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2 Introduction to GPU computing & GooFit

2> Pseudo-experiments for p-value estimation:
GoofFit vs RooFit performance study

» Exploring the applicability limits of Wilks theorem

2» Summary & Outlook
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Introduction: GPU computing & GooFit
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Introduction to GPU-accelerated computing

2 Hetherogeneous GPU-acccelerated Application Code

_ Sequenﬁa'

GPU
computing is the use of a Graphics

Processing Unit to accelerate scientific
applications (among other apps).

Enhancement of application
performance obtained by
offloading compute-intensive Compute
portions to the GPU (the intensive
device) while the remainder portion
of the code still runs on the

CPUs (the host).
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Introduction to GPU-accelerated computing

2 Hetherogeneous GPU-acccelerated Application Code

computing is the use of a Graphics 1 .
_ ) R Sequential
Processing Unit to accelerate scientific portion

applications (among other apps).

Enhancement of application
performance obtained by
offloading compute-intensive Compute
portions to the GPU (the intensive
device) while the remainder portion
of the code still runs on the

CPUs (the host).

CPU

2 From the user’s perspective? Applications simply run significantly faster!
How much faster? It depends - of course - on the application...

We want to explore it in the context of the
‘end-user HEP analyses’ by using GoofFit.
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GooFit framework

» GooFit is a data analysis tool for HEP, that interfaces ROOT/RooFit to CUDA parallel
computing platform on nVidia GPU. It also supports OpenMP.

2> The FitManager object forms the interface between MINUIT (running on CPU) and a GPU

which allows a PDF representing the physical model Control & Data Flow of a GooFit program

CPU [ser codd- GPU
2] 1

(GooPd £ object) to be evaluated in parallel.

D Class :
] Method | FitFun |"| calculateNIl |2

GoofFit : 1l
Bl viNuIT ; L

User-defined | copyParams |
--------- ® Has-a relation H

== Program flow
w= Data flow
1,2 Order of operation

<= .
= Repeated operation

| operator |

2

FitControl

GoofFit: a library for massively parallelising maximume-likelihood fits
R.Andreassen et al., J.Phys.:Conf.Ser. 513 (2014) 052003

01/09/16 Leonardo Cristella




GooFit framework

» GooFit is a data analysis tool for HEP, that interfaces ROOT/RooFit to CUDA parallel
computing platform on nVidia GPU. It also supports OpenMP.

2> The FitManager object forms the interface between MINUIT (running on CPU) and a GPU

which allows a PDF representing the physical model Control & Data Flow of a GooFit program

CPU [ser codd- GPU
2] 1

(GooPd £ object) to be evaluated in parallel.

Fit parameters are estimated at each
NegLogLikelihood minimization step
on the host side (CPU) while the PDF/NLL
is evaluated on the device side (GPU) —— Ht

[all that until convergence]: et [rmn (3] cveuman |-
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== Program flow
w= Data flow
1,2 Order of operation

<= .
= Repeated operation

| operator |

2

FitControl
[memory

fit params

p PDF/NNL
tuning transfers]

evaluation

GoofFit: a library for massively parallelising maximume-likelihood fits
R.Andreassen et al., J.Phys.:Conf.Ser. 513 (2014) 052003
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2 This can be seen by analysing a cycle with the monitoring tool nVIDIA Visual Profiler [nvvp]
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GooFit framework

» GooFit is a data analysis tool for HEP, that interfaces ROOT/RooFit to CUDA parallel
computing platform on nVidia GPU. It also supports OpenMP.

2> The FitManager object forms the interface between MINUIT (running on CPU) and a GPU

which allows a PDF representing the physical model Control & Data Flow of a GooFit program

CPU [ser codd- GPU
2] 1

(GooPd £ object) to be evaluated in parallel.

Fit parameters are estimated at each
NeglLoglikelihood minimization step
on the host side (CPU) while the PDF/NLL

is evaluated on the device side (GPU) —— Ht :
1 etho : -

[all that until convergence]: —. [ rern |2 cocaren oy [ epermer |

- MINUIT : JL‘ 2
User-defined | copyParams |
--------- ® Has-a relation H
== Program flow :
w=> Data flow
1,2 Order of operation FltControl
[memory -

fit params - Repeated operation

p PDF/NNL
tuning transfers]

evaluation

GoofFit: a library for massively parallelising maximume-likelihood fits
R.Andreassen et al., J.Phys.:Conf.Ser. 513 (2014) 052003

2 This can be seen by analysing a cycle with the monitoring tool nVIDIA Visual Profiler [nvvp]

2 The FitControl object allows to switch between %2 fits and ML fits (either unbinned and binned).
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A preliminary example of GooFit/GPUs capabilities

» Parameter estimation is a crucial part of many physics analyses.

