Unfolding methods in HEP

XII Quark Confinement and the Hadron Spectrum

from 29 August 2016 to 3 September 2016
Europe/Athens timezone
migration probabilities

CONF12
Thessaloniki, Greece
Stefan Schmitt, DESY

Outline

- Introduction on unfolding
- Example unfolding problem
- Unfolding methods
- Comparison

Introduction

- Unfolding: estimate truth distribution from measurement, distorted by
- detector effects
- statistical fluctuations
- truth distribution: cross sections or similar quantities
- Unfolding is also referred to as "correction for detector effects"
- Integral equation of $1^{\text {st }}$ kind
$\int k(x, y) f(y) d y+\delta(x)=g(x)$
given observations $g(x)$ the kernel $k(x, y)$
and fluctuations $\delta(x)$
estimate the truth $f(y)$
- k(x,y): detector effects, background, etc
- $g(x)$ has uncertainties
- $k(x, y)$ has syst. uncertainties \rightarrow not covered in this talk

Unfolding of binned measurements

- This talk: unfolding of binned (discrete) distributions, where bin-to-bin migrations are described by a matrix equation
$\mu_{i}=\sum A_{i j} x_{j}+b_{i}$
$\mu_{i}:$ expected measurement in bin i given the truth x $A_{i j}$: probability of truth bin j to reconstruct in bin i
x_{j} : truth in bin j
b_{i} : background in bin i
$A_{i j}=\frac{N_{i j}^{\mathrm{MCreco}, \mathrm{MCtruth}}}{N_{j}^{\mathrm{MCtruth}}}$ is calculated from MC
- Statistical fluctuations: the observations y_{i} are drawn from a Poisson distribution

$$
P\left(y_{i} ; u_{i j}\right)=\frac{e^{-u} \omega_{i}^{y_{i}}}{y_{i}!}
$$

- Large sample limit: Gaussian distributions
- Correlated bins: multivariate Gaussians

Unfolding of binned measurements

- This talk: unfolding of binned (discrete) distributions, where bin-to-bin migrations are described by a matrix equation
- Statistical fluctuations: the observations y_{i} are drawn from a Poisson distribution
(truth+background) \times detector \times stat.fluctuations \rightarrow measurement

Result: estimator of truth \leftarrow unfolding algorithm \leftarrow measurement

Example unfolding problem

- Toy example to illustrate basic properties of unfolding algorithms
- Decay of a heavy particle into two light particles
- Light particles smeared by spatial and energy resolution
- Trigger threshold causes reconstruction inefficiency
- Background important at high P_{T}
- Variable bin size, overflow bin
- Goal: reconstruct P_{T} distribution
- Two samples of toy events
- "data" P_{T} distribution following

Landau($6,1.8$)

- "MC" P_{T} distribution following Landau(5,2)
- Background mainly at high P_{T}

Reconstructed

Example unfolding problem

- Toy example to illustrate basic properties of unfolding algorithms
- Decay of a heavy particle into two light particle
- Light particles smeared by spatial and energy resolution
- Trigger threshold causes reconstruction inefficiency
- Background important at high P_{T}
- Variable bin size, overflow bin
- Goal: reconstruct P_{T} distribution
- Significant migrations at low P_{T}
- Change of bin size leads to change in bin purity
- Efficiency >95\%, not important for this study

How to test unfolding results?

- Tests with real data
- Look at (global) correlation coefficients
- Trivial test: fold back unfolding result and compare to data
unfolding result: $x_{j}^{\text {unf }}$
fold back and compare to data:

$$
y_{i}^{\text {data }} \simeq \sum_{j} A_{i j} x_{j}^{\mathrm{unf}}+b_{i} \square \quad \begin{aligned}
& \text { Quantitative } \\
& \text { comparison: } \mathrm{x}^{2}
\end{aligned}
$$

This talk:
Look at average global correlation coefficients Compare folded result with data Compare result to "data" truth Extract "data" truth parameters using a fit

- Test with Monte Carlo
- Trivial test: response matrix and MC using the same truth
- Non-trivial test: use different truth for response matrix and unfold alternative MC (here: "data"): x_{j}^{unf} compare to alternative MC truth:
... plus many other things not discussed here, e.g. eigenvalue analysis

