Meson spectroscopy, resonances and scattering on the lattice

Christopher Thomas, University of Cambridge
c.e.thomas@damtp.cam.ac.uk

Confinement XII, Thessaloniki, Greece, 28 Aug - 4 Sept 2016

Meson spectroscopy

> $X(3872), Y(4260), Z^{+}(4430), Z_{c}^{+}(3900), Z_{b}^{+}, X(5568), D_{s}(2317)$, light scalars, $\pi_{1}(1600)\left[J J^{P C}=1^{-+}\right]$...

Exotic quantum numbers - can't just be a $q \bar{q}$ pair

First-principles calculations \rightarrow lattice QCD

Outline

- Introduction
- Light mesons: ρ, light scalars
- Heavy-light mesons
- Charmonium(-like) mesons etc.
- Summary

Lattice QCD Spectroscopy

- Discretise spacetime in a finite volume
- Compute correlation fns. numerically (Euclidean time, $t \rightarrow \mathrm{i} t$)
Note:
- Finite a and L
- Possibly unphysical m_{π}

Finite-volume energy eigenstates from:

$$
C_{i j}(t)=<0\left|\mathcal{O}_{i}(t) \mathcal{O}_{j}^{\dagger}(0)\right| 0>
$$

Lower-lying mesons (and baryons)

Scattering and resonances

Most hadrons appear as resonances in scattering of lighter hadrons

Scattering and resonances

Most hadrons appear as resonances in scattering of lighter hadrons

Singularity structure of scattering matrix

Scattering in Lattice QCD

Infinite volume - continuous
spectrum above threshold

Scattering in Lattice QCD

Infinite volume - continuous spectrum above threshold

$$
\begin{aligned}
& \operatorname{Im} E_{\mathrm{cm}} \\
& \hline \\
& 2 m
\end{aligned}
$$

Finite volume - discrete spectrum

[periodic b.c.s]

Non-interacting: $\vec{k}_{A, B}=\frac{2 \pi}{L}\left(n_{x}, n_{y}, n_{z}\right)$

Interacting:

$$
\vec{k}_{A, B} \neq \frac{2 \pi}{L}\left(n_{x}, n_{y}, n_{z}\right)
$$

$$
\text { c.f. 1-dim: } k=\frac{2 \pi}{L} n+\frac{2}{L} \delta(k)
$$

scattering phase shift

Scattering in Lattice QCD

Talks by Raul Briceño, 5:30pm Tues and Max Hansen, 6pm Tues (B6)

Lüscher method (and extensions): relate finite-volume energy levels $\left\{E_{\mathrm{cm}}\right\}$ to infinite-volume scattering t-matrix

Scattering in Lattice QCD

Talks by Raul Briceño, 5:30pm Tues and Max Hansen, 6pm Tues (B6)

Lüscher method (and extensions): relate finite-volume energy levels $\left\{E_{\mathrm{cm}}\right\}$ to infinite-volume scattering t-matrix

Elastic scattering: from E_{cm} get $t\left(E_{\mathrm{cm}}\right)$ or equivalently $\delta\left(E_{\mathrm{cm}}\right)$ [Complication: reduced symmetry of lattice volume \rightarrow partial wave mixing]

Coupled-channel scattering:

$$
\text { E.g. } \quad \mathrm{t}\left(E_{\mathrm{cm}}\right)=\left(\begin{array}{cc}
t_{\pi \pi \rightarrow \pi \pi}\left(E_{\mathrm{cm}}\right) & t_{\pi \pi \rightarrow K \bar{K}}\left(E_{\mathrm{cm}}\right) \\
t_{K \bar{K} \rightarrow \pi \pi}\left(E_{\mathrm{cm}}\right) & t_{K \bar{K} \rightarrow K \bar{K}}\left(E_{\mathrm{cm}}\right)
\end{array}\right)
$$

\rightarrow Determinant equation for $\mathbf{t}\left(E_{\mathrm{cm}}\right)$ at each E_{cm}
\rightarrow Under-constrained problem (e.g. 2 channels: 3 unknowns but 1 equ.)
\rightarrow Parameterize E_{cm} dependence of t-matrix and fit $\left\{E_{\mathrm{lat}}\right\}$ to $\left\{E_{\text {param }}\right\}$
Try different parameterizations, e.g. various K-matrix forms (for elastic scattering also Breit Wigner, effective range expansion).