PDF evaluation on large datasets is usually the bottleneck in the MINUIT algorithm.

GoofFit acts as an interface between the MINUIT minimization algorithm and a parallel
processor which allows a Probability Density Function to be evaluated in parallel.

>
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A preliminary example of GooFit/GPUs capabilities

» Parameter estimation is a crucial part of many physics analyses.

PDF evaluation on large datasets is usually the bottleneck in the MINUIT algorithm.

GoofFit acts as an interface between the MINUIT minimization algorithm and a parallel
processor which allows a Probability Density Function to be evaluated in parallel.

> A preliminary test was done with an
Unbinned ML fit either by using a single
CPU and by using an additional GPU

(an nVIDIA Tesla C2070 hosted @ Bari T2).

Events according to a Voigtian model
(convolution is CPU-intensive) are gene-
rated & fitted. The time needed (the ne-
gligible generation time is not included)
is studied as a function of the #events:
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For 10M events RooFit needs 61h+23m & GooFit takes 4m+39s: speed-up ~ 750

For 1M fitted events with RooFit ... you need to wait overnight,

For 10M fitted events with GooFit ... you need to take an espresso!

> As expected, for a Binned ML fit, the speed-up ranges from few units to few dozens (with #bins)
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MC toys for p-value estimation: GooFit vs RooFit
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Test application: the Physics case

To test the computing capabilities of GPUs with respect to CPU cores: a high-statistics toy Monte
Carlo technique has been implemented both in ROOT/RooFit and GooFit frameworks with the aim
to estimate the (local) statistical significance of the structure observed by CMS close to the kinema-
tical boundary of the J/1 ¢ invariant mass in the 3-body decay B* — J/w ¢K"[PLB 734 (2014) 261]
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Test application: the Physics case

To test the computing capabilities of GPUs with respect to CPU cores: a high-statistics toy Monte
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Test application: the toy MC method

» MC pseudo-experiments are used to estimate the probability (p-value) that background
fluctuations would - alone - give rise to a signal as much significant as that seen in the data.

Toy MC fit cycle (for each generated fluctuation)

®» Generation of fluctuated background binned distribution (3-body phase-space model)
[total #entries fixed by data = fits with not-extended ML ]

2» Null Hypothesis binned ML fit performed with the phase-space model only

>
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Test application: the toy MC method

» MC pseudo-experiments are used to estimate the probability (p-value) that background
fluctuations would - alone - give rise to a signal as much significant as that seen in the data.

Toy MC fit cycle (for each generated fluctuation)

®» Generation of fluctuated background binned distribution (3-body phase-space model)
[total #entries fixed by data =) fits with not-extended ML ]

2» Null Hypothesis binned ML fit performed with the phase-space model only

®» Alternative Hypothesis binned ML fit performed with the phase-space model + Voigtian PDF
[the latter is truncated to correctly account for the kinematical threshold; the
Gaussian resolution function has width fixed @ 2MeV]. Signal yield constrained > 0.

Note: for each bin, the PDF value is estimated by ROOT integration over the bin
[time-consuming but needed: steep signal w.r.t. bin size]
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Hardware set-up

®» Used:  1serverhosting2 nvIDIATeslak20 , & 1 server hosting 1 nVIDIA TeslaK40 =«
‘ o\ ] NVIDIA.

Tesla K20 @ BC3S ) Tesla K40 @ ReCas "

I x GKI10B
2,880

2 x GKI10 Numero of GPU

2 x 2,496 Number of CUDA cores
Memory per GPU (GDDR5) 12 GB
288 Gbytes/sec

Numero of GPU

Number of CUDA cores
Memory per GPU (GDDRS5) 2x5GB

Memory bandwidth per board

Memory bandwidth per board 208 Gbytes/sec

20 cores: E5-2640 v2 @ |.70GHz (40 with HT)

|6 cores: E5-2640 v2 @ 2.00GHz (32 with HT)
256 GB RAM

64 GB RAM

(*) http://www.recas-bari.it

Leonardo Cristella
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Performance of GooFit vs ROOT/RoofFit: a preliminary result

2 A first result obtained is simple comparison between the MC Toys procedure running on a single GPU
via GooFit and on a single CPU . The speed ups:

S = 62 (TeslaK40) S =48 (TeslaK20)

For 15k MC Toys produced (Highly time consuming for ROOT: ~6 hours)
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Performance of GooFit vs ROOT/RooFit: a preliminary result

2 A first result obtained is simple comparison between the MC Toys procedure running on a single GPU
via GooFit and on a single CPU . The speed ups:

S = 62 (TeslaK40) S =48 (TeslaK20)

For 15k MC Toys produced (Highly time consuming for ROOT: ~6 hours)

This kind of application (binned fit & few parameters) doesn’t exploit the whole GPU computational

capability.

| NVIDIA-SMI 340.29 Driver Version: 340.29 | Example snapshot of

| + + + o : .
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC | nvidia-smili (nV|d|a
| Fan Temp Perf Pwr:Usage/Cap]| Memory-Usage | GPU-Util Compute M. | . .

| + + | monitoring tool — top)
[ ® Tesla K20m Off | 0000:02:00.0 off | 0 |

| N/A 29C PO 51W / 225W | 82MiB / 4799MiB | 66% Default | for a single process.

