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Outline

● Introduction on unfolding
● Example unfolding problem
● Unfolding methods
● Comparison
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Introduction

● Unfolding: estimate truth
distribution from measurement,
distorted by

– detector effects
– statistical fluctuations

● truth distribution: cross
sections or similar quantities

● Unfolding is also referred to as
“correction for detector effects”

● Integral equation of 1st kind

● k(x,y): detector effects,
background, etc

● g(x) has uncertainties

● k(x,y) has syst. uncertainties
→ not covered in this talk

∫k (x , y) f ( y)dy+δ(x)=g(x)
given observations g(x)
the kernel k (x , y)
and fluctuations δ(x)
estimate the truth f ( y)
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Unfolding of binned measurements
● This talk: unfolding of binned

(discrete) distributions, where bin-
to-bin migrations are described by
a matrix equation

● Statistical fluctuations: the
observations y

i
 are drawn from a

Poisson distribution

● Large sample limit: Gaussian
distributions

● Correlated bins: multivariate
Gaussians

μi=∑ Aij x j+bi

μi  : expected measurement in bin i  given the truth x
Aij  : probability of truth bin j  to reconstruct in bin i
x j  : truth in bin j
bi  : background in bin i

P( y i ;μi)=
e−μ iμi

y i

y i !

Aij=
N ij

MCreco,MCtruth

N j
MCtruth  is calculated from MC
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P( y i ;μi)=
e−μ iμi

y i

y i !

● Statistical fluctuations: the
observations y

i
 are drawn from a

Poisson distribution

● Large sample limit: Gaussian
distributions

● Correlated bins: multivariate
Gaussians

Aij=
N ij

MCreco,MCtruth

N j
MCtruth  is calculated from MC

μi=∑ Aij x j+bi

μi  : expected measurement in bin i  given the truth x
Aij  : probability of truth bin j  to reconstruct in bin i
x j  : truth in bin j
bi  : background in bin i

Unfolding of binned measurements
● This talk: unfolding of binned

(discrete) distributions, where bin-
to-bin migrations are described by
a matrix equation

(truth+background) × detector × stat.fluctuations → measurement

Result: estimator of truth ←unfolding algorithm ← measurement
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Example unfolding problem
● Toy example to illustrate basic

properties of unfolding algorithms

● Decay of a heavy particle into two
light particles

● Light particles smeared by spatial
and energy resolution

● Trigger threshold causes
reconstruction inefficiency

● Background important at high P
T

● Variable bin size, overflow bin

● Goal: reconstruct P
T
 distribution

● Two samples of toy events

– “data” P
T
 distribution following

Landau(6,1.8)

– “MC” P
T
 distribution following

Landau(5,2)

● Background mainly at high P
T
 

N
i

rec, y
i

N
j

gen,x
j

truth
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Example unfolding problem
● Toy example to illustrate basic

properties of unfolding algorithms

● Decay of a heavy particle into two
light particle

● Light particles smeared by spatial
and energy resolution

● Trigger threshold causes
reconstruction inefficiency

● Background important at high P
T

● Variable bin size, overflow bin

● Goal: reconstruct P
T
 distribution

● Significant migrations at low P
T

● Change of bin size leads to
change in bin purity

● Efficiency >95%, not important for
this study

A
ij

ε
j
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How to test unfolding results?
● Tests with real data

– Look at (global) correlation
coefficients

– Trivial test: fold back unfolding
result and compare to data 

● Test with Monte Carlo

– Trivial test: response matrix and
MC using the same truth

– Non-trivial test: use different truth
for response matrix and 

This talk:
Look at average global correlation coefficients
Compare folded result with data
Compare result to “data” truth
Extract “data” truth parameters using a fit 

… plus many other things
not discussed here, e.g.
eigenvalue analysis

unfolding result: x j
unf

fold back and compare to data:
y i

data≃∑ j
A ij x j

unf+bi

unfold alternative MC (here: "data"): x j
unf

compare to alternative MC truth:
x j

truth≃x j
unf

Quantitative
comparison: χ²
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Unfolding methods investigated in this talk

● Bin-by-bin correction factors

● Matrix inversion

● Template fit

● Tikhonov regularisation: [Tikhonov 1963]

     implementation: e.g. RUN [Blobel 1984], TUnfold [S.S. 2012]

● Iterative method: [Shepp/Vardi 1982, Mülthei/Schorr 1986, D'Agostini
1995]

