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Look Elsewhere Effect 
• Is there a signal 
here? 

2 Eilam Gross & Ofer Vitells, ATLAS Stat Forum, 3/2010 



Look Elsewhere Effect 
• Looks like @ 
m=30 
• What is its 
significance? 
•  What is your test 
statistic? 
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q

fix ,obs
= −2ln L(b)

L(µ̂s(m = 30)+ b)



Look Elsewhere Effect 
• Test statistic 
 
 
• What is the p-value? 
•  generate the PDF 
 
 
and find the p-value 
Wilks theorem: 
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q fix ,obs = −2ln L(b)

L(µ̂s(m = 30)+ b)

  f (q fix | H0 )

f (qfix |H0 ) ~ χ1
2

pfix = q fix ,obs

∞

∫ f (qfix |H0 )dqfix



Look Elsewhere Effect 
• Would you ignore 
this signal, had you 
seen it? 
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Look Elsewhere Effect 
• Or this? 
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Look Elsewhere Effect 
• Or this? 
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Look Elsewhere Effect 
• Or this? 

• Obviously NOT! 

• ALL THESE 
“SIGNALS” ARE BG 
FLUCTUATIONS 
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Look Elsewhere Effect 
• Having no idea where 
the signal might be there 
are two options 
• OPTION I: 
scan the mass range in 
pre-defined steps and test 
any disturbing 
fluctuations  
(do not confuse me with the 
facts) 
• Perform a fixed mass 
analysis at each point 
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q fix ,obs (µ̂) = −2ln L(b)

L(µ̂s(m)+ b)



Look Elsewhere Effect 
• Having no idea where 
the signal might be there 
are two options 
• OPTION I: 
scan the mass range in 
pre-defined steps and test 
any disturbing 
fluctuations  
(do not confuse me with the 
facts) 
• Perform a fixed mass 
analysis at each point 
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q fix ,obs (µ̂) = −2ln L(b)

L(µ̂s(m)+ b)



Look Elsewhere Effect 
• The scan resolution must 
be less than the signal 
mass resolution 

• Assuming the signal can 
be only at one place, pick 
the one with the smallest 
p-value (maximum 
significance) 
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q = maxm q fix ,obs (µ̂){ } = maxm −2ln
L(b)

L(µ̂s(m)+ b)
⎧
⎨
⎩

⎫
⎬
⎭

= minm p − value{ }



Look Elsewhere Effect: Floating Mass 
• Option II: 
Leave the mass floating 
• Having no idea where the 
signal might be you would 
allow the signal to be 
anywhere in the search 
range and use a modified 
test statistic 
 
 
• For the same observation, 
the p-value increases 
because more possibilities 
are opened 
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q float ,obs (µ̂,m̂) = −2ln L(b)

L(µ̂s(m̂)+ b)



Look Elsewhere Effect 
•   the test statistis 
 
 
• The null hypothesis 
PDF  
 
 
does not follow a 
chi-squared with 
2dof because there 
are multiple minima 
depending on the 
size of the search 
range and resolution 
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q float ,obs (µ̂,m̂) = −2ln L(b)

L(µ̂s(m̂)+ b)

  f (qfloat | H0 )



trial# 
• Assume a maximal local 
fluctuation at mass 
• We can calculate the 
following p-value  
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q

fix ,obs
= q

float ,obs
= −2ln L(b)

L(µ̂s(m̂ = m = 30)+ b)

  
p fix = f (q fix | H0 )dqfixqobs

∫ < pfloat = f (qfloat | H0 )dt floatqobs
∫

  m̂ = 30

  

trial # =
f (qfloat | H0 )dt floatqobs

∫
f (qfix | H0 )dt fixqobs

∫
=

pfloat

p fix

>1



Define the Problem 
�  Let  
�            are nuisance parameters undefined under the null 

hypothesis  
�  What is the pdf of  

 
 
under the null hypothesis 

�   To generalize the problem , let        be the nuisance parameter, 
undefined under the null hypothesis, and let us try to find out 
the pdf of  
 
for which we want to calculate  
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n = µs(m,Γ)+ b
m,Γ

µ = 0

   
q̂0 ≡ q0(m̂,Γ̂) = −2log

L(µ = 0)
L(µ̂,m̂,Γ̂)

= max
m,Γ

[q0(m,Γ)]

θ

0 0 0
( 0)ˆˆ ( ) 2log max[ ( )]ˆˆ( , )

q q q
θ

µθ θ
µ θ
=≡ = − =L

L

  
p-value=P(max

θ
[q0(θ )]≥ u), u = Z 2
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The profile-likelihood test statistic 
(with a nuisance parameter that is not defined under the 
Null hypothesis) 
�  Consider the teststatistic: 

 
 
 

�  For some fixed θ, q0(θ) has (asymptotically) a chi2 

distribution with one degree of freedom by Wilks’ theorem. 
 