[ 1 Tesla K20m Off | 0000:84:00.0 off | Q|

| NJA 27C P8 25W / 225W | 12MiB / 4799MiB | 0% Default

| Compute processes: GPU Memory |

| GPU PID Process name Usage |

| |

| 0 31180 GooToyMC 67MiB |
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How to exploit the full computational power of a GPU?
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nVidia Multi Process Server

2 The nVidia Multi Process Server (MPS) is a tool developed by nVidia that allows to execute

multiple processes (up to 16) on the same GPU chip. It acts as a scheduler: manages the
access to memory and CUDA cores.

Here is an example of how it affects the occupancy of a TeslakK40 GPU:

01/09/16 Leonardo Cristella




nVidia Multi Process Server

2 The nVidia Multi Process Server (MPS) is a tool developed by nVidia that allows to execute
multiple processes (up to 16) on the same GPU chip. It acts as a scheduler: manages the
access to memory and CUDA cores.

Here is an example of how it affects the occupancy of a TeslakK40 GPU:
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Performance of GooFit on nVIDIA Multi Process Server

access to memory and CUDA cores.

®» Each process uses:
- 1(shared) GPU and 1(exclusively assigned) CPU

» The nVidia Multi Process Server (MPS) is a tool developed by nVidia that allows to execute
multiple processes (up to 16) on the same GPU chip. It acts as a scheduler: manages the

There is a saturation effect (Amdhal’s law)

- = - -
- DD W A~ O

+5000 Toys Tesla K20
15000 Toys Tesla K20
O5000 Toys Tesla K40
15000 Toys Tesla K40

—_
o

Speed Up

O = N W b OO N 0 ©

’
s P .

L

1 N
X

n=l1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# indipendent concurrent processes per single GPU
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Performance of GooFit on nVIDIA Multi Process Server

» The nVidia Multi Process Server (MPS) is a tool developed by nVidia that allows to execute

Speed Up

multiple processes (up to 16) on the same GPU chip. It acts as a scheduler: manages the

access to memory and CUDA cores.
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hosting 32 CPUs via HyperThreading)
2 GPUs vs 1 GPU
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Amdhal’s Law

In computer architecture, Amdahl's law gives the theoretical speedup when using multiple
processors as a function of the fraction (P) of the code that can be parellilised and of the
number of multiprocessors (n) used.

S [Speed Up]

—_
N

'y
o

01/09/16
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P =0.9712 +0.0041

| 11 1 | 111 | 111 | 111 I 11 1 | 11 1 [ | | 11 |

0 2 4 6 8 10 12 14 16
n [Concurrent Processes]

S [Speed Up]

NN

IIIIIIIIII|III|III|III|llI|III||II||[||II||]|

—_
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Performance of GooFit on nVIDIA Multi Process Server

» The nVidia Multi Process Server (MPS) is a tool developed by nVidia that allows to execute
multiple processes (up to 16) on the same GPU chip. It acts as a scheduler: manages the
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Performance of RooFit on CPUs with PROOF-Lite

» To efficiently run RooFit MC toys in parallel on the 72 CPUs available on the 2 servers
hosting the GPUs, we use PROOF-Lite that is a dedicated version of PROOF optimized
for single multi-core machines [*].

This ROOT/RooFit extension implements a 2-Tier architecture with the master merged
into the client, controlling directly the workers (workers are processes not threads).

PROOF has a Pull architecture: all workers end at
the same time avoiding long queues, unavoidable
by running RooFit on a cluster in Push approach
(the last job determines the total exec. time).

>

[*] G.Ganis et al., PoS ACAT08 (2008) 007; A.Pompili et al., J. Phys.: Conf. Ser. 396 032043, CHEP12, 2012
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» To efficiently run RooFit MC toys in parallel on the 72 CPUs available on the 2 servers
hosting the GPUs, we use PROOF-Lite that is a dedicated version of PROOF optimized
for single multi-core machines [*].

This ROOT/RooFit extension implements a 2-Tier architecture with the master merged
into the client, controlling directly the workers (workers are processes not threads).
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then there is a saturation effect (Amdhal’s law) +“" # Workers (CPUs)
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[*] G.Ganis et al., PoS ACAT08 (2008) 007; A.Pompili et al., J. Phys.: Conf. Ser. 396 032043, CHEP12, 2012
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Performance comparison: RooFit/PROOF-Lite vs GooFit/MPS - |

2> A first performances’ comparison can be carried out on the server hosting 32 CPUs and 2 GPUs TK20
as a function of the # of pseudo-experiments produced.

