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 0 | Motivation

1 Can we make sense of the lowest       QCD resonance          ? 0++ f0(500)

The mass and width have been precisely determined

[Caprini, Colangelo & Leutwyler (06); García-Martin et al. (11)]

but what is the quark content:    ,        ... (something else)? qq̄ qq̄qq̄ [Peláez (15)]

Related puzzles:
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•                        poor         convergence in       channelmf0 . mK ) 0++�PT3 [Meißner (91)]

• role of           in ΔI=1/2 rule for non-leptonic kaon decays?f0(500)

http://arxiv.org/abs/hep-ph/0512364
https://arxiv.org/abs/1107.1635
http://inspirehep.net/record/302754


 0 | Motivation

2

Main problems:

A variety of non-perturbative approaches indicate that αs “freezes”  
in the IR to a constant value αIR for small values of  

[Diagram from RJ Crewther]

)
Nf

• scheme / definition 
dependence of αs     the 
existence of αIR for small  

   is not entirely settled
[For a catalog of existing results see:  
Deur, Brodsky & de Teramond (16)]

• when is αIR physical?

Q: If αIR exists, what are the 
implications for low energy  
physics, especially       ?�PT

Nf  3



 1 | Chiral-scale perturbation theory

Decouple t,b,c     relevance of scale (or dilatation) invariance 
determined by trace anomaly of           theory:
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IR fixed point: β(αIR) = 0

�PT� = asymptotic expansion in

↵s . ↵IR and mu,d,s ⇠ 0

about scale-dependent |vaci

) 9 NG bosons π, K, η, σ

In limit           dilaton σ couples to masses in non-NG sector✓µµ ! 0

hvac|✓µ⌫ |�(q)i = 1
3 (qµq⌫ � q2gµ⌫)F� ) e.g. F�g�NN = MN

[Gell-Mann (62)]

http://journals.aps.org/pr/abstract/10.1103/PhysRev.125.1067


Associate dilaton σ with          : the           mass understood due 
to            term in     while the width is explained by         relation 

 1 | Chiral-scale perturbation theory

1

Key results

f0(500)

F�g�⇡⇡ ' �m2
�

2

✓µµ⇠ mss̄s O(p2)

[Ellis (70); Crewther (70)]

NB. In chiral-scale limit           get massless π, Κ, η and stable ✓µµ ! 0 �/f0

Promotion of           to NG sector       scale separation restored  f0(500) )

OK to use local field σ in Le↵(phase space = 0)

O(mK)

)

χPTσ (mass)2
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0
NGbosons p·p′=O(m2

K) NotNG
bosons

scale
separation

Expect improved convergence in       channels (        analysis in progress)0++ O(p4)

http://www.sciencedirect.com/science/article/pii/0550321371904391
http://www.sciencedirect.com/science/article/pii/0370269370902777


 1 | Chiral-scale perturbation theory

3 Lowest order                 explains the ΔI=1/2 rule for kaon decaysO(p2)�PT�

+K0
S
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g8,27

σ

gσππgKSσ

This talk: some formal aspects concerning hidden scale invariance  
   & a proposal to test         on the lattice �PT�

4

Fit data on             ,             , and                  bounds on  
asymptotic Drell-Yan ratio at             : 

⇡⇡ ! �� KS ! �� � ! �� )
↵s = ↵IR

2.5 . RIR . 5

Relation between σγγ coupling and electromagnetic trace anomaly

✓̃µµ = ✓µµ + (R↵/6⇡)F 2 [Crewther (72);  
Chanowitz & Ellis (72)]

http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.28.1421
http://www.apple.com


 2 | The NG mechanism at an IR fixed point

The idea that particles can have mass in the scale invariant limit 
seems counter-intuitive, especially for gauge theories like QCD

✓µµ ! 0

Usually one considers fixed points in the Wigner-Weyl mode, as in e.g. 
the conformal window: two-loop � = �b1↵

2
s � b2↵

3
s ) IR fixed point 

↵CBZ = �b2/b1 if b2 < 0 , i.e. for 9  Nf  16

[Caswell (74); Banks & Zaks (82)]

But ... if IR fixed point is non-perturbative dimensional transmutation  
may cause        to break scale invariance      symmetry is hidden|vaci )

General theory of the NG mode for scale and conformal invariance 
established long ago [Salam & Strathdee (69); Zumino (70); Carruthers (71)]

Let us apply these ideas to           QCD …Nf = 3



 3 | Chiral and scale condensates

Recall chiral Ward identities for e.g.                       and its divergence:Ja
µ5 = q̄�µ�5T
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@µJa
µ5 = Da

5 = 2miq̄�5T
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The term             does not vanish in limit            if            pion pole    ThD5Oi Da
5 ! 0 9 q = 0

) h�Oi ! iF⇡hvac|O|⇡i 6= 0 , m ! 0 , F⇡ ' 93 MeV

So e.g.             hides the symmetry;            and mesons not P-doubled hq̄qi 6= 0 MB 6= 0



 3 | Chiral and scale condensates

For scale transformations, the relevant divergence is  
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so the q=0 Ward identities are the Callan-Symanzik equations

The terms            and                                correspond to  
insertion of    :
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X
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What happens to RH side of     if αIR exists and limit           is taken?✓µµ ! 0
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 3 | Chiral and scale condensates

