Meson spectroscopy, resonances and scattering on the lattice

Christopher Thomas, University of Cambridge

c.e.thomas@damtp.cam.ac.uk

Confinement XII, Thessaloniki, Greece, 28 Aug – 4 Sept 2016

X(3872), Y(4260), Z⁺(4430), Z_c⁺(3900), Z_b⁺, X(5568), D_s(2317), light scalars $\pi_1(1600)$ [J^{PC} = 1⁻⁺] ...

Exotic quantum numbers – can't just be a $q\bar{q}$ pair

First-principles calculations \rightarrow lattice QCD

Introduction

- Light mesons: ρ, light scalars
- Heavy-light mesons
- Charmonium(-like) mesons etc.
- Summary

Lattice QCD Spectroscopy

 Discretise spacetime in a finite volume
 Compute correlation fns. numerically (Euclidean time, t → i t)

Note:

- Finite *a* and *L*
- Possibly unphysical m_{π}

Finite-volume energy eigenstates from: $C_{ij}(t) = < 0 |\mathcal{O}_i(t)\mathcal{O}_j^{\dagger}(0)|0 >$

Lower-lying mesons (and baryons)

Scattering and resonances

Most hadrons appear as resonances in scattering of lighter hadrons

Scattering and resonances

Most hadrons appear as resonances in scattering of lighter hadrons

Infinite volume – continuous spectrum above threshold

Infinite volume – continuous spectrum above threshold

Finite volume – discrete spectrum

[periodic b.c.s]

Non-interacting:
$$\vec{k}_{A,B} = \frac{2\pi}{L}(n_x, n_y, n_z)$$

nteracting: $\vec{k}_{A,B} \neq \frac{2\pi}{L}(n_x, n_y, n_z)$

c.f. 1-dim:
$$k = \frac{2\pi}{L}n + \frac{2}{L}\delta(k)$$

scattering phase shift

6

Talks by Raul Briceño, 5:30pm Tues and Max Hansen, 6pm Tues (B6)

Lüscher method (and extensions): relate finite-volume energy levels ${E_{cm}}$ to infinite-volume scattering *t*-matrix

Talks by Raul Briceño, 5:30pm Tues and Max Hansen, 6pm Tues (B6)

Lüscher method (and extensions): relate finite-volume energy levels {E_{cm}} to infinite-volume scattering t-matrix

Elastic scattering: from E_{cm} get $t(E_{cm})$ or equivalently $\delta(E_{cm})$ [Complication: reduced symmetry of lattice volume \rightarrow partial wave mixing]

Coupled-channel scattering:

E.g.
$$t(E_{cm}) = \begin{pmatrix} t_{\pi\pi\to\pi\pi}(E_{cm}) & t_{\pi\pi\to K\bar{K}}(E_{cm}) \\ t_{K\bar{K}\to\pi\pi}(E_{cm}) & t_{K\bar{K}\to K\bar{K}}(E_{cm}) \end{pmatrix}$$

→ Determinant equation for $t(E_{cm})$ at each E_{cm} → Under-constrained problem (e.g. 2 channels: 3 unknowns but 1 equ.) → Parameterize E_{cm} dependence of *t*-matrix and fit $\{E_{lat}\}$ to $\{E_{param}\}$

Try different parameterizations, e.g. various *K*-matrix forms (for elastic scattering also Breit Wigner, effective range expansion).

Larger set of E_{cm} by e.g. overall non-zero mom., twisted b.c.s, different vols.

The ρ resonance in $\pi\pi$ scattering

E_{cm} / MeV P = [0,0,0]1300 $J^{P} = 1^{-} [\ell = 1]$ Reduced sym. \rightarrow 1200 other partial waves can mix in 1100 1000 – – – – $K\bar{K}$ thresh. 900 0 800 700 m_{π} = 236 MeV 600

Experimentally ${\sf BR}(
ho o \pi\pi) \sim 100\%$

Finite volume spectrum from: $C_{ij}(t) = < 0 |O_i(t)O_j^{\dagger}(0)|0 >$ Use many different operators

Wilson et al (HadSpec) [PR D92, 094502 (2015)] and Dudek, Edwards, CT (HadSpec) [PR D87, 034505 (2013)]

The ρ resonance: elastic $\pi\pi$ scattering

(HadSpec) [PR D87, 034505 (2013); PR D92, 094502 (2015)]

The ρ resonance: elastic $\pi\pi$ scattering

(HadSpec) [PR D87, 034505 (2013); PR D92, 094502 (2015)]

The ρ resonance: elastic $\pi\pi$ scattering

(HadSpec) [PR D87, 034505 (2013); PR D92, 094502 (2015)]

The ρ resonance: **coupled-channel** $\pi\pi$, $K\bar{K}$

(HadSpec) [PR D92, 094502 (2015)]

The ρ : other elastic $\pi\pi$ calcs.