Unfolding methods investigated in this talk

- Bin-by-bin correction factors
- Matrix inversion
- Template fit
- Tikhonov regularisation: [Tikhonov 1963]
implementation: e.g. RUN [Blobel 1984], TUnfold [S.S. 2012]
- Iterative method: [Shepp/Vardi 1982, Mülthei/Schorr 1986, D'Agostini 1995]
- IDS method: [Malaescu 2011]

Bin-by-bin correction factors

- Very simple method:

$$
x_{i}=\left(y_{i}-b_{i}\right) \frac{N_{i}^{\text {gen }}}{N_{i}^{\text {rec }}}{ }^{\text {Correction }} \text { factor }
$$

y_{i} : observed in bin i
b_{i} : expected backround in bin i
$N_{i}^{\text {gen }}: \mathrm{MC}$ truth in bin i
$N_{i}^{\mathrm{rec}}=\sum_{j} A_{i j} N_{i}^{\mathrm{gen}}:$ MC reconstructed in bin i

Results "looks nice"
No statistical bin-to-bin correlations but
Method is wrong, fails very basic tests

Truth

Unfolding methods investigated in this talk

- Bin-by-bin correction factors
- Matrix inversion
- Template fit
- Tikhonov regularisation: [Tikhonov 1963]
implementation: e.g. RUN [Blobel 1984], TUnfold [S.S. 2012]
- Iterative method: [Shepp/Vardi 1982, Mülthei/Schorr 1986, D'Agostini 1995]
- IDS method: [Malaescu 2011]

Matrix inversion

- If the number of bins is equal on gen and rec level: A is a square matrix
\rightarrow invert it

Covariance: $V_{x x}=A^{-1} V_{y y}\left(A^{-1}\right)^{T}$
correlation coefficients: $\rho_{i j}=\frac{\left(V_{x x}\right)_{i j}}{\sqrt{\left(V_{x x}\right)_{i i}\left(V_{x x}\right)_{j j}}}$
y : measurements
$V_{y y}$: covariance matrix of measurements
b : background
A : matrix of migrations

Large bin-to-bin correlations
correlation coefficients

Truth
 test wrt data:
$\chi^{2} / 16=0.8$ prob=0.701

Good X^{2} : no bias
folding equation: $y=A x+b$
invert matrix: $x=A^{-1}(y-b)$
\rightarrow invert it
Unfolded result exhibits bin-to-bin oscillations

Template fit

- Choose larger number of reconstructed bins than truth bins \rightarrow least-square fit
- Idea: use more information \rightarrow obtain better result?

$$
\chi^{2}=(y-b-A x)^{\top} V_{y y}^{-1}(y-b-A x)
$$

y : measurements
$V_{y y}$: covariance matrix of measurements
b : background
A : matrix of migrations
$A_{i j}$: MC template for truth bin j

$$
x=\left(A^{\top} V_{y y}^{-1} A\right)^{-1} A^{\top} V_{y y}^{-1}(y-b)
$$

covariance of $x: V_{x x}=\left(A^{\top} V_{y y}^{-1} A\right)^{-1}$

Template fit

- Choose larger number of reconstructed bins than truth bins \rightarrow least-square fit
- Idea: use more information \rightarrow obtain better result
\rightarrow Result does not improve much over matrix inversion in this example

New problem: normalisation is not preserved [$\mathrm{N}_{\text {data }}=4584, \mathrm{~N}_{\text {fold }}=4572$]

Well-known problem with least-square fits to Poisson-distributed data if sqrt(N) uncertainties are used

Can be improved by adding a constraint to the fit

Template fit with area constaint

- Template with with constraint on the total number of events
- Basic idea: preserve normalisation for the folded-back result by adding the constraint

$$
\sum\left(y_{i}-b_{i}\right)=\sum_{i, j} A_{i j} x_{j}
$$

- Technical implementation: see TUnfold documentation
\rightarrow Result does not change much over unconstrained template fit, but normalisation is recovered

$$
\left[N_{\text {data }}=N_{\text {fold }}=4584\right]
$$

Tikhonov regularisation

- Basic idea: add terms to the likelihood which damp oscillations in the result.

$$
\begin{aligned}
\chi^{2}= & (y-b-A x)^{\top} V_{y y}^{-1}(y-b-A x) \\
& +\tau^{2}\left(L\left(x-x_{B}\right)\right)^{\top} L\left(x-x_{B}\right)
\end{aligned}
$$

y : measurements
$V_{y y}$: covariance matrix of measurements
b : background
A : matrix of migrations
x_{B} : regularisation bias
L : regularisation conditions
τ : regularisation strength