�  q0(θ) is a chi2 random field over the space of θ (a random 

variable indexed by a continuous parameter(s) ). we are 
interested in 
 
 
 

�  For which we want to know what is the p-value 
 
 

0
( 0)( ) 2log
ˆ( , )

q µθ
µ θ
== − L

L

  
p-value=P(max

θ
[q0(θ )]≥ u), u = Z 2

0 : 0H µ =

1 : 0H µ >

0 0 0
( 0)ˆˆ ( ) 2log max[ ( )]ˆˆ( , )

q q q
θ

µθ θ
µ θ
=≡ = − =L

L

µ=“signal strength” 

     is the global 
maximum point  

θ̂



The profile-likelihood test statistic 
(with a nuisance parameter that is not defined under the 
Null hypothesis) 

�  Usually we only look for ‘positive’ signals 
   (downward fluctuations of the BG are not considered as 
evidence against the BG) 
 
 
 
 
 
 
The p-value just get divided by 1/2 

�  Or equivalently consider      as a gaussian field 
 
 
( since                           )  
                           
 

0

( 0)2log
ˆ( , )( )

0
q

µ
µ θθ
=⎧−⎪= ⎨

⎪⎩

L
L

ˆ 0µ >

ˆ 0µ ≤

2

0
ˆ ( )( )q µ θθ
σ

⎛ ⎞= ⎜ ⎟⎝ ⎠

q0(θ) is ‘half chi2’ 

[H. Chernoff, Ann. Math. 
Stat. 25, 573578 (1954)] 

µ̂
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�  In 1 dimension: points where the field values become larger then 
u are called upcrossings. 

�   
 
 
 
 
 
 
 
 

�  The probability that the global maximum is above the level u is 
called exceedance probability. (p-value of     ) 

0P(max[ ( )] )q u
θ

θ ≥

upcrossings 
0max[ ( )]q

θ
θ

0q̂

Random fields  (1D) 

0q̂



Random fields 
�  Fortunately, quite a lot of statistical literature on the 

properties of random fields 
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Applications in Cosmology, Brain mapping, Oceanography … 



The 1-dimensional case 
For a chi2 random field, 
the expected number of 
upcrossings of a level u is 
given by: [Davies,1987] 

/2
1[ ] u

uE N e−=N

To have the global maximum above a level u: 

- Either have at least one upcrossing (Nu>0)  or have q0>u at the origin (q0(0)>u) : 
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  P(q̂0 > u) ≤ P(Nu > 0)+ P(q0(0) > u)

0[ ] ( (0) )uE N P q u≤ + >

[ ] P( 0)u uE N N≥ >
Note the inequality: 

Becomes an equality 
for large u 

[R.B. Davies, Hypothesis testing when a nuisance parameter is  
present only under the alternative. Biometrika 74, 33–43 (1987)] 
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The 1-dimensional case 

The only unknown is     ,    
which can be estimated 
from the average number 
of upcrossings at some 
low reference level  

1N

/2
1[ ] u

uE N e−=N

The p-value can then 
be estimated by 
Davies’ formula 

   

P(q0 > u) ≤ N 1e
−u/2 + 1

2
P(χ1

2 > u)⇒

P(q0 > u) ≤ E[Nu0
]e(u0−u)/2 + 1

2
P(χ1

2 > u)

   

E[Nu ]= N 1e
−u/2

E[Nu0
]= N 1e

−u0 /2 ⇒

N 1 = E[Nu0
]eu0 /2



Eilam Gross, WIS 

Example: The 750 GeV Resonance 
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Spin 0 
Largest significance 

m
X 
~ 750GeV, Γ

X 
~ 45GeV(6%)