Wigner-Weyl (WW) mode

The standard procedure is to set all amplitudes involving       to zero 
R
✓µµ

)
⇢
µ
@

@µ
+ �O(↵WW)

�
hvac|O(0)|vaciWW = 0

no NG mechanism and scale invariance realised in WW mode

) theory at a WW fixed point        is manifestly scale invariant↵WW

) Green’s functions scale according to power-laws ⇠ µ��O(↵WW)

) No mass gap and dimensional transmutation does not occur. 
In particular, fermions cannot condense at        .  Must assume  
that fermion condensation is consequence of explicit scale  
symmetry breaking, e.g. in walking gauge theories

↵WW

[Appelquist et al (97)]



 3 | Chiral and scale condensates

Nambu-Goldstone (NG) mode

In this case the RH side of     does not vanish at αIR as  (?) ✓µµ ! 0
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Occurs if    dilaton σ where                            , so key result follows:9 hvac|✓µµ|�i = �m2
�F�

⇢
µ
@

@µ
+ �O(↵s)

�
hvac|O(0)|vaciNG ! �F�h�(q = 0)| O(0) |vaci , ✓µµ ! 0

Then          is a scale condensate (e.g.               ) and the vacuum  
breaks scale invariance.  

hOivac hq̄qivac 6= 0

NB. • all particles except π, Κ, η, σ can remain massive at αIR 

• Green’s functions do not exhibit power-law behaviour 
•        carries μ dependence of theory and “knows” about  
   dimensional transmutation; driven by strength of interactions in H
|vaci



 4 | Chiral-scale effective Lagrangian

If αIR exists in           QCD, it is necessary to extend         to account  
for non-linearly realised scale invariance 

Nf = 3 �PT3

[Salam et al (69) & (70); Ellis (70)]

L�PT� = Ld=4

inv

+ Ld>4

anom

+ Ld<4

mass

In physical region                   consider the combined limit 0 < ↵s < ↵IR

mu,d,s ⇠ 0 and ↵s . ↵IR

Effective chiral-scale Lagrangian composed of terms with differing  
scale dimension

Operator dimensions satisfy

Callan-Symanzik equations for QCD amplitudes implies that at LO

[Wilson (69)]dinv = 4 and 1  3� �m(↵IR) < 4

�(↵s) ' �0(↵
IR

)(↵s � ↵
IR

) ) d
anom

= 4 + �0 > 4

http://journals.aps.org/pr/abstract/10.1103/PhysRev.184.1760
http://journals.aps.org/prd/abstract/10.1103/PhysRevD.2.685
http://inspirehep.net/record/62405
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Want         expression for L�PT� = Ld=4
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Then strong interactions at lowest order given by

 4 | Chiral-scale effective Lagrangian

use powers of         to adjust dimensions of operators likee�/F�)
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Recently, we found a simplification: for 
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to vanish in chiral-scale limit,    and    are both c1 c2 1 +O(M)

Can we constrain the low energy constants?

 4 | Chiral-scale effective Lagrangian



 5 | Lowest order results

Mass formula
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for (say)              and β’=1: dmass = 2 c4 ' 3
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 6 | The ΔI=1/2 rule for kaon decays

Let                        and adjust dimensions of         operators: Jij = (U@µU
†)ij �PT3

Q8 = J13J21 � J23J11

Q27 = J13J21 +
3
2J23J11

Qmw = Tr(�6 � i�7)
�
gMMU † + ḡMUM†�and

Lw = g8Q8e
(2��8)�/F� + g27Q27e

(2��27)�/F� +Qmwe
(3��mw)�/F� + h.c.

+K0
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Magnitude of        needed is  
consistent with              and

gKS�

KS ! �� �� ! ⇡⇡
    and     allowed to  
have similar magnitude
g8 g27

Vacuum alignment of the resulting effective Lagrangian

              vertex from mismatch of mass and weak anomalous dimensions

[Crewther (86)]

) KS�

http://www.sciencedirect.com/science/article/pii/0550321386904839


 30 | Testing the ΔΙ = 1/2 Rule on the Lattice

Instead, revive lattice proposal to measure           on shellK ! ⇡

and consider low-energy theorems for            :K ! ⇡⇡

[Crewther (86)]

Vacuum alignment                                        (still true in        ) 

   try lattice determination for               with both K and π on shell 

In         we have the following low-energy theorem 

!

The on shell value of               is not affected by        pole 

     a lattice determination of           measures            directly which  
     is what the ΔI=1/2 puzzle has always been about  

h⇡|Le↵ |Ki

h⇡|Le↵ |Ki �/f0

�PT�

{K ! ⇡⇡} = {K ! ⇡ on shell}+ {�/f0 pole}+O(p4)

|g8/g27|

) K ! |vaci = O(p4) �PT�

 7 | Testing χPTσ on the lattice

The signal on the lattice for an IR fixed point in NG mode is freezing of  
the running coupling outside the conformal window [e.g. Horseley et al. (13)]

Scheme/definition dependence of αs     hard to test         conclusively) �PT�
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http://www.sciencedirect.com/science/article/pii/0550321386904839
https://arxiv.org/abs/1309.4311