- Regularisation bias x_{B} : set to zero or to MC truth
- Regularisation conditions L : set to unity matrix [or mimic second derivatives, "curvature"]
- Regularisation strength τ : "small" number

$$
\tau \ll 1 / \sigma
$$

where $\sigma \sim$ uncertainty after unfolding

Tikhonov regularisation (e.g. TUnfold)

- Basic idea: add terms to the likelihood which damp oscillations in the result.
- This is working well: no oscillations, moderate correlations and uncertainties

Basic tests look reasonable

- Question: objective to choose τ

Choice of the regularisation parameter T

- Eigenvalue analysis (SVD)
\rightarrow not discussed in this talk
- Scan of parameter τ
- L-curve scan
- Scan of global correlation coefficients
- Other data driven methods (e.g. compare stat and syst errors, define convergence criteria) \rightarrow not discussed in this talk

L-curve scan

- Algorithm is often used in medical image processing
for each τ repeat the unfolding:

$$
\begin{gathered}
\chi^{2}=(y-b-A x)^{T} V_{y y}^{-1}(y-b-A x) \\
+\tau^{2}\left(L\left(x-x_{B}\right)\right)^{T} L\left(x-x_{B}\right) \\
\equiv L_{x}+\tau^{2} L_{y}
\end{gathered}
$$

study parametric plot of: $\log L_{x}$ vs $\log L_{y}$

- Parametric plot is "L-shaped"
\rightarrow kink (largest curvature) defines τ

For a review, see: [P. C. Hansen 2000]

Scan of global correlation coefficients

- Global correlation coefficient (bin i)

$$
\rho_{i}=\sqrt{1-\frac{1}{\left(V_{x x}\right)_{i i}\left(V_{x x}^{-1}\right)_{i i}}}
$$

$V_{x x}$: result's covariance matrix

- Take average of all ρ_{i} and study dependence on $\tau \rightarrow$ choose point with smallest avg(ρ_{i}) (idea by V. Blobel/DESY)
- Comparison to L-curve scan: stronger regulatisation, more bias, smaller uncertainties \& correlations

Minimum average global correlation

Truth

Unfolding methods investigated in this talk

- Bin-by-bin correction factors
- Matrix inversion
- Template fit
- Tikhonov regularisation: [Tikhonov 1963]
implementation: e.g. RUN [Blobel 1984], TUnfold [S.S. 2012]
- Iterative method: [Shepp/Vardi 1982, Mülthei/Schorr 1986, D'Agostini 1995]
- IDS method: [Malaescu 2011]

Iterative method

Ratio data to folded

$$
x_{j}^{(N+1)}=x_{j}^{(N)} \sum_{i} \frac{A_{i j}}{\epsilon_{j}} \frac{y_{i}}{\sum_{k} A_{i k} x_{k}^{(N)}}
$$

- Mathematical properties (Shepp/Vardi 1982 and Mülthei/Schorr 1987)
efficiency: $\epsilon_{j}=\sum_{i} A_{i j}$
start values: $x_{j}^{(-1)}$ [e.g. MC truth]
iterate until N is sufficiently large
- Original works by Shepp/Vardi 1982, Kondor 1983, Mülthei/Schorr 1987
- Re-invented by D'Agostini 1995 as "Iterative Bayesian unfolding"

Note: efficiency is absorbed in a redefinition of A, x in the original works: $\mathrm{x}^{\prime}=\varepsilon x$ and $A^{\prime}=\mathrm{A} / \varepsilon$

- Ultimately converges to a maximum of the (Poisson) Likelihood
\rightarrow like matrix inversion but with all $x \geq 0$
- Convergence is very slow
- Use in HEP:
- Stop after N iterations \rightarrow result will be "smooth" [regularized] but is biased to the start value

Regularisation strength:
Tikhonov: $\tau \leftrightarrow$ Iterative: $\mathrm{N}_{\text {iter }}$