2 | We can compare: - 1 PROOF-Lite job using 30 workers (on 30 CPU cores)
with: - 2 GooFit/MPS jobs (each one running 15 simultaneous processes)

T RooFit

47,50 . R S — n=30
45,00 .' ------------------- 6" @ ~nN 45 n=30=N [2_TK 20 GooFit
42,50 N=30

40,00
37,50

35,00
3250 © GooFitMPS vs Single GooFit process (1GPU) »
v ’ ® RooFit/Proof-Lite (30CPUs) vs Single RooFit process (1CPU)
o 30,00 ©® GooFit/MPS vs RooFit/Proof-Lite (30 CPUs)

= 27,50
© 25,00
3 22,50
Q. 2000 [--@----®------ .. g---- 0. iR CEE e L EEEE PR R P
17,50
15,00
12,50
10,00 .
7,50
5,00
2,50

0,00
1000 10000 100000 1000000

——

50,00

2-TK?20

# of processed MC toys (per application)
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Performance comparison: RooFit/PROOF-Lite vs GooFit/MPS - |

2> A first performances’ comparison can be carried out on the server hosting 32 CPUs and 2 GPUs TK20
as a function of the # of pseudo-experiments produced.

2 | We can compare: - 1 PROOF-Lite job using 30 workers (on 30 CPU cores)

with: - 2 GooFit/MPS jobs (each one running 15 simultaneous processes)
]
1

1
1
1 .
RookFit
o ol (it
45:00 .' ------------- R SRR °----- S ~n45 n=30=N [2_TK 20 - TGooFit
42,50 . N=30
4000 2-TK20
37,50
35,00 . .
32,50 ® GOOFIUMPS vs Single GooFit process (1GPU) » Good scaling with extended # of MC toys:
v ’ o RooFi_t/Proof-Lite (30_CPUs) vs_SingIe RooFit process (1CPU)
o 30,00 ® GooFit/MPS vs RooFit/Proof-Lite (30 CPUs)
= 27,50 SPROOF—Lite L .
T 2500 n=30 1 PROOF-Lite job using 30 workers
Q 22,50
Q. 20,00 [--@----®------ e . ..g----f Q... R ~20 VS
o 1 RooFit job using 1 CPU
12,50
‘323 g B e R 0RO ~9 1 GooFit/MPS job
5,00 Sﬁ”g‘mo (running 15 simultaneous processes)
2,50 =
0,00 VS
1000 10000 100000 1000000 1 GooFit job

# of processed MC toys (per application)
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Performance comparison: RooFit/PROOF-Lite vs GooFit/MPS - I

2> A second performances’ comparison can be carried out on both the servers hosting both type of
GPUs (TK20 & TK40) as a function of the # of pseudo-experiments produced.
Here we limit the comparison to 16 independent processes (due to MPS limit for the single TK40)

» We can compare: - 1 PROOF-Lite job using 16 workers (on 16 CPU cores)
with: - 1 GooFit/MPS job running 16 simultaneous processes on single T1(40 / Tl(ZO
7’

TRooF it

‘ — n=16
n=16=N |1k 40 TGooFit

TK 40

N=16

1000,00
® TeslaK40 vs TeslaK20
® TeslaK40 vs RooFit/Proof-Lite (16 CPUs)
'a ® Tesla K20 vs vs RooFit/Proof-Lite (16 CPUs)
©
b
100,00
0 ~60
o TS V—_ Y— | J—— Ssssse [ Tp—— B Pest eI 00seEEsIE00080ssE000
— b--@----@=------ ®----- o ---- ®------ @ - -
(7] ~N
a 40
>
o) 10,00
(V]
(]
Q
(V)
h--@----R.... ®----- @®----- ®------ @@ @ -@---Omeeeeo..
1,00
0,10

1000 10000 100000 1000000

# of processed MC toys (per application)
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Performance comparison: RooFit/PROOF-Lite vs GooFit/MPS - I

2> A second performances’ comparison can be carried out on both the servers hosting both type of
GPUs (TK20 & TK40) as a function of the # of pseudo-experiments produced.
Here we limit the comparison to 16 independent processes (due to MPS limit for the single TK40)

» We can compare: - 1 PROOF-Lite job using 16 workers (on 16 CPU cores)
with: - 1 GooFit/MPS job running 16 simultaneous processes on single T1(40 / Tl(ZO
7’

¢
L /
1000,00 4 /’
g 4
® TeslaK40 vs TeslaK20 R //
® TeslaK40 vs RooFit/Proof-Lite (16 CPUs) TRooF it /

