Chiral-Scale Perturbation Theory χPT_{σ} and the Renormalization Group

Based on work with R.J. Crewther (Adelaide) [arXiv:1203.1321 & 1312.3319 & 1510.01322]

 u^{\flat}

[⊅] UNIVERSITÄT BERN

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS Lewis C. Tunstall Albert Einstein Centre for Fundamental Physics Institute for Theoretical Physics University of Bern

Confinement XII // Thessaloniki // 28th Aug - 4th Sep 2016

0 | Motivation

1

Can we make sense of the lowest 0^{++} QCD resonance $f_0(500)$?

The mass and width have been precisely determined

$$m_{f_0} = 441^{+16}_{-8} \text{ MeV} \qquad \Gamma_{f_0} = 544^{+18}_{-25} \text{ MeV}$$

[Caprini, Colangelo & Leutwyler (<u>06</u>); García-Martin et al. (<u>11</u>)]

but what is the quark content: $q\bar{q}$, $q\bar{q}q\bar{q}$... (something else)? [Peláez (15)] **Related puzzles:**

• $m_{f_0} \lesssim m_K \Rightarrow \text{poor } \chi \text{PT}_3 \text{ convergence in } 0^{++} \text{ channel [Meißner (91)]}$

• role of $f_0(500)$ in $\Delta I=1/2$ rule for non-leptonic kaon decays?

0 | Motivation

2 A variety of non-perturbative approaches indicate that α_s "freezes" in the IR to a constant value α_{IR} for small values of $N_f \leq 3$

Main problems:

• scheme / definition dependence of $\alpha_s \Rightarrow$ the existence of α_{IR} for small N_f is not entirely settled

[For a catalog of existing results see: Deur, Brodsky & de Teramond $(\underline{16})$]

• when is α_{IR} physical?

Q: If α_{IR} exists, what are the implications for low energy physics, especially χPT ?

[[]Diagram from RJ Crewther]

1 | Chiral-scale perturbation theory

Decouple t,b,c \Rightarrow relevance of scale (or dilatation) invariance determined by trace anomaly of $N_f = 3$ theory:

$$\partial^{\mu} \left\{ x^{\alpha} \theta_{\alpha \mu} \right\} = \theta^{\mu}_{\mu} = \frac{\beta(\alpha_s)}{4\alpha_s} G^2 + (1+\gamma_m) \sum_{q=u,d,s} m_q \bar{q} q$$

IR fixed point: $\beta(\alpha_{IR}) = 0$ χPT_{σ} = asymptotic expansion in $\alpha_s \lesssim \alpha_{IR}$ and $m_{u,d,s} \sim 0$ about scale-dependent $|vac\rangle$

 \Rightarrow 9 NG bosons π, K, η, σ

In limit $\theta^{\mu}_{\mu} \to 0$ dilaton σ couples to masses in non-NG sector [Gell-Mann (62)] $\langle \operatorname{vac}|\theta_{\mu\nu}|\sigma(q)\rangle = \frac{1}{3}(q_{\mu}q_{\nu} - q^{2}g_{\mu\nu})F_{\sigma} \Rightarrow \text{e.g. } F_{\sigma}g_{\sigma NN} = M_{N}$

1 | Chiral-scale perturbation theory

Key results

1 Associate dilaton σ with $f_0(500)$: the $O(m_K)$ mass understood due to $\sim m_s \bar{s}s$ term in θ^{μ}_{μ} while the width is explained by $O(p^2)$ relation

$$F_{\sigma}g_{\sigma\pi\pi} \simeq -m_{\sigma}^2$$
 [Ellis (70); Crewther (70)]

- **NB.** In chiral-scale limit $\theta^{\mu}_{\mu} \to 0$ get massless π , K, η and stable σ/f_0 (phase space = 0) \Rightarrow OK to use local field σ in \mathcal{L}_{eff}
 - 2 Promotion of $f_0(500)$ to NG sector \Rightarrow scale separation restored

Expect improved convergence in 0^{++} channels ($O(p^4)$ analysis in progress)