Iterative method with background

$$
x_{j}^{(N+1)}=x_{j}^{(N)} \sum_{i} \frac{A_{i j}}{\epsilon_{j}} \frac{y_{i}-b_{i}}{\sum_{k} A_{i k} x_{k}^{(N)}}
$$

efficiency: $\epsilon_{j}=\sum_{i} A_{i j}$
start values: $x_{j}^{(-1)}$ [e.g. MC truth]
$x_{j}^{(N+1)}=x_{j}^{(N)} \sum_{i} \frac{A_{i j}}{\epsilon_{j}} \frac{y_{i}}{\sum_{k} A_{i k} x_{k}^{(N)}+b_{i}}$
efficiency: $\epsilon_{j}=\sum_{i} A_{i j}$
start values: $x_{j}^{(-1)}$ [e.g. MC truth]

- Background could be subtracted from the data
- Or: background could be added to the folded MC in the denominator. This guarantees the desired property $x \geq 0$
- D'Agostini suggests to include the background normalisation as extra bin x_{n+1}. This also guarantees $x \geq 0$ but results in an extra parameter \rightarrow make sure to then include a background control bin in the set of measurement bins

Evaluation of the covariance matrix

- Matrix inversion methods (with or without Tikhonov regularisation): covariance matrix is calculated analytically
- Iterative methods: non-linear, covariance matrix calculation in general has to be done by other means
- Replica method [used in this talk]
- Apply statistical fluctuations on the data histogram
$\rightarrow \mathrm{N}$ replicas of the data
- Repeat the unfolding for each replica
- Covariance is estimated from RMS of the results
- Bootstrap method:
similar idea, but based on events
\rightarrow test complete analysis chain

Iterative method: $0^{\text {th }}$ iteration

$$
\begin{aligned}
& x_{j}^{(N+1)}=x_{j}^{(N)} \sum_{i} \frac{A_{i j}}{\epsilon_{j}} \frac{y_{i}}{\sum_{k} A_{i k} x_{k}^{(N)}+b_{i}} \\
& \text { efficiency: } \epsilon_{j}=\sum_{i} A_{i j} \\
& \text { start values } x_{j}^{(-1)} \text { set to MC truth }
\end{aligned}
$$

- $0^{\text {th }}$ iteration: "Bayesian unfolding" from 1995 D'Agostini paper
- Result "looks nice", very small uncertianties, but fails all tests
\rightarrow the method has to be iterated

Iterative method: $1^{\text {st }}$ iteration

$$
x_{j}^{(N+1)}=x_{j}^{(N)} \sum_{i} \frac{A_{i j}}{\epsilon_{j}} \frac{y_{i}}{\sum_{k} A_{i k} x_{k}^{(N)}+b_{i}}
$$

- Convergence rate is expected to grow quadratically with the number of bins [Mülthei/Schorr 1987]
- Look at $1^{\text {st }}$ iteration
- Neighboring bins have positive correlation (expect: negative)
- Shape not described
- Folded-back different from data
\rightarrow have to iterate further

Iterative method: $10^{\text {th }}$ iteration

$$
x_{j}^{(N+1)}=x_{j}^{(N)} \sum_{i} \frac{A_{i j}}{\epsilon_{j}} \frac{y_{i}}{\sum_{k} A_{i k} x_{k}^{(N)}+b_{i}}
$$

- Convergence rate is expected to grow quadratically with the number of bins [Mülthei/Schorr 1987]
- Look at $10^{\text {th }}$ iteration
- Similar to Tikhonov with strong regularisation

Iterative method: $100^{\text {th }}$ iteration

$$
x_{j}^{(N+1)}=x_{j}^{(N)} \sum_{i} \frac{A_{i j}}{\epsilon_{j}} \frac{y_{i}}{\sum_{k} A_{i k} x_{k}^{(N)}+b_{i}}
$$

- Convergence rate is expected to grow quadratically with the number of bins [Mülthei/Schorr 1987]
- Look at $100^{\text {th }}$ iteration
- Similar to Tikhonov with weak regularisation

Iterative method: $1000^{\text {th }}$ iteration

$$
x_{j}^{(N+1)}=x_{j}^{(N)} \sum_{i} \frac{A_{i j}}{\epsilon_{j}} \frac{y_{i}}{\sum_{k} A_{i k} x_{k}^{(N)}+b_{i}}
$$

- Convergence rate is expected to grow quadratically with the number of bins [Mülthei/Schorr 1987]
- Look at $1000^{\text {th }}$ iteration
- Similar to matrix inversion, but all guaranteed to be $x \geq 0$
- Objective to choose number of iterations? Scan of correlation?

