Decays of neutral pions

Electromagnetic form factors and radiative corrections

Tomáš Husek

Institute of Particle and Nuclear Physics
Charles University in Prague

In collaboration with

K. Kampf, J. Novotný (Charles University), S. Leupold (Uppsala University)

Θεσσαλονίκη
Thessaloniki
29th August 2016

Supported by the grant GAUK 700214
Decay modes of neutral pion: $\pi^0 \rightarrow \gamma \gamma$, $\pi^0 \rightarrow e^+e^- \gamma$, $\pi^0 \rightarrow e^+e^-e^-e^-$, ...

Rare decay $\pi^0 \rightarrow e^+e^-$

- precise measurements of branching ratio
 - $K\text{TeV}$ experiment at Fermilab ([Abouzaid et al., PRD 75 (2007)])
 \[B^{K\text{TeV}}(\pi^0 \rightarrow e^+e^-(\gamma), \ x_D > 0.95) = (6.44 \pm 0.25 \pm 0.22) \times 10^{-8} \]
- Standard Model theoretical prediction
 - 3.3σ disagreement ([Dorokhov and Ivanov, PRD 75 (2007)])
- discrepancy not satisfactorily explained yet
- very fashionable to ascribe eventual discrepancies to effects of new physics

BUT

- first, look for more conventional solution (i.e. within SM)

 → radiative corrections (usually very important)
 → form factor modeling
- pions are complicated composite objects
 \[\rightarrow \text{elementary interactions are not point-like} \]

- electromagnetic pion transition form factor \(F_{\pi^0 \gamma^* \gamma^*} \) describes this complexity

\[
\begin{align*}
\text{LO contribution} & \quad \Rightarrow \quad \text{its representation} \\
\text{in QED expansion} & \quad \Rightarrow \quad \text{as the LO of } \chi \text{PT}
\end{align*}
\]

- free parameter \(\chi^{(r)}(\mu) \) appears in the finite part of the counter term

\[
\chi = [\text{UV-divergent part}] + \chi^{(r)}(\mu)
\]

\[\rightarrow \text{unique for every form factor, e.g. } \chi^{(r)}_{KTeV}(M_\rho) = 6.0 \pm 1.0 \]
- calculated by *Vaško and Novotný, JHEP 1110 (2011)*
Bremsstrahlung

- compensation of infrared divergences in 2-loop contributions

→ TH, Kampf and Novotný, EPJC 74 (2014)
Size of the radiative corrections (**newly calculated**)

\[\delta^{\text{NLO}}(0.95) \equiv \delta^{\text{virt.}} + \delta^{\text{BS}}(0.95) = (-5.5 \pm 0.2)\% \]

- can be thought as model-independent
- differs **significantly** from previous **approximate** calculations

- original KTeV vs. SM discrepancy reduced to the 2\(\sigma\) level or less
 \[\chi^{(r)}_{\text{KTeV}}(M_\rho) = 4.5 \pm 1.0 \]

- LMD model (**Knecht et al., PRL 83 (1999)**)
 \[\chi^{(r)}_{\text{LMD}}(M_\rho) = 2.2 \pm 0.9 \]

NLO radiative corrections in the QED sector did not solve the discrepancy
→ back to LO, but use different model
Chiral Perturbation Theory (χPT)

Resonance Chiral Theory ($R\chi$T)
1) Ansatz for Pseudoscalar-Vector-Vector (PVV) correlator
 - Two-Hadron-Saturation (THS) - 2 meson multiplets per channel

\[\Pi^{\text{THS}}(r^2, p^2, q^2) \sim \frac{1}{r^2(r^2 - M_P^2)} \frac{P(r^2; p^2, q^2)}{(p^2 - M_{V_1}^2)(p^2 - M_{V_2}^2)(q^2 - M_{V_1}^2)(q^2 - M_{V_2}^2)} \]

- in numerator stands general polynomial symmetrical in \(p^2 \) and \(q^2 \)
 → correlator must drop at large momenta
 → 22 free parameters

\[P(r^2; p^2, q^2) = c_0 p^2 q^2 + c_1 [(p^2)^3 q^2 + (q^2)^3 p^2] + c_2 (r^2)^2 p^2 q^2 + \ldots \]

2) Use high- and low-energy limits to constrain the parameters
 - Operator product expansion (OPE)
 - Brodsky–Lepage (BL) quark counting rules
 - chiral anomaly
Form factor is in general related to PVV correlator as

$$F_{\pi^0 \gamma^* \gamma^*}(p^2, q^2) \sim \lim_{r^2 \to 0} r^2 \Pi(r^2; p^2, q^2)$$