1 | Chiral-scale perturbation theory

3 Lowest order $O(p^2) \chi PT_{\sigma}$ explains the $\Delta I=1/2$ rule for kaon decays

4

Relation between $\sigma\gamma\gamma$ coupling and electromagnetic trace anomaly

$$\tilde{\theta}^{\mu}_{\mu} = \theta^{\mu}_{\mu} + (R\alpha/6\pi)F^2$$
 [Crewther (72);
Chanowitz & Ellis (72)]

Fit data on $\pi\pi \to \gamma\gamma$, $K_S \to \gamma\gamma$, and $\sigma \to \gamma\gamma \implies$ bounds on asymptotic Drell-Yan ratio at $\alpha_s = \alpha_{IR}$:

$$2.5 \lesssim R_{\rm IR} \lesssim 5$$

This talk: some formal aspects concerning **hidden** scale invariance & a proposal to test χPT_{σ} on the lattice

2 | The NG mechanism at an IR fixed point

The idea that particles can have mass in the scale invariant limit $\theta^{\mu}_{\mu} \to 0$ seems counter-intuitive, especially for gauge theories like QCD

Usually one considers fixed points in the Wigner-Weyl mode, as in e.g. the conformal window: two-loop $\beta = -b_1 \alpha_s^2 - b_2 \alpha_s^3 \Rightarrow$ IR fixed point

 $\alpha_{\rm CBZ} = -b_2/b_1$ if $b_2 < 0$, i.e. for $9 \le N_f \le 16$ [Caswell (74); Banks & Zaks (82)]

But ... if IR fixed point is non-perturbative dimensional transmutation may cause $|vac\rangle$ to break scale invariance \Rightarrow symmetry is hidden

General theory of the NG mode for scale and conformal invariance established long ago [Salam & Strathdee (69); Zumino (70); Carruthers (71)]

Let us apply these ideas to $N_f = 3 \text{ QCD} \dots$

3 | Chiral and scale condensates

Recall chiral Ward identities for e.g. $J^a_{\mu 5} = \bar{q}\gamma_{\mu}\gamma_5 T^a q$ and its divergence:

$$\partial^{\mu}J^{a}_{\mu5} = D^{a}_{5} = 2mi\bar{q}\gamma_{5}T^{a}q$$

Let ${\mathcal O}$ be any operator which is not chiral invariant and consider amplitude

$$\mathcal{A}^{a}_{\mu 5}(q) = \int d^{4}x \, e^{iq \cdot x} \, \mathrm{T} \big\langle \mathrm{vac} \big| J^{a}_{\mu 5}(x) \mathcal{O}(0) \big| \mathrm{vac} \big\rangle$$

Consider q = 0 limit of the chiral Ward identities

$$q^{\mu} \mathcal{A}^{a}_{\mu 5} = \text{commutators } + \int_{x} e^{iq \cdot x} D_{5}^{a}$$
 insertion

$$\Rightarrow \quad 0 = \langle \operatorname{vac} | \delta_5^a \mathcal{O} | \operatorname{vac} \rangle + i \int d^4 x \, \operatorname{T} \langle \operatorname{vac} | D_5^a(x) \mathcal{O}(0) | \operatorname{vac} \rangle$$

The term $T\langle D_5\mathcal{O}\rangle$ does not vanish in limit $D_5^a \to 0$ if $\exists q = 0$ pion pole

$$\Rightarrow \quad \langle \delta \mathcal{O} \rangle \to i F_{\pi} \langle \text{vac} | \mathcal{O} | \pi \rangle \neq 0 \,, \quad m \to 0 \,, \quad F_{\pi} \simeq 93 \text{ MeV}$$

So e.g. $\langle \bar{q}q \rangle \neq 0$ hides the symmetry; $M_B \neq 0$ and mesons not P-doubled

3 | Chiral and scale condensates

For scale transformations, the relevant divergence is

$$\partial^{\mu} \{ x^{\alpha} \theta_{\alpha \mu} \} = \theta^{\mu}_{\mu} = \frac{\beta(\alpha_s)}{4\alpha_s} G^2 + (1 + \gamma_m(\alpha_s)) \sum_{q=u,d,s} m_q \bar{q} q$$

so the q=0 Ward identities are the Callan-Symanzik equations

$$\left\{\mu\frac{\partial}{\partial\mu} + \beta(\alpha_s)\frac{\partial}{\partial\alpha_s} + \gamma_{\mathcal{O}}(\alpha_s) + (1 + \gamma_m(\alpha_s))\sum_{u,d,s} m_q\frac{\partial}{\partial m_q}\right\} \langle \mathcal{O} \rangle_{\text{vac}} = 0$$