● IDS method: [Malaescu 2011]
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xi=( yi−bi)
N i

gen

N i
rec

y i  : observed in bin i
bi  : expected backround in bin i

N i
gen  : MC truth in bin i

N i
rec=∑ j

A ij N i
gen  : MC reconstructed in bin i

Bin-by-bin correction factors
● Very simple method:

 

N
i

rec, y
i

data, (Axunf)
i

N
i

gen, x
j

truth, x
j

unf

Results “looks nice”
No statistical bin-to-bin correlations

but
Method is wrong, fails very basic tests

Correction
factor
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Unfolding methods investigated in this talk

● Bin-by-bin correction factors

● Matrix inversion

● Template fit

● Tikhonov regularisation: [Tikhonov 1963]

     implementation: e.g. RUN [Blobel 1984], TUnfold [S.S. 2012]

● Iterative method: [Shepp/Vardi 1982, Mülthei/Schorr 1986,

 D'Agostini 1995]

● IDS method: [Malaescu 2011]
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Matrix inversion
● If the number of bins is equal on gen

and rec level: A is a square matrix

→ invert it

folding equation: y=Ax+b

invert matrix: x=A−1( y−b)

Covariance: V xx=A−1V yy (A−1)T

correlation coefficients: ρij=
(V xx)ij

√(V xx)ii(V xx) jj

y  : measurements
V yy  : covariance matrix of measurements
b  : background
A  : matrix of migrations

ρ
ij

Folded-back
result is on
the data

Large bin-to-bin
correlations

Unfolded result
exhibits bin-to-bin
oscillations

Good χ²:
no bias



CONF12, August 2016 S.Schmitt, Unfolding Methods 13

Template fit
● Choose larger number of reconstructed

bins than truth bins → least-square fit

● Idea: use more information → obtain
better result?

χ2=( y−b−Ax)T V yy
−1( y−b−Ax)

y  : measurements
V yy  : covariance matrix of measurements
b  : background
A  : matrix of migrations
Aij  : MC template for truth bin j

x=( ATV yy
−1 A)−1 AT V yy

−1( y−b )
covariance of x  : V xx=(ATV yy

−1 A)−1
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Template fit
● Choose larger number of reconstructed

bins than truth bins → least-square fit

● Idea: use more information → obtain
better result

→ Result does not improve much over
matrix inversion in this example

New problem: normalisation is not
preserved [N

data
=4584, N

fold
=4572]

Well-known problem with least-square
fits to Poisson-distributed data if sqrt(N)
uncertainties are used

Can be improved by adding a constraint
to the fit

2x more (finer) bins for
reconstructed quantities
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Template fit with area constaint
● Template with with constraint on the

total number of events

● Basic idea: preserve normalisation
for the folded-back result by adding
the constraint

● Technical implementation: see
TUnfold documentation

→ Result does not change much
over unconstrained template fit, but
normalisation is recovered

[N
data

= N
fold

=4584]

∑ ( y i−bi)=∑i , j
Aij x j
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Tikhonov regularisation 

● Basic idea: add terms to the
likelihood which damp
oscillations in the result.

● Regularisation bias x
B
: set to

zero or to MC truth

● Regularisation conditions L: set
to unity matrix [or mimic second
derivatives, “curvature”]

● Regularisation strength τ:
“small” number

where σ~uncertainty after
unfolding

χ2=( y−b−Ax)T V yy
−1( y−b−Ax)

+τ2(L(x−xB))
T L(x−x B)

y  : measurements
V yy  : covariance matrix of measurements
b  : background
A  : matrix of migrations
xB  : regularisation bias
L  : regularisation conditions
τ  : regularisation strength

τ≪1/σ
In addition, apply
area constraint
to preserve
normalisation
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Tikhonov regularisation (e.g. TUnfold)

● Basic idea: add terms to the
likelihood which damp
oscillations in the result.

● This is working well: no
oscillations, moderate
correlations and uncertainties

Basic tests look reasonable

● Question: objective to choose τ
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Choice of the regularisation parameter τ

● Eigenvalue analysis (SVD)

→ not discussed in this talk

● Scan of parameter τ

– L-curve scan
– Scan of global correlation coefficients

● Other data driven methods (e.g. compare stat and syst errors,
define convergence criteria) → not discussed in this talk
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L-curve scan
● Algorithm is often used in

medical image processing

● Parametric plot is “L-shaped”

→ kink (largest curvature)
defines τ

for each τ  repeat the unfolding:
χ2=( y−b−Ax )T V yy

−1( y−b−Ax )
+τ2(L(x−xB ))

T L(x−xB)
≡Lx+τ2 Ly

study parametric plot of: log Lx  vs log Ly

For a review, see: [P. C. Hansen
2000]