Reconstructed

IDS method by B. Malaescu

- IDS: Iterative Dynamically Stabilized unfolding
- Based on iterative improvements of the matrix of (truth, reco) MC events
- Mathematics not discussed here in detail
- Method is using
- Significance of data vs (iterated) MC in each bin
- adjustment of the normalisation in each step
- also includes a bin-by-bin correction-like contribution
- Method converges to the same result as the standard iterative method
- Speed of convergence is expected to be improved
- The bin-by-bin contributions may lead to reduced correlation coefficients

Iterative methods: scan of avg $\left(\rho_{\mathrm{i}}\right)$

- Regularisation strength has to be chosen (τ for Tikhonov $\leftrightarrow \mathrm{N}_{\text {iter }}$ here)
- Try scan of global correlation coefficients
[reminder: this yielded strong regularisation for Tikhonov method]
- Iterative minimum [$\mathrm{N}=20$] is similar in amplitude to Tikhonov case
- IDS minimum [$\mathrm{N}=3$] is much lower than other methods \rightarrow scan of correlations is not expected to give
 optimal results for this method

Comparison of results and truth

- Comparison (1): x^{2} test data against unfolded results
- Comparison (2): fit [known] parameterisation of data truth

Comparison (1) x^{2} wrt "data" truth

- Test X^{2} of unfolded results against "data" truth
- For real analyses, such tests can be done by unfolding alternative truth models

Method	$\mathrm{X}^{2} / \mathrm{N}_{\text {D.F. }}$
Tikhonov L-curve	1.75
Tikhonov $\min \left(\operatorname{avg}\left(\rho_{\mathrm{i}}\right)\right)$	6.30
bin-by-bin	4.24
iterative, $\mathrm{N}=20 \min \left(\operatorname{avg}\left(\rho_{\mathrm{i}}\right)\right)$	1.12
IDS, $\mathrm{N}=3 \min \left(\operatorname{avg}\left(\rho_{\mathrm{i}}\right)\right)$	9.88
IDS, $\mathrm{N}=11$	0.97

- For the example studied, iterative+min $\left(\operatorname{avg}\left(\rho_{\mathrm{i}}\right)\right)$ performs best

- IDS does not work with the $\min \left(\operatorname{avg}\left(\rho_{\mathrm{i}}\right)\right)$ condition, $\mathrm{N}>10$ seems appropriate

- Fit results by the analytic function use to generate the truth:

Landau(μ, σ)

- Only the width σ is shown here (more difficult to fit)

Method	fit of width σ
Tikhonov L-curve	1.858 ± 0.057
Tikhonov $\min \left(\operatorname{avg}\left(\rho_{\mathrm{i}}\right)\right)$	1.965 ± 0.049
bin-by-bin	2.064 ± 0.046
iterative, $\mathrm{N}=20 \min \left(\operatorname{avg}\left(\rho_{\mathrm{i}}\right)\right)$	1.906 ± 0.071
IDS, $\mathrm{N}=3 \min \left(\operatorname{avg}\left(\rho_{\mathrm{i}}\right)\right)$	2.268 ± 0.034
IDS, $=11$	1.915 ± 0.050
truth	1.800

- For this test Tikhonov with L-curve is doing better than the iterative method

Selection of other unfolding methods

- SVD [Hoecker et al, 1995]
- Equivalent to matrix inversion with Tikhonov regularisation, parameter т from Eigenvalue analysis
- Improved D'Agostini [2010]
- Fully Bayesian [Choudalakis 2012]

Plus many other methods
Please apologize for not listing them Panaretos 2015]

Summary

- Unfolding: get measurements independent of the detector response
- Alternative: publish folding matrix with the result
- Many methods exist, only a few have been compared in this talk
- Big unfolding families investigated in this talk:
- Matrix inversion +Tikhonov regularisation (parameter τ)
- Iterative methods + truncation after $\mathrm{N}_{\text {iter }}$ steps
- Main question: how to choose the regularisation strength. Objectives studied in this talk: L-curve and scan of global correlation coefficients
- Tikhonov: L-curve scan is favored. Iterative: correlation scan seems to work
- Danger to obtain biased results if regularisation is too strong