The terms $\beta \partial / \partial \alpha_s$ and $(1 + \gamma_m) \sum_q m_q \partial / \partial m_q$ correspond to q = 0 insertion of θ^{μ}_{μ} :

$$\left\{\mu\frac{\partial}{\partial\mu} + \gamma_{\mathcal{O}}(\alpha_s)\right\} \left\langle \operatorname{vac}|\mathcal{O}(0)|\operatorname{vac}\right\rangle = i \int d^4x \,\mathrm{T}\left\langle \operatorname{vac}\left|\theta^{\mu}_{\mu}(x)\mathcal{O}(0)\right|\operatorname{vac}\right\rangle \quad (\star)$$

What happens to RH side of (\star) if α_{IR} exists and limit $\theta^{\mu}_{\mu} \to 0$ is taken?

Wigner-Weyl (WW) mode

The standard procedure is to set all amplitudes involving $\int \theta^{\mu}_{\mu}$ to zero

→ no NG mechanism and scale invariance realised in WW mode

$$\left\{\mu\frac{\partial}{\partial\mu} + \gamma_{\mathcal{O}}(\alpha_{\rm WW})\right\} \langle \mathrm{vac}|\mathcal{O}(0)|\mathrm{vac}\rangle_{\rm WW} = 0$$

- \therefore theory at a WW fixed point $\alpha_{\rm WW}$ is manifestly scale invariant
- ⇒ Green's functions scale according to power-laws $\sim \mu^{-\gamma_{\mathcal{O}}(\alpha_{WW})}$
- → No mass gap and dimensional transmutation does not occur. In particular, fermions cannot condense at α_{WW} . Must assume that fermion condensation is consequence of **explicit** scale symmetry breaking, e.g. in walking gauge theories [Appelquist et al (<u>97</u>)]

3 | Chiral and scale condensates

Nambu-Goldstone (NG) mode

$$\left\{\mu\frac{\partial}{\partial\mu} + \gamma_{\mathcal{O}}(\alpha_s)\right\} \left\langle \operatorname{vac}|\mathcal{O}(0)|\operatorname{vac}\right\rangle = i \int d^4x \,\mathrm{T}\left\langle \operatorname{vac}\left|\theta^{\mu}_{\mu}(x)\mathcal{O}(0)\right|\operatorname{vac}\right\rangle \quad (\star)$$

In this case the RH side of (\star) does not vanish at α_{IR} as $\theta^{\mu}_{\mu} \rightarrow 0$

Occurs if \exists dilaton σ where $\langle vac | \theta^{\mu}_{\mu} | \sigma \rangle = -m_{\sigma}^2 F_{\sigma}$, so key result follows:

$$\left\{\mu\frac{\partial}{\partial\mu} + \gamma_{\mathcal{O}}(\alpha_s)\right\} \langle \operatorname{vac}|\mathcal{O}(0)|\operatorname{vac}\rangle_{\operatorname{NG}} \to -F_{\sigma}\langle \sigma(q=0)|\mathcal{O}(0)|\operatorname{vac}\rangle, \quad \theta^{\mu}_{\mu} \to 0$$

Then $\langle \mathcal{O} \rangle_{\text{vac}}$ is a scale condensate (e.g. $\langle \bar{q}q \rangle_{\text{vac}} \neq 0$) and the vacuum breaks scale invariance.