L-shaped

Small L
x
: result

Compatible with
data

Small Ly: result
 compatible
with bias (MC)
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Scan of global correlation coefficients
● Global correlation coefficient (bin i)

● Take average of all ρ
i
 and study

dependence on τ → choose point
with smallest avg(ρ

i
)

(idea by V. Blobel/DESY)

● Comparison to L-curve scan:
stronger regulatisation, more bias,
smaller uncertainties & correlations

ρi=√1− 1

(V xx)ii(V xx
−1)ii

V xx  : result's covariance matrix

Maximum L-curve
curvature

Minimum average
global correlation
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Unfolding methods investigated in this talk

● Bin-by-bin correction factors

● Matrix inversion

● Template fit

● Tikhonov regularisation: [Tikhonov 1963]

     implementation: e.g. RUN [Blobel 1984], TUnfold [S.S. 2012]

● Iterative method: [Shepp/Vardi 1982, Mülthei/Schorr 1986,

 D'Agostini 1995]

● IDS method: [Malaescu 2011]
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Ratio data to folded
→ iterate until ~1

Iterative method

● Original works by Shepp/Vardi 1982,
Kondor 1983, Mülthei/Schorr 1987

● Re-invented by D'Agostini 1995 as
“Iterative Bayesian unfolding”

Note: efficiency is absorbed in a redefinition of A, x
in the original works: x'=εx and A'=A/ε

● Mathematical properties (Shepp/Vardi
1982 and Mülthei/Schorr 1987)

– Ultimately converges to a maximum of
the (Poisson) Likelihood

→ like matrix inversion but with all x≥0

– Convergence is very slow

● Use in HEP:

– Stop after N iterations → result will
be “smooth” [regularized] but is
biased to the start value 

x j
(N +1)=x j

(N )∑i

A ij
ϵ j

y i

∑k
A ik xk

(N )

efficiency: ϵ j=∑i
A ij

start values: x j
(−1)  [e.g. MC truth]

iterate until N  is sufficiently large

Regularisation strength:
Tikhonov: τ  ↔ Iterative: N

iter
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Iterative method with background

● Background could be subtracted from the data

● Or: background could be added to the folded MC in the denominator. This
guarantees the desired property x≥0

● D'Agostini suggests to include the background normalisation as extra bin x
n+1

. This

also guarantees x≥0 but results in an extra parameter → make sure to then include a
background control bin in the set of measurement bins

x j
(N +1)=x j

(N )∑i

A ij
ϵ j

y i−bi

∑k
A ik xk

(N )

efficiency: ϵ j=∑i
A ij

start values: x j
(−1)  [e.g. MC truth]

x j
(N +1)=x j

(N )∑i

A ij
ϵ j

y i

∑k
A ik xk

(N )+bi

efficiency: ϵ j=∑i
A ij

start values: x j
(−1)  [e.g. MC truth]

OR
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Evaluation of the covariance matrix
● Matrix inversion methods (with or

without Tikhonov regularisation):
covariance matrix is calculated
analytically

● Iterative methods: non-linear,
covariance matrix calculation in
general has to be done by other
means

● Replica method [used in this talk]

– Apply statistical fluctuations on
the data histogram

→ N replicas of the data

– Repeat the unfolding for each
replica

– Covariance is estimated from
RMS of the results

● Bootstrap method:

similar idea, but  based on events

→ test complete analysis chain
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Iterative method: 0th iteration

x j
(N +1)=x j

(N )∑i

A ij
ϵ j

y i

∑k
A ik xk

(N )+bi

efficiency: ϵ j=∑i
A ij

start values x j
(−1)  set to MC truth

● 0th iteration: “Bayesian unfolding”
from 1995 D'Agostini paper

● Result “looks nice”, very small
uncertianties, but fails all tests

→ the method has to be iterated All correlation
coefficients are
positive → this
is “smearing”,
not “unfolding”
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Iterative method: 1st iteration

x j
(N +1)=x j

(N )∑i

A ij
ϵ j

y i

∑k
A ik xk

(N )+bi

● Convergence rate is expected to
grow quadratically with the number
of bins [Mülthei/Schorr 1987]

● Look at 1st iteration

– Neighboring bins have positive
correlation (expect: negative)

– Shape not described

– Folded-back different from data

→ have to iterate further 
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Iterative method: 10th iteration

x j
(N +1)=x j

(N )∑i

A ij
ϵ j

y i

∑k
A ik xk

(N )+bi

● Convergence rate is expected to
grow quadratically with the number
of bins [Mülthei/Schorr 1987]

