D}=N^{2}-1\right)$

$$
D_{\mu}=1 \partial_{\mu}-i \Lambda_{\mu}^{A} M^{A}
$$

Semiflexible limit:

Small stiffness: disregard the angular momenta $I \geq 2$ in an expansion of spherical harmonics on S^{3} (memory loss)

$$
\begin{gathered}
\int d^{4} x d^{3} u Q(x, x, u, u, L) \approx \int d^{4} x\langle x| e^{-L O}|x\rangle \\
O=-\frac{\pi}{12 \kappa} D_{\mu} D_{\mu}+(\phi+\mu) 1+\phi^{A} M_{A} \\
Z=\int[D \phi] e^{-W} e^{-\operatorname{Tr} \ln O}=\int[D \phi] e^{-W}(\operatorname{Det} O)^{-1} \\
= \\
\int[D \phi] e^{-W} \int[D \zeta][D \bar{\zeta}] e^{-\int d^{4} \times \zeta^{\dagger} O \zeta}
\end{gathered}
$$

- Integrating ϕ, ϕ^{A} with Gaussian weight

$$
\begin{gathered}
Z=\int[D \psi] e^{-\int d^{4} \times \mathcal{L}_{\text {eff }}} \\
\mathcal{L}_{\text {eff }}=\frac{1}{2}\left\langle D_{\mu} \psi_{l}, D^{\mu} \psi_{l}\right\rangle+\frac{m^{2}}{2}\left\langle\psi_{l}, \psi_{I}\right\rangle+\frac{\lambda}{4}\left\langle\psi_{I} \wedge \psi_{J}, \psi_{I} \wedge \psi_{J}\right\rangle+\frac{\eta}{4}\left\langle\psi_{I}, \psi_{I}\right\rangle\left\langle\psi_{J}, \psi_{J}\right\rangle
\end{gathered}
$$

- ψ_{I} : a pair of Hermitian adjoint Higgs fields
- $m^{2} \propto \mu \kappa$
- Natural invariant terms to form $V_{\text {Higgs }}\left(\psi_{l}\right)$

$$
\begin{gathered}
\left\langle\psi_{I}, \psi_{J}\right\rangle, \quad\left\langle\psi_{I}, \psi_{J} \wedge \psi_{K}\right\rangle \\
\left\langle\psi_{I} \wedge \psi_{J}, \psi_{K} \wedge \psi_{L}\right\rangle, \quad\left\langle\psi_{I}, \psi_{J}\right\rangle\left\langle\psi_{K}, \psi_{L}\right\rangle
\end{gathered}
$$

where $\psi_{I} \wedge \psi_{J}=-i\left[\psi_{I}, \psi_{J}\right]$.

- Flavour symmetric Higgs potential, $I \rightarrow A=1, \ldots, N^{2}-1$ LEO, 2012

$$
c+\frac{m^{2}}{2}\left\langle\psi_{A}, \psi_{A}\right\rangle+\frac{\gamma}{3} f_{A B C}\left\langle\psi_{A} \wedge \psi_{B}, \psi_{C}\right\rangle+\frac{\lambda}{4}\left\langle\psi_{A} \wedge \psi_{B}, \psi_{A} \wedge \psi_{B}\right\rangle
$$

- Degenerate potential

$$
\frac{\lambda}{4}\left\langle\psi_{A} \wedge \psi_{B}-f_{A B C} v \psi_{C}\right\rangle^{2} \quad, \quad \psi_{A} \wedge \psi_{B}-v f_{A B C} \psi_{C}=0
$$

For $m^{2}<\frac{2}{9} \frac{\gamma^{2}}{\lambda}$, the absolute minima are Lie bases:
$S U(N) \rightarrow Z(N)$

Numerical solutions: LEO \& D. Vercauteren (2016)

- $m^{2}=0$: Eqs. of motion get Abelianized (all N), a, h, h_{1}

- BPS point $\lambda=1(N=2)$: Starting point to explore parameter space

Figure: Normal potential at BPS point in $S U(2)$

Heavy quark hybrid potentials in lattice YM

Figure:
Hybrid potentials. From K. J. Juge, J. Kuti \& C. J. Morningstar 1997, Orlando Oliveira 2007