Bali *et al* (RQCD) [PR D93, 054509 (2016)]

 $m_{\pi} \approx 150 \text{ MeV}$ No strange quarks in the sea ($N_f = 2$)

 $M_{\rm R}$ = 716 ± 21 ± 21 MeV Γ = 113 ± 35 ± 3 MeV g = 5.64 ± 0.87

The ρ : other elastic $\pi\pi$ calcs.

Bali *et al* (RQCD) [PR D93, 054509 (2016)]

The ρ : other elastic $\pi\pi$ calcs.

Guo *et al* [PR D94, 034501 (2016)], Hu *et al* [arXiv:1605.04823]

No strange quarks in the sea $(N_f = 2)$

Talk by Raquel Molina, 3:50pm Thrs (B7)

Some other recent calculations:

Bulava *et al* [NP B910, 842 (2016)]

Also see talk by Daniel Mohler, 3:30pm Mon (B1)

Resonant $\pi^+ \gamma \rightarrow \rho \rightarrow \pi^+ \pi^0$ amplitude

Talk by Raul Briceño, 5:30pm Tues (B6)

Briceño et al (HadSpec) [PRL 115, 242001 (2015); PRD 93, 114508 (2016)]

Light scalar mesons

κ in πK, ηK

 $J^{P} = 0^{+}$, Isospin = ½, Strangeness = 1

(HadSpec) [PRL 113, 182001 (2014); PR D91, 054008 (2015)]

κ in πK, ηK

 $J^{P} = 0^{+}$, Isospin = ½, Strangeness = 1

a_0 resonance in $\pi\eta$, $K\bar{K}$

$J^{P} = 0^{+}, I = 1$

Strongly coupled to both $\pi\eta$ and $Kar{K}$

Dudek, Edwards, Wilson (HadSpec) [PR D93, 094506 (2016)]

$|a_0|$ resonance in $\pi\eta,\,Kar{K}|$

$J^{P} = 0^{+}, I = 1$

Dudek, Edwards, Wilson (HadSpec) [PR D93, 094506 (2016)]

$|a_0|$ resonance in $\pi\eta,\,Kar{K}|$

$J^{p} = 0^{+}, I = 1$

Also: including $\pi \eta'$ in S-wave, and a D-wave (2⁺) resonance c.f. a_2

> Dudek, Edwards, Wilson (HadSpec) [PR D93, 094506 (2016)]

$f_0(500)/\sigma$ in $\pi\pi$ scattering

$J^{P} = 0^{+}, I = 0$

Talk by Raul Briceño, 5:30pm Tues (B6)

Briceño, Dudek, Edwards, Wilson (HadSpec) [arXiv:1607.05900]

$f_0(500)/\sigma$ in $\pi\pi$ scattering

$J^{P} = 0^{+}, I = 0$

Talk by Raul Briceño, 5:30pm Tues (B6)

Briceño, Dudek, Edwards, Wilson (HadSpec) [arXiv:1607.05900]

Charm-light (D) and charm-strange (D_s) mesons

Some earlier LQCD studies:

Talk by Daniel Mohler, 3:30pm Mon (B1)

- Mohler *et al* [PR D87, 034501 (2012)] 0⁺ $D \pi$ and 1⁺ $D^* \pi$ resonances
- Mohler et al [PRL 111, 222001 (2013)] 0⁺ D_s(2317) below D K threshold
- Lang et al [PRD 90, 034510 (2014)] 0⁺ D_s(2317) and 1⁺ D_{s1}(2460), D_{s1}(2536)

Dπ, Dη, $D_s \overline{K}$ (I=½)

Talk by Graham Moir, 4:40pm Mon (C1)

 m_{π} = 391 MeV

Moir, Peardon, Ryan, CT, Wilson (HadSpec) [arXiv:1607.07093]

Dπ, Dη, D_s \overline{K} (I=½)