● Look at 10th iteration

– Similar to Tikhonov with strong
regularisation
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Iterative method: 100th iteration

x j
(N +1)=x j

(N )∑i

A ij
ϵ j

y i

∑k
A ik xk

(N )+bi

● Convergence rate is expected to
grow quadratically with the number
of bins [Mülthei/Schorr 1987]

● Look at 100th iteration

– Similar to Tikhonov with weak
regularisation
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Iterative method: 1000th iteration

x j
(N +1)=x j

(N )∑i

A ij
ϵ j

y i

∑k
A ik xk

(N )+bi

● Convergence rate is expected to
grow quadratically with the number
of bins [Mülthei/Schorr 1987]

● Look at 1000th iteration

– Similar to matrix inversion, but
all guaranteed to be x≥0

– Objective to choose number of
iterations? Scan of correlation?
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IDS method by B. Malaescu
● IDS: Iterative Dynamically Stabilized

unfolding

● Based on iterative improvements of
the matrix of (truth,reco) MC events

● Mathematics not discussed here in
detail

● Method is using

– Significance of data vs (iterated)
MC in each bin

– adjustment of the normalisation
in each step

– also includes a bin-by-bin
correction-like contribution

● Method converges to the same
result as the standard iterative
method

● Speed of convergence is
expected to be improved

● The bin-by-bin contributions may
lead to reduced correlation
coefficients



CONF12, August 2016 S.Schmitt, Unfolding Methods 31

Iterative methods: scan of avg(ρ
i
)

● Regularisation strength has to be
chosen (τ for Tikhonov↔N

iter
 here)

● Try scan of global correlation
coefficients

[reminder: this yielded strong
regularisation for Tikhonov method]

● Iterative minimum [N=20] is similar in
amplitude to Tikhonov case

● IDS minimum [N=3] is much lower
than other methods → scan of
correlations is not expected to give
optimal results for this method

N=3

N=20
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Comparison of results and truth

● Comparison (1): χ² test data against unfolded results
● Comparison (2): fit [known] parameterisation of data truth
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Comparison (1) χ² wrt “data” truth
● Test χ² of unfolded results against

“data” truth

● For real analyses, such tests can be
done by unfolding alternative truth
models

● For the example studied,
iterative+min(avg(ρ

i
)) performs best

IDS
N=3

Iterative
N=20

Method

1.75
6.30

bin-by-bin 4.24
1.12

9.88

IDS, N=11 0.97

Χ² / N
D.F.

Tikhonov L-curve
Tikhonov min(avg(ρ

i
))

iterative, N=20 min(avg(ρ
i
))

IDS, N=3 min(avg(ρ
i
))

● IDS does not work with the min(avg(ρ
i
)) condition, N>10 seems appropriate



CONF12, August 2016 S.Schmitt, Unfolding Methods 34

Comparison(2) wrt data truth parameters
● Fit results by the analytic function used

to generate the truth:

Landau(μ,σ)
● Only the width σ is shown here (more

difficult to fit)

● For this test Tikhonov with L-curve is
doing better than the iterative method

Method fit of width σ

1.858 ± 0.057
1.965 ± 0.049

bin-by-bin 2.064 ± 0.046
1.906 ± 0.071

2.268 ± 0.034

IDS, N=11 1.915 ± 0.050
truth 1.800

Tikhonov L-curve
Tikhonov min(avg(ρ

i
))

iterative, N=20 min(avg(ρ
i
))

IDS, N=3 min(avg(ρ
i
))
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Selection of other unfolding methods

● SVD [Hoecker et al, 1995]
– Equivalent to matrix

inversion with Tikhonov
regularisation, parameter τ
from Eigenvalue analysis

● Shape-constrained
unfolding [Kuusela,
Panaretos 2015]

● Improved D'Agostini [2010]
● Fully Bayesian

[Choudalakis 2012]

Plus many other methods
Please apologize for not listing them
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Summary
● Unfolding: get measurements independent of the detector response

● Alternative: publish folding matrix with the result

● Many methods exist, only a few have been compared in this talk

● Big unfolding families investigated in this talk:

– Matrix inversion +Tikhonov regularisation (parameter τ)

– Iterative methods + truncation after N
iter

 steps

● Main question: how to choose the regularisation strength. Objectives studied in
this talk: L-curve and scan of global correlation coefficients

● Tikhonov: L-curve scan is favored. Iterative: correlation scan seems to work

● Danger to obtain biased results if regularisation is too strong


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