NB. • all particles except π , K, η , σ can remain massive at α_{IR}

- Green's functions do not exhibit power-law behaviour
- $|vac\rangle$ carries μ dependence of theory and "knows" about dimensional transmutation; driven by strength of interactions in H

4 | Chiral-scale effective Lagrangian

If α_{IR} exists in $N_f = 3$ QCD, it is **necessary** to extend χPT_3 to account for non-linearly realised scale invariance [Salam et al (<u>69</u>) & (<u>70</u>); Ellis (<u>70</u>)]

In physical region $0 < \alpha_s < \alpha_{\rm IR}$ consider the combined limit

$$m_{u,d,s} \sim 0$$
 and $\alpha_s \lesssim \alpha_{\rm IR}$

Effective chiral-scale Lagrangian composed of terms with differing scale dimension

$$\mathcal{L}_{\chi \mathrm{PT}_{\sigma}} = \mathcal{L}_{\mathrm{inv}}^{d=4} + \mathcal{L}_{\mathrm{anom}}^{d>4} + \mathcal{L}_{\mathrm{mass}}^{d<4}$$

Operator dimensions satisfy

 $d_{\mathrm{inv}} = 4$ and $1 \le 3 - \gamma_m(\alpha_{\mathrm{IR}}) < 4$ [Wilson (69)]

Callan-Symanzik equations for QCD amplitudes implies that at LO $\beta(\alpha_s) \simeq \beta'(\alpha_{\rm IR})(\alpha_s - \alpha_{\rm IR}) \quad \Rightarrow \quad d_{\rm anom} = 4 + \beta' > 4$

4 | Chiral-scale effective Lagrangian

Want
$$O(p^2)$$
 expression for $\mathcal{L}_{\chi PT_{\sigma}} = \mathcal{L}_{inv}^{d=4} + \mathcal{L}_{anom}^{d>4} + \mathcal{L}_{mass}^{d<4}$
Use covariant field $e^{\sigma/F_{\sigma}}$ with scale dimension 1 for

$$\sigma \to \sigma - \frac{1}{4} F_{\sigma} \log \left| \det(\partial x' / \partial x) \right|$$

 \Rightarrow use powers of $e^{\sigma/F_{\sigma}}$ to adjust dimensions of operators like

$$\mathcal{K}[U, U^{\dagger}] = \frac{1}{4} F_{\pi}^{2} \operatorname{Tr}(\partial_{\mu} U \partial^{\mu} U^{\dagger}) \qquad \mathcal{K}_{\sigma} = \frac{1}{2} \partial_{\mu} \sigma \partial^{\mu} \sigma$$

Then strong interactions at lowest order given by

$$\mathcal{L}_{inv}^{d=4} = \left\{ c_1 \mathcal{K} + c_2 \mathcal{K}_{\sigma} + c_3 e^{2\sigma/F_{\sigma}} \right\} e^{2\sigma/F_{\sigma}}$$
$$\mathcal{L}_{anom}^{d>4} = \left\{ (1 - c_1) \mathcal{K} + (1 - c_2) \mathcal{K}_{\sigma} + c_4 e^{2\sigma/F_{\sigma}} \right\} e^{(2 + \beta')\sigma/F_{\sigma}}$$
$$\mathcal{L}_{mass}^{d<4} = \operatorname{Tr}(MU^{\dagger} + UM^{\dagger}) e^{(3 - \gamma_m)\sigma/F_{\sigma}}$$

New set of low energy constants $c_{1,...,4}$, $\beta'(\alpha_{\rm IR})$, $\gamma_m(\alpha_{\rm IR})$

4 | Chiral-scale effective Lagrangian

Can we constrain the low energy constants?

$$\mathcal{L}_{inv}^{d=4} = \left\{ c_1 \mathcal{K} + c_2 \mathcal{K}_{\sigma} + c_3 e^{2\sigma/F_{\sigma}} \right\} e^{2\sigma/F_{\sigma}}$$
$$\mathcal{L}_{anom}^{d>4} = \left\{ (1 - c_1) \mathcal{K} + (1 - c_2) \mathcal{K}_{\sigma} + c_4 e^{2\sigma/F_{\sigma}} \right\} e^{(2 + \beta')\sigma/F_{\sigma}}$$
$$\mathcal{L}_{mass}^{d<4} = \operatorname{Tr}(MU^{\dagger} + UM^{\dagger}) e^{(3 - \gamma_m)\sigma/F_{\sigma}}$$

For consistency, c_3 and c_4 are O(M). Vacuum stability (no tadpoles) req:

$$4c_3 + (4+\beta')c_4 = -(3-\gamma_m)F_{\pi}^2 \left(m_K^2 + \frac{1}{2}m_{\pi}^2\right)$$