'a ® Tesla K20 vs vs RooFit/Proof-Lite (16 CPUs) ‘ _ n=16 ,/
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o Gain within micro-architecture: TK40 vs TK20
# of processed MC toys (per application)

01/09/16 Leonardo Cristella 18/24



Performance comparison: RooFit/PROOF-Lite vs GooFit/MPS - Il

2 A third performances’ comparison can be done from the point of view of the end-user/analyst and
the time needed to deliver the pseudo-experiments’ task.
Let us assume he has at his own disposal the full computational power used in these studies:

2 servers equipped with 3 GPUs (2 TK20 & 1 TK40 ) and 72 CPU cores (36 physical cores + HyperThr).

10000000
— 1000000
2
©
8]
?
o0
O 100000
-
—
(%)
Sd
()
& 10000
‘B
©
)]
(%]
% 1000
w
100
10

01/09/16

.....................................................................................................................

el e el - oo

100 1000 10000 100000
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- 11 days
TOTAL
SPEED UP
X 1M Toys
S ~45
\ ~ 6 hours

To get a signal significance
>50, a p-value < 3x1077 is
needed, namely at least
3.3M toys are needed.

To estimate a signal signif.
much more toys are needed
(see next slide)




P-Value & statistical significance estimation

>

The final obtained Ay’ distribution
(MC toys production was stopped once

a fluctuation with Ay’ >Axf)ATAE was found)
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P-Value & statistical significance estimation

| The final obtained Ay’ distribution

Legend 2 Mean = 1.05570 +0.01229
. ' »  Toy MC Data A g569 ean ' -
(MC toys production was stopped once . Signal + Bkg Fit X I' = 0.03025 +0.00982
1 o e Bkg Only Fit _
. . 2 2 6 =0.002
I S L
a fluctuation with Ay” > Ay;,.,! was found) = el L. =226 7 =79.06 Ay =56.90
] (\l120_ sig bkg
: S P
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) 7 1 Mean 1.116 B s
< 10 i RMS 1805 -
(5 1 Underflow 0 80_
= 6 i Overflow 0 —
= - 1 L
O 45 1 -
=10g v 60— +
) - -
T B
3 - ) 40—
10 - -
E A pura =530 B
— T ’¢’> ol /I .
102 ! Vg 2041
E 1 4 j : '
E : // : “
10 : ! ..
E 1 0III|.I."|"-i---l-.JLIJLLJlLIJLIJLI_JlL
= I | 4 1.1 1.2 1.3 14 15
TE II“ |II| LW T M K'K) - m(uu)[GeV]
0 10 20 30 40 50 5, 60
Ay
>

01/09/16 Leonardo Cristella




Toy MC Event cycles

P-Value & statistical significance estimation

N
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Legend
o Toy MC Data
Signal + Bkg Fit

Mean = 1.05570 +0.01229
I' =0.03025 +0.00982

e Bkg Only Fit
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2 The p-value estimation is straightforward:

+00 1
—value : P= Ay’ ~—— =173-10°
F AX£ ) * T s170°

Compatible with the lower limit of 50 for the statistical significance quoted in the
CMS paper PLB 734 (2014) 261 on the basis of 50.5 millions of MC toys (by RooFit).
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Equivalent (gaussian) statistical significance:

70 = 1)‘1(1 ~-P)o=5520

 NENSN—— >

Inverse function of the
cumulative distribution

of the standard gaussian
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Exploring the applicability limits of Wilks theorem
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Wilks theorem & the need of MC toys - |

[*]1 S.S.Wilks, Ann.Math.Stat. 9 (1938) 60-62

» The Wilks*ltheorem is often used to estimate the p-value associated to a new/unexpected signal:

Given two hypotheses: ® Null hypotheses H, with v, d.o.f.
» Alternative hypotheses H, with v, d.o.f.

... any test statistic 7, defined as a likelihood ratio -2InA = —ZIn( LHO )
H,

[or similarly (in the asymptotic limit) as a AXZ = Xéo —Xf{l],
approaches a X2 distribution with v=v, -v, d.o.f,, provided that these regularity conditions hold:

®» H, and H, are nested ( H, “includes” H )
» while H, — H, the H, parameters are well behaving (defined and not approaching some limit)

» asymptotic limit (of a large data sample)

Leonardo Cristella
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Wilks theorem & the need of MC toys - |

[*] S.S.Wilks, Ann.Math. Stat. 9 (1938) 60-62

» The Wilks*ltheorem is often used to estimate the p-value associated to a new/unexpected signal:

Given two hypotheses: ® Null hypotheses H, with v, d.o.f.
» Alternative hypotheses H, with v, d.o.f.