Larger set of $E_{\text {cm }}$ by e.g. overall non-zero mom., twisted b.c.s, different vols.

The ρ resonance in $\pi \pi$ scattering

$$
\left(J P C=1^{--}, I=1\right)
$$

Experimentally

$\operatorname{BR}(\rho \rightarrow \pi \pi) \sim 100 \%$

Finite volume spectrum from: $C_{i j}(t)=<0\left|\mathcal{O}_{i}(t) \mathcal{O}_{j}^{\dagger}(0)\right| 0>$

Use many different operators

$$
\begin{aligned}
& \text { Wilson et al (HadSpec) [PR D92, } 094502 \\
& \text { (2015)] and Dudek, Edwards, CT (HadSpec) } \\
& \text { [PR D87, } 034505 \text { (2013)] }
\end{aligned}
$$

The ρ resonance: elastic $\pi \pi$ scattering

The ρ resonance：elastic $\pi \pi$ scattering

$$
\begin{aligned}
& \text { (1 volume) } \\
& m_{\pi}=236 \mathrm{MeV}
\end{aligned}
$$

$$
\begin{aligned}
& \vec{P}=[000] \\
& \vec{P}=[001] \\
& \vec{P}=[011] \\
& \vec{P}=[111] \\
& \vec{P}=[002] \\
& \text { 호 } \\
& \text { |회⿴囗十 }
\end{aligned}
$$

The ρ resonance: elastic $\pi \pi$ scattering

The ρ resonance: coupled-channel $\pi \pi, K \bar{K}$

The ρ : other elastic $\pi \pi$ calcs.

$m_{\pi} \approx 150 \mathrm{MeV}$

No strange quarks in the sea $\left(N_{f}=2\right)$
$M_{R}=716 \pm 21 \pm 21 \mathrm{MeV}$
$\Gamma=113 \pm 35 \pm 3 \mathrm{MeV}$
$\mathrm{g}=5.64 \pm 0.87$

The ρ : other elastic $\pi \pi$ calcs.

The ρ : other elastic $\pi \pi$ calcs.

Guo et al [PR D94, 034501 (2016)], Hu et al [arXiv:1605.04823]

No strange quarks in the sea $\left(N_{f}=2\right)$

Talk by Raquel Molina, 3:50pm Thrs (B7)

Some other recent calculations:

- Bulava et al [NP B910, 842 (2016)]

Also see talk by Daniel Mohler, 3:30pm Mon (B1)

Resonant $\pi^{+} \gamma \rightarrow \rho \rightarrow \pi^{+} \pi^{0}$ amplitude

Talk by Raul Briceño, 5:30pm Tues (B6)

Light scalar mesons

K in $\pi K, \eta K$

$$
J^{P}=0^{+}, \text {Isospin = 1/2, Strangeness }=1
$$

Virtual bound state [pole on real axis below threshold on unphysical sheet]
c.f. к in unitarised χ pt [Nebreda \& Pelaez, PR D81, 034035 (2010)]
(HadSpec) [PRL 113, 182001 (2014); PR D91, 054008 (2015)]

K in $\pi \mathrm{K}, \eta \mathrm{K}$

$$
J^{P}=0^{+}, \text {Isospin = 1/2, Strangeness }=1
$$

Also: P-wave (1^{-}) bound state, $m=933(1) \mathrm{MeV}, \mathrm{g}=5.93(26)$ c.f. K ${ }^{*}(892)$
and D-wave (2^{+}) narrow resonance c.f. $K_{2}{ }^{*}(1430)$

Virtual bound state [pole on real axis below threshold on unphysical sheet]
c.f. к in unitarised χ pt [Nebreda \& Pelaez, PR D81, 034035 (2010)]
(HadSpec) [PRL 113, 182001 (2014); PR D91, 054008 (2015)]

a_{0} resonance in $\pi \eta, K \bar{K}$

$$
\mathrm{J}^{\mathrm{P}}=0^{+}, \mathrm{I}=1
$$

Strongly coupled to both $\pi \eta$ and $K \bar{K}$

Dudek, Edwards, Wilson (HadSpec) [PR D93, 094506 (2016)]

a_{0} resonance in $\pi \eta, K \bar{K}$

$$
J^{P}=0^{+}, I=1
$$

Resonance pole on sheet IV very close to sheet II.