Local Z = 3.9σ

The LEE is even stronger when you consider another dimension 
(the width range (0-10%m) should also be taken into account ) 

2015 

Any peak with Z>3.8σ  
with m=500-2000 will draw our attention 

plocal = 5 ⋅10
−5

u0 = 0
nu0 = 7 ± 2.6

u = Z 2 = 3.92 = 15.2
pglobal = 5 ⋅10

−5 + (7 ± 2.6)e−15.2/2 = (2.2 − 4.8)10−3

Zglobal  ~ 2.7 ± 0.1σ



Eilam Gross, WIS 

Trial Factor 
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�  The Trial factor is given by 

 

u = Z 2

trial # =
pglobal
plocal

≤
N 1e

−u/2 + 1
2
P(χ1

2 > u)

1
2
P(χ1

2 > u)

trial #(u >>1) = 1+ π
2

N 1Z fix ≈
π
2

N 1Z fix

 N 1 Is the number of independent search regions 
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�  The set of points where the field has  
values larger then some number u  
 is called the excursion set  Au above 
 the level u. 
 
 
 
 
 
 

Excursion set 

Random fields (>1 D)  
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Euler characteristic 
�  Number of disconnected components minus number of `holes’ 

 
 
 
 
 
 
 
 
 
 
 
 
 

φ=1 φ=0 φ=2 

Excursion set 
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The n-dimensional case 
�  The upcrossings formula is a special case of a more 

general result which gives the expectation of the Euler 
characteristic of the excursion set of a random field 
over a general n-dimensional manifold 
 
 
 

�  Here: 
     Au is the excursion set of the field above a level u (set of 

points where q0(θ)>u ) 
φ(Au) is it’s Euler characteristic 
ρd  are ‘universal’ functions  
(depend only on the level u 
 and the type of distribution)  
     

0
E[ ( )] ( )

n

u d d
d

A uϕ ρ
=

=∑N

[R.J. Adler and J.E. Taylor, Random Fields and Geometry (2007), 
Springer Monographs in Mathematics] 

 

e.g. for a chi2 field with 
s degrees of freedom: 

  

ρ0(u) = P(χ s
2 > u)

ρ1(u) = u(s−1)/2e−u/2

ρ2(u) = u(s−2)/2e−u/2[u − (s−1)]
...



Euler characteristic 

In 1 dimension: 

0[ (0) ]

0

( )

[ ( )] [ ] P( (0) )

u u q u

u u

A N

E A E N q u

ϕ

ϕ

>= +

= + >

1

(Davies’ Bound) 

In general for high-level excursions  0[ ( )] P(max[ ( )] )uE A q u
θ

ϕ θ→ ≥

0 =N Euler characteristic of the 
manifold 

0 0( ) P( )u q uρ = >

The general case 

[J. Taylor, A. Takemura, and R. J. Adler, Ann. Probab. 33, 4 
(2005) ] 

/2 2
1 1

1 ( )
2

ue P uχ− + >= N

0
E[ ( )] ( )

n

u d d
d

A uϕ ρ
=

=∑N
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2-D example: IceCube search for 
astrophysical neutrino point sources  

J. Braun, J. Dumm, F. De Palma, C. 
Finley, A. Karle, and T. Montaruli, 
Astropart. Phys. 29, 299 (2008);  
[arXiv:0801.1604] 

Unbinned likelihood: 

Signal parameters can also include 
energy and time, not considered 
here. Make it a multidomensional 
>2D manifold 

    
L( !xs ,ns ) =

ns

N
⎛
⎝⎜i

∏ f s(xi )+ (1−
ns

N
) fb(xi )

⎞
⎠⎟

   
!xs = (θ ,ϕ )

IceCube looks for neutrino sources, 

2-D Search over the sky (θ,φ) 
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Significance map 

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0 ( , )q θ ϕ

Excursion set  
(u=1) 
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Calculation of the Euler characteristic 

ϕ =V − E + F = #vertices − #edges + #faces

ϕ = 4 − 6 + 4 = 2

Tetrahedron 
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-0.092 -0.09 -0.088 -0.086 -0.084 -0.082

-0.228

-0.226

-0.224

-0.222

-0.22

-0.218

Calculation of the Euler characteristic 

•  Usually we have q(θ) calculated on 
a grid of points 

•  Calculation of the E.C. is 
straightforward: 