... any test statistic 7, defined as a likelihood ratio -2InA = —ZIn( LHO )
H,

[or similarly (in the asymptotic limit) as a A)(z = X?IO - Xél],
approaches a X2 distribution with v=v, -v, d.o.f,, provided that these regularity conditions hold:

®» H, and H, are nested ( H, “includes” H )
» while H, — H, the H, parameters are well behaving (defined and not approaching some limit)

» asymptotic limit (of a large data sample)
0.0)

2 Once this theorem holds, the p-value associated to the signal is given by: P = f Xﬁl—w} (t)dt
The use of pseudo-experiments to estimate the p-value is not needed obs
(but still suggested)

» When null hypothesis is background-only and the alternative is background+signal,
often the above regularity conditions are not all satisfied, and MC toys are mandatory !

Leonardo Cristella
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Wilks theorem & the need of MC toys - Il

2 Indeed this is the case we are dealing with, here!
The signal parameters in the model of H, hypothesis are mass ( 711), width (I') and yield ( uz0).

When [, — H the problem is that: 1) mand [ are not well defined, 2) utend to the null limit.
This explains why we have used pseudo-experiments.

» The distributions of test statistic are in general nonpredictable and can be extracted from MC toys!

01/09/16 Leonardo Cristella




Wilks theorem & the need of MC toys - Il

2 Indeed this is the case we are dealing with, here!

The signal parameters in the model of H, hypothesis are mass ( 711), width (I') and yield ( uz0).

When [, — H the problem is that: 1) mand [ are not well defined, 2) utend to the null limit.
This explains why we have used pseudo-experiments.

» The distributions of test statistic are in general nonpredictable and can be extracted from MC toys!
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The possible distributions in the different cases
are shown & two special cases will be discussed #
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Special case in which Wilks theorem holds

2 Consider the test statistic 7, =-2 InA(u) [ u: strength parameter ] as the basis of the statistical test.
This could be a test of u=0 for purposes of establishing the existence of a signal process (no constrain

on ).

_tu/z

In the latter case, following Cowan et al. [*] the PDF of the test 1 1
statistic approaches a chi-square distribution for 1 d.o.f.: f(tu ““) - \/ﬂ \/7 ¢
[in agreement with Wilks theorem!] K

[*] Cowan et al., EPJ C71 (2011) 1554
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Special case in which Wilks theorem holds

» Consider the test statistic /, =-2In A(u) [ u: strength parameter ] as the basis of the statistical test.
This could be a test of u=0 for purposes of establishing the existence of a signal process (no

constrain on u).

In the latter case, following Cowan et al. [*] the PDF of the test

statistic approaches a chi-square distribution for 1 d.o.f.: f(tu ““) - ¢
) _ . N2 [t
[in agreement with Wilks theorem!]

f = 0.00000 +0.00000

2 | Letus fixthe m & I' parameters, Likelihood ratio distribution T 0 00E

(to the CMS estimates from the fit to data)
while leaving i free in our ML fits
( uis not properly a signal yield ).

By fitting our likelihood ratio . Fit pull
distrib. we indeed get: 6

d.of.=1.014+0.001
Xom =1.009  P(fit)=0.118

[*] Cowan et al., EPJ C71 (2011) 1554

i 0 0

L
20

-2Ink
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Special case: asymptotic formula by Cowan et al. [*] holds

2> Consider the special case of the test statistic , with the purpose to test u=0 in a class of model
where we assume u>0. Rejecting u=0 (the null hypothesis) leads to the discovery of a new signal.

| -2InA(0) ith (120

In this case following Cowan et al. the test statisticis: ¢, =

0 i<
Cowan et al. derive analitically that the PDF of ¢, 1= 1 [ 1 - /2
is an equal mixture of a delta function at 0 & g(q, ‘M =0)= —6(q0)§+— — e V7
a chi-square distribution for 1 d.o.f.: 2012 i 27 \/q,

[*] Cowan et al., EPJ C71 (2011) 1554
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Special case: asymptotic formula by Cowan et al. [*] holds

2> Consider the special case of the test statistic , with the purpose to test u=0 in a class of model

where we assume u>0. Rejecting u=0 (the null hypothesis) leads to the discovery of a new signal.

In this case following Cowan et al. the test statisticis: ¢, =

0
Cowan et al. derive analitically that the PDF of ¢, Tl
is an equal mixture of a delta function at 0 & g(q, ‘M =0)= 56(q0)§+ 5

a chi-square distribution for 1 d.o.f.:

2 | Let us fix the m & ' parameters
(to the CMS estimates from fit to data) while
constraining (=0 in our ML fits

( urepresents a signal yield here).