Recently, we found a **simplification**: for

$$\theta^{\mu}_{\mu}\Big|_{\text{eff}} = \sum_{d} (d-4)\mathcal{L}_{d} = :\beta'\mathcal{L}_{\text{anom}}^{d>4} - (1+\gamma_{m})\mathcal{L}_{\text{mass}}^{d<4}:$$

to vanish in chiral-scale limit, c_1 and c_2 are both 1 + O(M)

5 | Lowest order results

Mass formula

$$m_{\sigma}^2 F_{\sigma}^2 = F_{\pi}^2 (m_K^2 + \frac{1}{2}m_{\pi}^2)(3 - \gamma_m)(1 + \gamma_m) - \beta'(4 + \beta')c_4$$

Factor d(d-4) in each term: $d_{\text{mass}} = 3 - \gamma_m$ and $d_{\text{anom}} = 4 + \beta'$

Sign of c_4 not determined by theory: depends on m_K/m_σ :

$$\Rightarrow \begin{cases} c_4 > 0 \text{ unless } d_{\text{mass}} \text{ close to 0 or 4} \\ \text{for (say) } d_{\text{mass}} = 2 \text{ and } \beta'=1: c_4 \simeq \frac{3}{4}m_K^2 F_{\pi}^2 \end{cases}$$

Width

$$\mathcal{L}_{\sigma\pi\pi} = \left\{ 2|\partial \pi|^2 - (3 - \gamma_m)m_\pi^2|\pi|^2 \right\} \sigma/(2F_\sigma)$$

⇒ small effect on $\pi\pi$ scattering in $SU(2) \times SU(2)$ limit with $\partial = O(m_{\pi})$ Vertex for on shell amplitude $g_{\sigma\pi\pi} = -\left(m_{\sigma}^2 + (1 - \gamma_m)m_{\pi}^2\right)/F_{\sigma}$ Fit to data on $f_0(500)$ width $\Rightarrow |F_{\sigma}| \simeq 50$ MeV

6 | The $\Delta I = 1/2$ rule for kaon decays

Let $\mathcal{J}_{ij} = (U\partial_{\mu}U^{\dagger})_{ij}$ and adjust dimensions of χPT_3 operators:

 $Q_8 = \mathcal{J}_{13}\mathcal{J}_{21} - \mathcal{J}_{23}\mathcal{J}_{11}$ $Q_{27} = \mathcal{J}_{13}\mathcal{J}_{21} + \frac{3}{2}\mathcal{J}_{23}\mathcal{J}_{11}$ and $Q_{mw} = \operatorname{Tr}(\lambda_6 - i\lambda_7)(g_M M U^{\dagger} + \bar{g}_M U M^{\dagger})$

Vacuum alignment of the resulting effective Lagrangian [Crewther (86)]

$$\mathcal{L}_{w} = g_{8}Q_{8}e^{(2-\gamma_{8})\sigma/F_{\sigma}} + g_{27}Q_{27}e^{(2-\gamma_{27})\sigma/F_{\sigma}} + Q_{mw}e^{(3-\gamma_{mw})\sigma/F_{\sigma}} + \text{h.c.}$$

 $\Rightarrow K_S \sigma$ vertex from mismatch of mass and weak anomalous dimensions

7 | Testing χPT_{σ} on the lattice

The signal on the lattice for an IR fixed point in NG mode is **freezing** of the running coupling **outside the conformal window** [e.g. Horseley et al. (<u>13</u>)] Scheme/definition dependence of $\alpha_s \Rightarrow$ hard to test χPT_{σ} conclusively Instead, revive lattice proposal to measure $K \rightarrow \pi$ on shell [Crewther (<u>86</u>)] and consider low-energy theorems for $K \rightarrow \pi\pi$:

Vacuum alignment ⇒ K → |vac⟩ = O(p⁴) (still true in χPT_σ)
∴ try lattice determination for ⟨π|L_{eff}|K⟩ with both K and π on shell
In χPT_σ we have the following low-energy theorem
 {K → ππ} = {K → π on shell} + {σ/f₀ pole} + O(p⁴)
The on shell value of ⟨π|L_{eff}|K⟩ is not affected by σ/f₀ pole
 ⇒ a lattice determination of K → π measures |g₈/g₂₇| directly which

is what the ΔI =1/2 puzzle has always been about