Talk by Graham Moir, 4:40pm Mon (C1)

Moir, Peardon, Ryan, CT, Wilson (HadSpec) [arXiv:1607.07093]

 $D\pi$ (I=1/2) c.f. DK (I=0)

0⁺ in D π at (2275.9 ± 0.9) MeV c.f. D π threshold (2276.4 ± 0.9) MeV

0⁺ in DK at ≈ 2380 MeV c.f. DK threshold ≈ 2430 MeV

Talk by Gunnar Bali, 3:20pm Mon (C1)

 m_{π} = 150 MeV and 290 MeV No strange quarks in the sea (N_f = 2)

	0 ⁺ channel			1^+ channel		
	$m_{\pi}=290~[{ m MeV}]$	$m_{\pi}=150~[{ m MeV}]$	Expt. [MeV]	$m_{\pi}=290~[{ m MeV}]$	$m_{\pi}=150~[{ m MeV}]$	Expt. [MeV]
<i>a</i> ₀ [fm]	-1.13(4)	-1.49(13)		-0.96(5)	-1.24(9)	
<i>r</i> ₀ [fm]	0.077(33)	0.199(87)		0.106(64)	0.265(74)	
Δm [MeV]	40.4(2.7)	26.3(4.3)	45.1	59.3(3.8)	42.0(5.2)	44.7
m_{D_s} [MeV]	2383.5(2.4)	2347.8(3.8)	2317.7	2496.5(3.6)	2450.8(4.0)	2459.5

Bottom mesons

 $m_{\pi} \approx 156 \text{ MeV}$ $m_{\pi} L \approx 2.3$

Lang *et al* [PL B750, 17 (2015)] Lang *et al* [arXiv:1607.03185]

Bottom mesons

Talk by Daniel Mohler, 3:30pm Mon (B1)

Charmonium-like mesons, tetraquarks – some recent work

- Ozaki, Sasaki [PR D87, 014506 (2013)] no sign of Y(4140) in J/ $\psi \phi$
- Prelovsek & Leskovec [PRL 111, 192001 (2013)] 1⁺⁺ I=0 near $D\bar{D}^*$ X(3872)?
- Prelovsek et al [PL B727, 172; PR D91, 014504 (2015)] no sign of Z⁺(3900) in 1⁺⁻
- Chen *et al* (CLQCD) [PR D89, 094506 (2014)] 1⁺⁺ I=1 $D\bar{D}^*$ weakly repulsive
- Padmanath et al [PR D92, 034501 (2015)] 1⁺⁺ I=0 [X(3872)?]; no I=1 or Y(4140)
- Lang *et al* [JHEP 1509, 089 (2015)] I=0 $D\bar{D}$: 1⁻⁻ ψ (3770) and 0⁺⁺
- Chen *et al* (CLQCD) [PR D92, 054507 (2015)] 1^{+-} I=1 $D^* \overline{D}^*$ weakly repulsive?
- Chen *et al* (CLQCD) [PR D93, 114501 (2016)] 0^{--} , 1^{+-} I= $1D^*\overline{D}_1$ some attraction?
- Ikeda *et al* (HAL QCD) [arXiv:1602.03465] π J/ ψ , ρ η_c , $D\bar{D}^*$ using HAL QCD method suggest Z⁺(3900) is a threshold cusp
- Albaladejo *et al* [arXiv:1606.03008] Talk by Feng Kun Guo, 6:30pm Fri (C8)

Heavy-flavour tetraquarks ($qqar{Q}ar{Q}$):

- Bicudo *et al* [PR D92, 014507 (2015); PR D93, 034501 (2016)] compute potential between two *B* mesons in static approximation
- Francis *et al* [1607.05214] $udb\overline{b}$ and $ls\overline{b}\overline{b}$ 1⁺ tetraquarks.

Summary

- Significant progress in using lattice QCD to study resonances, near-threshold states, etc over recent years.
- Coupled-channel scattering for the first time.
- Extract many energy levels → map out scattering amps.
- Examples of recent work:
 - ρ resonance (many calculations)
 - Light scalars (σ, a₀(980), κ)
 - Heavy-light mesons
 - Charmonium-like states
- Use m_{π} dependence as a tool
- Ongoing work on formalism (e.g. 3-hadron scattering)
- Also transitions, e.g. ρ resonance $(\pi\pi) \rightarrow \pi \gamma$