By fitting our likelihood ratio
distrib. we indeed get:
d.of.=0.992+0.001
weight C , 0507001

[*] Cowan et al., EPJ C71 (2011) 1554
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Special case: asymptotic formula by Cowan et al. [*] holds

2> Consider the special case of the test statistic , with the purpose to test u=0 in a class of model
where we assume u>0. Rejecting u=0 (the null hypothesis) leads to the discovery of a new signal.

-2In A(0) ith (120

In this case following Cowan et al. the test statisticis: ¢, =

0 i<
Cowan et al. derive analitically that the PDF of ¢, 1= 1 [ 1 1 - /2
. . . =0)=—-9 b 9o §
is an equal mixture of a delta function at 0 & g(q, ‘M ) (gy)+ \/_ e |
a chi-square distribution for 1 d.o.f.: 201 2)N2m 9o
2 | Letusfixthe m & T parameters o osusc 00007
(to the CMS estimates from fit to data) while -
constraining (=0 in our ML fits
( urepresents asignal yield here). | ~& (IS, | [

By fitting our likelihood ratio | — SR SN
distrib. we indeed get: :

d.o.f.~0.9920.001
weight C , =0.5070.01

I T

[*] Cowan et al., EPJ C71 (2011) 1554 -2InA
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Special case: asymptotic formula by Cowan et al. [*] holds

» The quality of the previous fit (with a x? pdf + a very narrow step function at 0) is
good enough:

| 106 =
g = n,,s = 0.992 +0.001
S - fd':,ta = 0.507 +0.001
% 10° Xnorm = 1.013
= = toys = 9.00e+06
% B
41
L 10 =
L v
10 7
= - Total p.d.f.
E v __ """ Step function p.d.f.
102 & : """ Chi square p.d.f.
= e
10 “F n
B RN T T T
| IIII||I| | IlIIIIII | IlIIIIll | 11 1 11
1
107 1072 107! 1 10

ANLL

X2 =1013 P(fit)=0.035
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Summary & Outlook
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» In order to test the computing capabilities of GPUs with respect to traditional CPU cores,
a high-statistics toy Monte Carlo technique has been implemented both in ROOT/RooFit
and GooFit frameworks with the purpose to estimate the local statistical significance of
a - possibly exotic charmonium-like - signal recently confirmed by CMS (it was firstly
observed by CDF).

The optimized GooFit applications running, by means of the MPS, on GPUs, hosted by
the servers used in the presented test, provides a striking speed-up performance with
respect to the RooFit application parallelized on multiple CPUs by means of PROOF-Lite.
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» In order to test the computing capabilities of GPUs with respect to traditional CPU cores,
a high-statistics toy Monte Carlo technique has been implemented both in ROOT/RooFit
and GooFit frameworks with the purpose to estimate the local statistical significance of
a - possibly exotic charmonium-like - signal recently confirmed by CMS (it was firstly
observed by CDF).

The optimized GooFit applications running, by means of the MPS, on GPUs, hosted by
the servers used in the presented test, provides a striking speed-up performance with
respect to the RooFit application parallelized on multiple CPUs by means of PROOF-Lite.

2 By means of GooFit it has also been easier to explore the (asymptotic) behaviour
of a likelihood ratio test statistic in different situations in which the Wilks Theorem
may apply or does not apply because its regularity conditions are not satisfied.
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2 The presented method can be extended to situations with a new unexpected signal,
where a global statistical significance must be estimated.

To include properly the Look-Elsewhere-Effect a sort of scanning technique of the
relevant mass spectra needs to be implemented.
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2 The presented method can be extended to situations with a new unexpected signal,
where a global statistical significance must be estimated.

To include properly the Look-Elsewhere-Effect a sort of scanning technique of the
relevant mass spectra needs to be implemented.

This can certainly either ...

- increase the execution time of the fits to be performed on the single fluctuation, and...

- require to try different scan models (and repeat the whole procedure) in order to
evaluate the associated systematic uncertainty.

In this situation:

- the RooFit approach would be unbearable (highly time-consuming!),
- turning to GPUs would be mandatory,

- GooFit would be the reliable & crucial tool.
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If you are interested to start learning and working with GooFit ...
1) you can take the tutorial by R.Andreassen: http://indico.cern.ch/conferenceDisplay.py?confld=235992

2) GooFit source code lives in a GitHub repository: https:/github.com/GooFit
3) you may want to exchange useful feedbacks on the GooFit Google Group.