$$
\begin{aligned}
& \sqrt{s_{0}}=\left((1177 \pm 27)+\frac{i}{2}(49 \pm 33)\right) \mathrm{MeV} \\
& \left|c_{K \bar{K}} / c_{\pi \eta}\right|=1.30(37) \quad t_{i j} \sim \frac{c_{i} c_{j}}{s_{0}-s}
\end{aligned}
$$

C.f. analysis of exp. data, Baru et al [EPJ A23, 523 (2005)]
$\sim \sigma$

$$
m_{\pi}=391 \mathrm{MeV}
$$

47 energy levels (3 volumes)

Dudek, Edwards, Wilson (HadSpec) [PR D93, 094506 (2016)]

a_{0} resonance in $\pi \eta, K \bar{K}$

$$
J^{P}=0^{+}, I=1
$$

Resonance pole on sheet IV very close to sheet II.

$$
\begin{aligned}
& \sqrt{s_{0}}=\left((1177 \pm 27)+\frac{i}{2}(49 \pm 33)\right) \mathrm{MeV} \\
& \left|c_{K \bar{K}} / c_{\pi \eta}\right|=1.30(37) \quad t_{i j} \sim \frac{c_{i} c_{j}}{s_{0}-s}
\end{aligned}
$$

C.f. analysis of exp. data, Baru et al [EPJ A23, 523 (2005)]

Sheet	$\operatorname{Im} k_{\pi \eta}$	$\operatorname{Im} k_{K \bar{K}}$
II	+	+
II	-	+
III	-	-
IV	+	-

$$
\sigma \quad m_{\pi}=391 \mathrm{MeV}
$$

47 energy levels (3 volumes)

Also: including πn^{\prime} in S-wave, and a D-wave $\left(2^{+}\right)$resonance c.f. a_{2}

Dudek, Edwards, Wilson (HadSpec) [PR D93, 094506 (2016)]

$f_{0}(500) / \sigma$ in $\pi \pi$ scattering

$$
\mathrm{J}^{\mathrm{P}}=0^{+}, \mathrm{I}=0
$$

Talk by Raul Briceño, 5:30pm Tues (B6)

Briceño, Dudek, Edwards, Wilson (HadSpec) [arXiv:1607.05900]

$f_{0}(500) / \sigma$ in $\pi \pi$ scattering

Talk by Raul Briceño, 5:30pm Tues (B6)

Charm-light (D) and charm-strange $\left(D_{s}\right)$ mesons

Some earlier LQCD studies:
Talk by Daniel Mohler, 3:30pm Mon (B1)

- Mohler et al [PR D87, 034501 (2012)] - $0^{+} D \pi$ and $1^{+} D^{*} \pi$ resonances
- Mohler et al [PRL 111, 222001 (2013)] - $0^{+} D_{s}(2317)$ below D K threshold
- Lang et al [PRD 90, 034510 (2014)] - $0^{+} D_{s}(2317)$ and $1^{+} D_{s 1}(2460), D_{s 1}(2536)$

$\mathrm{D} \pi, \mathrm{D} \eta, \mathrm{D}_{\mathrm{s}} \mathrm{K}(\mathrm{I}=1 / 2)$

Talk by Graham Moir, 4:40pm Mon (C1)

$\mathrm{D} \pi, \mathrm{D} \eta, \mathrm{D}_{\mathrm{s}} \mathrm{K}(\mathrm{I}=1 / 2)$

Talk by Graham Moir, 4:40pm Mon (C1)

D $\pi(I=1 / 2)$ c.f. $D K(I=0)$

$\mathbf{0}^{+}$in $\mathrm{D} \pi$ at (2275.9 $\left.\pm 0.9\right) \mathrm{MeV}$
 c.f. D π threshold (2276.4 ± 0.9) MeV

0^{+}in DK at $\approx 2380 \mathrm{MeV}$
 c.f. DK threshold $\approx 2430 \mathrm{MeV}$

$m_{\pi}=391 \mathrm{MeV}$

DK and D*K (I = 0)