→ in our case complicated, but with only one free parameter

$$F_{\pi^0 \gamma^* \gamma^*}^{\text{THS}}(p^2, q^2) = -\frac{N_c}{12\pi^2 F} \left[\frac{M_{V_1}^4 M_{V_2}^4}{(p^2 - M_{V_1}^2)(q^2 - M_{V_2}^2)} \right] \left[\frac{M_{V_1}^4 M_{V_2}^4}{(p^2 - M_{V_1}^2)(q^2 - M_{V_2}^2)} \right]$$

$$\times \left\{ 1 + \frac{\kappa}{2N_c (4\pi F)^4} - \frac{4\pi^2 F^2(p^2 + q^2)}{N_c M_{V_1}^2 M_{V_2}^2} \left[6 + \frac{p^2 q^2}{M_{V_1}^2 M_{V_2}^2} \right] \right\}$$

κ determined from fit to ω-π transition form factor measurements

$$\kappa = 21 \pm 3$$

$$M_{V_1} \sim \rho, \omega$$ vector-meson mass

$$M_{V_2} \sim$$ between physical masses of first and second vector-meson excitations

$$M_{V_2} \in [1400, 1740] \text{ MeV}$$
VMD and LMD models

Examples of other approaches

- **Vector-Meson Dominance (VMD)**

\[
F_{\pi^0 \gamma^* \gamma^*}^{\text{VMD}}(p^2, q^2) = -\frac{N_c}{12\pi^2 F} \left[\frac{M_{V_1}^4}{(p^2 - M_{V_1}^2)(q^2 - M_{V_1}^2)} \right]
\]

→ violates OPE: \(F_{\pi^0 \gamma^* \gamma^*}(q^2, q^2) \propto \frac{1}{q^2}, \; q^2 \to -\infty \)

- **Lowest-Meson Dominance (LMD)**

\[
F_{\pi^0 \gamma^* \gamma^*}^{\text{LMD}}(p^2, q^2) = F_{\pi^0 \gamma^* \gamma^*}^{\text{VMD}}(p^2, q^2) \left\{ 1 - \frac{4\pi^2 F^2 (p^2 + q^2)}{N_c M_{V_1}^4} \right\}
\]

→ violates BL: \(F_{\pi^0 \gamma^* \gamma^*}(0, q^2) \propto \frac{1}{q^2}, \; q^2 \to -\infty \)

- none of the models used two meson multiplets in both channels

→ vector and pseudoscalar
Theoretical prediction within THS model

\[B^{\text{THS}}(\pi^0 \rightarrow e^+ e^- (\gamma), \ x_D > 0.95) = (5.8 \pm 0.2) \times 10^{-8} \]

- recall experimental value: \(B^{K\text{TeV}} = (6.44 \pm 0.33) \times 10^{-8} \)
 \(\rightarrow \) disagreement at the level of only 1.8 \(\sigma \)
- matching on LO \(\chi \)PT gives \(\chi^{(r)}_{\text{THS}}(M_\rho) = 2.2 \pm 0.7 \)
- if KTeV result confirmed \(\rightarrow \) two scenarios are conceivable:
 a) some aspects of the THS approach not well-suited for \(\pi^0 \rightarrow e^+ e^- \)
 b) beyond-Standard Model physics influences the rare pion decay significantly
- under the present circumstances the current discrepancy is inconclusive

Quantity really measured by KTeV

\[\frac{\Gamma(\pi^0 \rightarrow e^+ e^- (\gamma), \ x > 0.95)}{\Gamma(\pi^0 \rightarrow e^+ e^- \gamma(\gamma), \ x > 0.2319)} \bigg|_{K\text{TeV}} = (1.685 \pm 0.064 \pm 0.027) \times 10^{-4} \]

\(\rightarrow \) Dalitz decay comes into play
Dalitz decay radiative corrections

- corrections to the Dalitz plot in the form of a table of values
 → *Mikaelian and Smith*, PRD 5 (1972)

- new calculations motivated by needs of NA48/NA62 experiments at CERN
 → measure the slope a of $\mathcal{F}_{\pi^0\gamma^*\gamma^*}(0, q^2)$

- unlike before no approximation was used
 → can be used also for related decays $\eta \rightarrow \ell^+\ell^-\gamma$ etc.

- C++ code returns the correction for any given x and y
 → propagated into simulation software of NA62 experiment

Pseudoscalar decays

- $\chi^{(r)}$ universal for $P \rightarrow l^+ l^-$ processes up to $\mathcal{O}(m_l^2/\Lambda^{2}_{\chi_{PT}})$

Muon $g - 2$: hadronic light-by-light scattering

- pseudoscalar meson exchange contribution requires hadron-physics input
All NLO QED radiative corrections for discussed processes are now available → can be taken into account in future experimental analyses

- $\pi^0 \rightarrow e^+ e^-$

 Vaško and Novotný, JHEP 1110 (2011)

 TH, Kampf and Novotný, EPJC 74 (2014)

- $\pi^0 \rightarrow e^+ e^− γ$

 TH, Kampf and Novotný, PRD 92 (2015)

THS model for $\mathcal{F}_{\pi^0 γ^* γ^*}(p^2, q^2)$

- phenomenologically successful
- satisfies all main theoretical constraints
- TH and S. Leupold, EPJC 75 (2015)

Altogether, we get reasonable SM prediction → differs from KTeV by 1.8 $σ$
Goodbye

Thank you for your attention!