Conclusions

- Motivated an ensemble of monopoles with non-Abelian d. o. f.
- Obtained an effective model based on a set of interacting adjoint fields (after assuming phenomenological properties like tension, stiffness, etc.)
- Depending on the parameters: $S U(N) \rightarrow Z(N)$
- N-ality
(via Weyl transformations)
- Hybrid glue
- Topological confinement of (valence) gluons
- Correct minimum energy for doubled fundamental pairs

Disorder Parameters in $3 D$

't Hooft (1978)

- Vortex creation operators. At a given time t :

$$
\begin{gathered}
\hat{W}(\mathcal{C}) \hat{V}(\mathbf{x})=e^{i 2 \pi \operatorname{link} / N} \hat{V}(\mathbf{x}) \hat{W}(\mathcal{C}) \\
\hat{W}|\mathcal{A}\rangle=W|\mathcal{A}\rangle, \quad \hat{W}(\hat{V}|\mathcal{A}\rangle)=e^{i 2 \pi \operatorname{link} / N} W(\hat{V}|\mathcal{A}\rangle) \\
\hat{V}|\mathcal{A}\rangle=\mid \mathcal{A}+\text { defect }\rangle
\end{gathered}
$$

- defect + defect $+\ldots$ defect $=$ nothing $\rightarrow Z(N)$ symmetry
- Criteria for confinement

$$
\langle\hat{V}(\mathbf{x})\rangle=\text { const } \neq 0
$$

- Understanding the criterion in 3D:

$$
\begin{gathered}
\hat{V}(\mathbf{x})|V\rangle=V|V\rangle \\
\hat{V}(\mathbf{x})(\hat{W}(\mathcal{C})|V\rangle)=e^{-i 2 \pi \operatorname{link} / N} V(\hat{W}(\mathcal{C})|V\rangle) \\
\hat{W}(\mathcal{C})|V\rangle=\mid V \text { rotated inside } \mathcal{C}\rangle \\
\hat{l}
\end{gathered}
$$

Figure: If there is SSB in the dual theory, \langle fund $| \hat{W}(\mathcal{C}) \mid$ fund $\rangle \sim e^{-\sigma \text { Area }}$

3D dual superconductor model proposed by t'Hooft

$$
\partial_{\mu} \bar{V} \partial_{\mu} V+m^{2} \bar{V} V+\alpha(\bar{V} V)^{2}+\beta\left(V^{N}+\bar{V}^{N}\right)
$$

where V represents the vortex sector. Displays a global magnetic $Z(N)$ symmetry.

- when $m^{2}<0 \Rightarrow$ SSB \Rightarrow Domain walls (confining strings)

Chains of monopoles and center vortices in $3 D$
Lemos, Teixeira \& LEO (2011)
$N=2$

$$
\begin{aligned}
& +\infty+\cdots+\cdots+\sum_{d}=\sum_{k=1}^{2 n} \int_{0}^{L_{k}} d s\left[\mu+\frac{1}{2 \kappa} \dot{u}_{\alpha}^{(k)} \dot{u}_{\alpha}^{(k)}\right]+\frac{1}{2} \sum_{k, k^{\prime}} \int_{0}^{L_{k}} \int_{0}^{L_{k}^{\prime}} d s d s^{\prime} v\left(x^{(k)}(s), x^{\left(k^{\prime}\right)}\left(s^{\prime}\right)\right)
\end{aligned}
$$

Building block

$$
Q\left(x, x_{0}\right)=\int_{0}^{\infty} d L e^{-\mu L} \int[D x(s)] e^{-\int_{0}^{L} d s\left[\frac{1}{2 \kappa} \dot{u}_{\alpha} \dot{u}_{\alpha}+\phi(x(s))\right]}
$$

Small stiffness:

$$
\left[-\frac{1}{3 \kappa} \nabla^{2}+\phi(x)+\mu\right] \mathcal{Q}=\delta\left(x-x_{0}\right)
$$

- Summing over the ensemble of closed loops and chains \rightarrow ' t Hooft vortex model with $m^{2} \propto \mu \kappa$
- Chains are essential to describe typical $Z(2)$ processes that lead to the $Z(2)$ terms!