$m_{\pi}=150 \mathrm{MeV}$ and 290 MeV

No strange quarks in the sea $\left(N_{f}=2\right)$

	0^{+}channel			1^{+}channel		
	$m_{\pi}=290[\mathrm{MeV}]$	$m_{\pi}=150[\mathrm{MeV}]$	Expt. $[\mathrm{MeV}]$	$m_{\pi}=290[\mathrm{MeV}]$	$m_{\pi}=150[\mathrm{MeV}]$	Expt. $[\mathrm{MeV}]$
$a_{0}[\mathrm{fm}]$	$-1.13(4)$	$-1.49(13)$		$-0.96(5)$	$-1.24(9)$	
$r_{0}[\mathrm{fm}]$	$0.077(33)$	$0.199(87)$		$0.106(64)$	$0.265(74)$	
$\Delta m[\mathrm{MeV}]$	$40.4(2.7)$	$26.3(4.3)$	45.1	$59.3(3.8)$	$42.0(5.2)$	44.7
$m_{D_{s}}[\mathrm{MeV}]$	$2383.5(2.4)$	$2347.8(3.8)$	2317.7	$2496.5(3.6)$	$2450.8(4.0)$	2459.5

Bottom mesons

$$
\begin{aligned}
& m_{\pi} \approx 156 \mathrm{MeV} \\
& m_{\pi} L \approx 2.3
\end{aligned}
$$

Lang et al [PL B750, 17 (2015)] Lang et al [arXiv:1607.03185]

Bottom mesons

$$
\begin{aligned}
& m_{\pi} \approx 156 \mathrm{MeV} \\
& m_{\pi} L \approx 2.3
\end{aligned}
$$

Charmonium-like mesons, tetraquarks - some recent work

- Ozaki, Sasaki [PR D87, 014506 (2013)] - no sign of $Y(4140)$ in J/ $\psi \varphi$
- Prelovsek \& Leskovec [PRL 111, 192001 (2013)] - $1^{++} \mathrm{I}=0$ near $D \bar{D}^{*}-X(3872)$?
- Prelovsek et al [PL B727, 172; PR D91, 014504 (2015)] - no sign of $Z^{+}(3900)$ in 1^{+-}
- Chen et al (CLQCD) [PR D89, 094506 (2014)] - $1^{++} \mathrm{I}=1 D \bar{D}^{*}$ weakly repulsive
- Padmanath et al [PR D92, 034501 (2015)] - $1^{++} \mathrm{I}=0$ [X(3872)?]; no I=1 or $Y(4140)$
- Lang et al [JHEP 1509, 089 (2015)] - I=0 $D \bar{D}: 1^{--} \psi(3770)$ and 0^{++}
- Chen et al (CLQCD) [PR D92, 054507 (2015)] - $1^{+-} \mathrm{l}=1 D^{*} \bar{D}^{*}$ weakly repulsive?
- Chen et al (CLQCD) [PR D93, 114501 (2016)] - $0^{--}, 1^{+-} \mathrm{l}=1 D^{*} \bar{D}_{1}$ some attraction?
- Ikeda et al (HAL QCD) [arXiv:1602.03465] - $\pi \mathrm{J} / \psi, \rho \eta_{c}, D \bar{D}^{*}$ using HAL QCD method - suggest $Z^{+}(3900)$ is a threshold cusp
- Albaladejo et al [arXiv:1606.03008] - Talk by Feng Kun Guo, 6:30pm Fri (C8)

Heavy-flavour tetraquarks ($q q \bar{Q} \bar{Q}$):

- Bicudo et al [PR D92, 014507 (2015); PR D93, 034501 (2016)] - compute potential between two B mesons in static approximation
- Francis et al [1607.05214] - ud $\overline{b b}$ and $l s \overline{b b} \quad 1^{+}$tetraquarks.

Summary

- Significant progress in using lattice QCD to study resonances, near-threshold states, etc over recent years.
- Coupled-channel scattering for the first time.
- Extract many energy levels \rightarrow map out scattering amps.
- Examples of recent work:
- ρ resonance (many calculations)
- Light scalars ($\left.\sigma, a_{0}(980), \kappa\right)$
- Heavy-light mesons
- Charmonium-like states
- Use m_{π} dependence as a tool
- Ongoing work on formalism (e.g. 3-hadron scattering)
- Also transitions, e.g. p resonance $(\pi \pi) \rightarrow \pi \gamma$