•  φ = #verices - #edges + #faces 

•  Generalizes to higher dimensions 

φ = 18(points) – 
23(edges) + 7(faces) 

= 2 
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2-d example: search for neutrino sources 
(IceCube) 

2 /2
1 2

1[ ( )] P( ) ( )
2

u
uE A u u eϕ χ −= > + +N N

Estimate E[φ] at two levels, e.g. 0 and 1, 
and solve for      and      1N 2N

For a chi2 field in 2 dimensions: 

-0.2 -0.1 0 0.1 0.2 0.3

-0.2

-0.1

0

0.1

0.2

0.3

u=1 

0

1

33.5 2

94.6 1.3

ϕ
ϕ

= ±

= ±

From 20 bkg. Simulations: 

1

2

33 2
123 3

= ±
= ±

N

N
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2-d example: search for neutrino sources 
(IceCube) 

P-value 

0q̂

2 /2
1 2

1[ ( )] P( ) ( )
2

u
uE A u u eϕ χ −= > + +N N

1

2

33 2
123 3

= ±
= ±

N

N

e.g.: P(max q0>30) =  (2.5 ± 0.4)x10-4   (estimated)  
            E.C. Formula   :  (2.28 ± 0.06)x10-4             

~200,000 random 
background 
simulations 



Slicing 
�  Exploit the azimuthal angle symmetry to reduce computations: 
  

Divide to N slices: 

 

φ=0=1+1-2 

[ (slice ) (edge )] (0)i i
i

ϕ ϕ ϕ ϕ= − +∑
[ ] ( [ (slice)] [ (edge)]) (0)E N E Eϕ ϕ ϕ ϕ= × − +

edge 
(0)ϕ

N=18 
   
ϕ( A∪ B) =ϕ( A)+ϕ(B)−ϕ( A∩ B)



35 

2-D exapmle #2: resonance search with 
unknown width 

�  Gaussian signal on exponential background 
�  Toy model : 0<m<100 ,    2<σ<6 
�  Unbinned likelihood:    

( ) ( ) ( | )s s i b s i
s b

i s b

N f x N f x Poiss N N N
N N

+= × +
+∏L

( ) cx
bf x ce−=

0 10 20 30 40 50 60 70 80 90 100
100

101

102

10 20 30 40 50 60 70 80 90
2

2.5

3

3.5

4

4.5

5

5.5

60q̂

σ 

m 

2

2
( )
2

2

1( ; , )
2

x m

sf x m e σσ
πσ

−−
=
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2-D exapmle #2: resonance search with 
unknown width 

10 20 30 40 50 60 70 80 90
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u=1 u=0 

5 10 15 20 25 30
10-6

10-5

10-4

10-3

10-2

10-1

100

P-value 
0q̂

2 /2
1 2

1[ ( )] P( ) ( )
2

u
uE A u u eϕ χ −= > + +N N

1

2

4 0.2
0.7 0.3

= ±
= ±

N

N

0 4.5 0.2ϕ = ±1 3 0.16ϕ = ±

Excellent 
approximation 
above the ~2σ 
level 
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The 750 GeV saga 
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2D Scan 
Largest significance 

m=200-2000  GeV 
ΓX/mX=0-10%  

Use toys or asymptotic formula from 
O. Vitells et. al. Astropart. Phys. 35 (2011) 230–234,  
arXiv:1105.4355 

2.1σ is not something to write home about 

m
X 
~ 750GeV, Γ

X 
~ 45GeV(6%)

Local Z = 3.9σ

2015 

Zlocal = 3.9σ
Zglobal = 2.1σ
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2015 vs 2016, which is which? 
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And indeed,local 3.9σ turns into a  
 global 2.1σ which is not something to write home about 



39 

Summary 

�  The Euler characteristic formula provides a 
practical way of estimating the look-elsewhere 
effect.  

�  Applicable in wide range of applications, such as 
astrophysical searches for neutrino sources or 
resonance search with unknown width, and in any 
number of search dimensions. 

�  The procedure for estimating the p-value is simple 
and reliable. 
 
 

2 /2
1 2

1[ ( )] P( ) ( ) ...
2

u
uE A u u eϕ χ −= > + + +N N

p-value ≈ 