Thank you for your attention

Let me thank in particular:

* my supervisor of CMS-Bari Alexis Pompili (University of Bari & INFN),
Adriano Di Florio (University of Bari & INFN), Giacinto Donvito (INFN-Bari, Tier2 manager)
and the support by Italian Project 20108T4XTM - MIUR PRIN 2010-2011 - STOA-LHC

* Mike Sokoloff (University of Cincinnati) coordinator of the GooFit project funded by NSF
(NSF-1414736 Enabling HEP at the Information Frontier Using GPUs and Other Many/Multi-Core Architectures)

* Brad Hittle (Ohio Supercomputer Center) and Tommaso Dorigo (INFN-Padova)
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Why GPU computing? Moore’s Law

Moore’s Law :"the number of transistors per unit area
would double approximately every two years”

Clock Frequency

B AM0

M Cypress
DEC

B Fujitsu

B Hitachi

B HP

M BM

B Intel

B Motorola

| S

M sal

B Sun

B Cyrix

Il HAL

B NexGen

8
g

1000

(log)
g

-
o

Clock Frequency (MHz)

7”7V
1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

Year

Stanford CPU Database - cpudb.stanford.edu

Physical limit: heat dissipation
P=CX VX fT2

V — working tension
C — capacity
f — clock frequency

Future developments
cannot rely anymore on an
exponential growth of
frequency

A new approach is needed: a possible solution is GPU-computing.
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GPUs’ architecture

“If you were plowing a field, which would you rather use:
Two strong oxen or 1024 chickens?”

Seymour Cray

YUUUUYUY GUUU UYL
UYLV YUY YUY UV

VOUY YUY YUY OYUY
VYVYYVUYYYYYIYYY

VUV UUOY YOOV UV
UV UYL YUY UV
YUY VUL OUOUOUUY
VUUY YUY UUUV UV
CUUUUUUY YUV UV
YOOV YUY UV
VUUN VYUY YUY OO
VUYYIYUY OO UUUY
VUUV UV YUY UV
VU VYUY UUOUUUOY
WOV VOVY YUY U
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GPUs’ architecture

“If you were plowing a field, which would you rather use:
Two strong oxen or 1024 chickens?”

Seymour Cray

VYUY YUY YUUYNUDY
YOUY OV OO UV
VUVY VYUY UUUUUUUY
D
VYUY YUY UUUUNUUY
CUUUULUY UUUUUUOY
YYYYUUUU UUUU Y
VUV VUV UUUU NIV
VYUYV UUUUUUOY
VYUY UUUY UUUIUUUY
CUUYUUY UUUTUUOY
VUYL UUUY UUUUUUUY
D
YUUYUUUY UUUIUUUY
CUUY VY UUUUUUUY
B
CUUUUUUU UUUU U
VY OO UUUUOUOY

We definetely choose the chickens
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GPUs’ architecture

What is a GPU? Graphic Processing Unit

ml [ [ [TTITTTTIITTN
m | ([ [[[[[/][]]]
D =
o | |
O
m [ [[] | |
m [ [TTTTTTITTTT]
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GPUs’ architecture

What is a GPU? Graphic Processing Unit

GPU

ml [ [ [TTITTTTIITTN
m [ [ [T [[TTI[[[]

=
| ([T ]] (

-

m [ [[] |

m [ [TTTTTTITTTT]

1970s: first graphical user interface
produced requiring dedicated microchips

Video games and 3D graphics: strong
economic stimulus for GPU development
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GPUs’ architecture

What is a GPU? Graphic Processing Unit

1970s: first graphical user interface
produced requiring dedicated microchips

Video games and 3D graphics: strong
economic stimulus for GPU development

Consequences on GPU architecture:

Thousands of cores

ml [ [ [T I[TTIETTTT)
m [ [ [T [[TT[[T]]

GPU

=
| ([T ]] (

-

m [ [[] |

m [ [TTTTTTITTTT]
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GPUs’ architecture

What is a GPU? Graphic Processing Unit

1970s: first graphical user interface
produced requiring dedicated microchips

Video games and 3D graphics: strong
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x2]

GPU

Numero di GPU

INumero di CUDA cores I

Memoria per GPU (GDDRY5) Memoria per GPU (GDDRY5)

Banda di memoria per board Banda di memoria per board

CPU

16 cores : E5-2640 v2 @ 2.00GHz (32 con HT)
- 64 GB RAM



GooFit framework

GooFit is a data analysis tool for HEP, that interfaces ROOT/RooFit to CUDA parallel
computing platform on nVidia GPU. It also supports OpenMP.

Control & Data Flow of a GooFit program

CPU [user codel a1 GPU
2‘ 1

[Device
side]

t,

| operator I

) Class “t

[ Method | FitFun |-’| calculateNl! |
GooFit : 1
Bl viNuIT i u‘

User-defined | copyParams |
--------- # Has-a relation H

== Program flow
== Data flow
1,2 Order of operation

. )
= Re peated operation

2

2

FitControl

GooFit: a library for massively parallelising maximum-likelihood fits
R.Andreassen et al., J.Phys.:Conf.Ser. 513 (2014) 052003

It is an open source project, under development and funded by US NSF.
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GooFit profiling

Example of a snapshot of the profile of a GooFit process provided by Nvidia

Visual Profiler:
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